生物技术通报 ›› 2022, Vol. 38 ›› Issue (9): 226-236.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0539
收稿日期:
2022-05-04
出版日期:
2022-09-26
发布日期:
2022-10-11
作者简介:
高晓蓉,女,副教授,研究方向:多环芳烃污染修复;E-mail: 基金资助:
GAO Xiao-rong1(), DING Yao1, LV Jun2()
Received:
2022-05-04
Published:
2022-09-26
Online:
2022-10-11
摘要:
农田中不断积累的多环芳烃不仅严重影响作物生长,同时增加粮食安全风险。筛选兼具促进植物生长特性和降解污染物功能的微生物菌株是解决上述问题的一种有效手段。从油田附近生长的植物根表分离得到一株具有芘降解能力,同时还具有溶磷、产吲哚乙酸和铁载体等植物促生特性的菌株PR3,经16S rDNA序列同源性分析确定为假单胞菌(Pseudomonas sp.)。菌株PR3在无机盐培养液中生长14 d后,对芘(20 mg/L)的降解率可达94%,对萘(50 mg/L)、菲(50 mg/L)、苯并(a)芘(10 mg/L)的降解率也分别达到92%,84%和47%。同时,该菌株7 d内最大溶磷量为756.25 mg/L,2 d内IAA合成量可达14.46 mg/L,4 d内生成铁载体的活性单位可达58.53%。在不同芘污染浓度处理下的盆栽实验表明,接种PR3可有效促进水稻生长并提高根际土壤中芘的降解,去除率可达72.02%-86.22%,同时显著降低水稻根及地上部中的芘含量,分别为21.81%-53.01%和49.81%-57.17%。因此,菌株PR3有助于实现芘污染土壤的生态修复以及降低作物芘暴露的风险。
高晓蓉, 丁尧, 吕军. 芘降解菌Pseudomonas sp. PR3的植物促生特性及其对芘胁迫下水稻生长的影响[J]. 生物技术通报, 2022, 38(9): 226-236.
GAO Xiao-rong, DING Yao, LV Jun. Effects of Pseudomonas sp. PR3,a Pyrene-degrading Bacterium with Plant Growth-promoting Properties,on Rice Growth Under Pyrene Stress[J]. Biotechnology Bulletin, 2022, 38(9): 226-236.
菌株编号 Strain No. | 溶磷量 Phosphate solubilisation/(mg·L-1) | IAA生成量 IAA production/(mg·L-1) | 铁载体显色圈 Siderophore color circle/(D·d-1) | 铁载体活性单位 Siderophore activity unit/% |
---|---|---|---|---|
PR1 | 736.77±20.30 | 11.38±0.33 | 2.76±0.34 | 57.67±1.21 |
PR2 | 702.25±28.60 | 2.40±0.81 | 5.17±1.02 | 62.57±3.20 |
PR3 | 756.25±15.01 | 14.46±0.20 | 2.53±0.52 | 58.53±3.62 |
PR4 | 893.46±25.38 | 9.24±0.84 | 1.05±0.45 | 38.47±3.15 |
PR5 | 842.80±36.84 | 9.50±0.88 | 1.25±0.11 | 31.24±1.55 |
PR6 | 762.09±24.75 | 4.05±0.61 | 1.02±0.28 | 25.67±1.87 |
表1 菌株的植物促生特性
Table 1 Plant growth-promoting traits of the isolated strains
菌株编号 Strain No. | 溶磷量 Phosphate solubilisation/(mg·L-1) | IAA生成量 IAA production/(mg·L-1) | 铁载体显色圈 Siderophore color circle/(D·d-1) | 铁载体活性单位 Siderophore activity unit/% |
---|---|---|---|---|
PR1 | 736.77±20.30 | 11.38±0.33 | 2.76±0.34 | 57.67±1.21 |
PR2 | 702.25±28.60 | 2.40±0.81 | 5.17±1.02 | 62.57±3.20 |
PR3 | 756.25±15.01 | 14.46±0.20 | 2.53±0.52 | 58.53±3.62 |
PR4 | 893.46±25.38 | 9.24±0.84 | 1.05±0.45 | 38.47±3.15 |
PR5 | 842.80±36.84 | 9.50±0.88 | 1.25±0.11 | 31.24±1.55 |
PR6 | 762.09±24.75 | 4.05±0.61 | 1.02±0.28 | 25.67±1.87 |
图2 菌株PR3的芘降解能力 A:菌株PR3对20 mg/L芘的降解曲线及生长曲线;B:菌株PR3对不同浓度芘的降解曲线
Fig. 2 Degradation of pyrene by strain PR3 A:The degradation dynamics and the growth curve of strain PR3 of pyrene with an initial concentration of 20 mg/L. B:The degradation dynamics of pyrene at different concentration
PAHs | 初始浓度 Initial concentration/ (mg·L-1) | 降解时间 Degrading time/d | PAHs降解率 Degradation rate of PAHs/% |
---|---|---|---|
萘 Nap | 50 | 7 | 91.56±1.35 |
14 | 92.45±1.04 | ||
菲Phe | 50 | 7 | 52.39±5.78 |
14 | 84.70±1.54 | ||
苯并(a) 芘 Bap | 10 | 7 | 46.37±7.48 |
14 | 47.16±2.66 |
表2 菌株PR3对其他PAHs的降解能力
Table 2 Degradability of strain PR3 for other PAHs types
PAHs | 初始浓度 Initial concentration/ (mg·L-1) | 降解时间 Degrading time/d | PAHs降解率 Degradation rate of PAHs/% |
---|---|---|---|
萘 Nap | 50 | 7 | 91.56±1.35 |
14 | 92.45±1.04 | ||
菲Phe | 50 | 7 | 52.39±5.78 |
14 | 84.70±1.54 | ||
苯并(a) 芘 Bap | 10 | 7 | 46.37±7.48 |
14 | 47.16±2.66 |
图3 接种菌株PR3对水稻生长的影响 S0:未污染土壤;S1,S2,S3:芘初始浓度为9.58 mg/kg,43.80 mg/kg,90.67 mg/kg的污染土壤;CP:仅种植水稻;CPR:水稻根际接种PR3。下同
Fig. 3 Effects of inoculated strain PR3 on rice growth S0:Uncontaminated soil;S1,S2,S3:initial concentration of pyrene in the contaminated soil was 9.58 mg/kg,43.80 mg/kg and 90.67 mg/kg. CP:Only planted rice in the contaminated soil;CPR:planted rice inoculated with strain PR3 via root irrigation in the contaminated soil. The same below
处理 Treatment | 地上部 Shoot | 根 Root | |||||
---|---|---|---|---|---|---|---|
鲜重Fresh weight/(mg·pot-1) | 干重Dry weight/(mg·pot-1) | 鲜重Fresh weight/(mg·pot-1) | 干重Dry weight/(mg·pot-1) | ||||
S0 | CP | 2861.76±16.80 c | 774.40±15.12 b | 1775.95±39.67 bc | 303.60±17.08 c | ||
CPR | 3536.13±103.75 ab | 860.93±20.17 a | 2456.30±162.76 a | 368.13±18.42 a | |||
S1 | CP | 3081.10±71.56 bc | 792.00±20.61 b | 1532.85±154.78 cd | 287.47±18.87 cd | ||
CPR | 3380.85±70.78 b | 871.20±21.78 a | 1894.20±60.74 b | 334.40±7.21 b | |||
S2 | CP | 2681.43±75.64 c | 630.67±17.54 c | 1611.13±154.24 c | 262.90±14.55 d | ||
CPR | 3788.40±82.44 a | 854.70±31.33 a | 2323.75±103.45 a | 373.63±9.61 a | |||
S3 | CP | 2069.10±105.98 d | 493.53±12.12 d | 1155.00±113.43 d | 255.93±16.66 d | ||
CPR | 3513.95±119.01 ab | 838.57±30.83 ab | 2113.10±49.78 a | 346.13±14.77 ab |
表3 接种菌株PR3 30 d后水稻的生物量
Table 3 Biomass of rice at 30 d after inoculation with strain PR3
处理 Treatment | 地上部 Shoot | 根 Root | |||||
---|---|---|---|---|---|---|---|
鲜重Fresh weight/(mg·pot-1) | 干重Dry weight/(mg·pot-1) | 鲜重Fresh weight/(mg·pot-1) | 干重Dry weight/(mg·pot-1) | ||||
S0 | CP | 2861.76±16.80 c | 774.40±15.12 b | 1775.95±39.67 bc | 303.60±17.08 c | ||
CPR | 3536.13±103.75 ab | 860.93±20.17 a | 2456.30±162.76 a | 368.13±18.42 a | |||
S1 | CP | 3081.10±71.56 bc | 792.00±20.61 b | 1532.85±154.78 cd | 287.47±18.87 cd | ||
CPR | 3380.85±70.78 b | 871.20±21.78 a | 1894.20±60.74 b | 334.40±7.21 b | |||
S2 | CP | 2681.43±75.64 c | 630.67±17.54 c | 1611.13±154.24 c | 262.90±14.55 d | ||
CPR | 3788.40±82.44 a | 854.70±31.33 a | 2323.75±103.45 a | 373.63±9.61 a | |||
S3 | CP | 2069.10±105.98 d | 493.53±12.12 d | 1155.00±113.43 d | 255.93±16.66 d | ||
CPR | 3513.95±119.01 ab | 838.57±30.83 ab | 2113.10±49.78 a | 346.13±14.77 ab |
图4 菌株PR3对水稻光合作用及氧化应激的影响 不同处理下的叶绿素含量(A)、SOD酶活性(B)、POD酶活性(C)以及MDA含量(D)。不同字母表示各处理间差异显著(P<0.05),下同
Fig. 4 Effects of strain PR3 on photosynthesis and oxidative stress of rice Chlorophyll content(A),SOD activity(B),POD activity(C)and MDA content(D)under different treatments. The different lowercase letters indicate significant differences among treatments at P<0.05 levels,the same below
图5 接种菌株PR3对水稻(A)及土壤(B)中芘含量的影响 CK:污染土壤对照;CB:土壤中接种PR3
Fig. 5 Effects of strain PR3 on pyrene content in rice(A)and soil(B) CK:Contaminated soil as control;CB:contaminated soil inoculated with strain PR3
[1] |
Edokpayi JN, Odiyo JO, Popoola OE, et al. Determination and distribution of polycyclic aromatic hydrocarbons in rivers, sediments and wastewater effluents in vhembe district, South Africa[J]. Int J Environ Res Public Health, 2016, 13(4):387.
doi: 10.3390/ijerph13040387 URL |
[2] |
Helmfrid I, Ljunggren S, Nosratabadi R, et al. Exposure of metals and PAH through local foods and risk of cancer in a historically contaminated glassworks area[J]. Environ Int, 2019, 131:104985.
doi: 10.1016/j.envint.2019.104985 URL |
[3] |
Zhang P, Chen YG. Polycyclic aromatic hydrocarbons contamination in surface soil of China:a review[J]. Sci Total Environ, 2017, 605/606:1011-1020.
doi: 10.1016/j.scitotenv.2017.06.247 URL |
[4] |
Duan YH, Shen GF, Tao S, et al. Characteristics of polycyclic aromatic hydrocarbons in agricultural soils at a typical coke production base in Shanxi, China[J]. Chemosphere, 2015, 127:64-69.
doi: 10.1016/j.chemosphere.2014.12.075 pmid: 25655699 |
[5] |
Fedorenko AG, Chernikova N, Minkina T, et al. Effects of benzo[a]Pyrene toxicity on morphology and ultrastructure of Hordeum sativum[J]. Environ Geochem Health, 2021, 43(4):1551-1562.
doi: 10.1007/s10653-020-00647-7 URL |
[6] |
Mittler R. ROS are good[J]. Trends Plant Sci, 2017, 22(1):11-19.
doi: S1360-1385(16)30112-1 pmid: 27666517 |
[7] |
Zhan X, Yuan J, Yue L, et al. Response of uptake and translocation of phenanthrene to nitrogen form in lettuce and wheat seedlings[J]. Environ Sci Pollut Res Int, 2015, 22(8):6280-6287.
doi: 10.1007/s11356-014-3834-3 URL |
[8] | Abdel-Shafy HI, Mansour MSM. A review on polycyclic aromatic hydrocarbons:Source, environmental impact, effect on human health and remediation[J]. Egypt J Petroleum, 2016, 25(1):107-123. |
[9] | 刘娟, 凌婉婷, 盛月慧, 等. 根表功能细菌生物膜及其在土壤有机污染控制与修复中的潜在应用价值[J]. 农业环境科学学报, 2013, 32(11):2112-2117. |
Liu J, Ling WT, Sheng YH, et al. Biofilm formation of functional bacteria on root surfaces and its potential applications on organic contaminant control and soil remediation[J]. J Agro Environ Sci, 2013, 32(11):2112-2117. | |
[10] |
Pii Y, Marastoni L, Gemassmer E, et al. Phytotoxicity alleviation by bacterial species isolated from polycyclic aromatic hydrocarbons(PAHs)contaminated sites[J]. Environ Technol Innov, 2019, 13:104-112.
doi: 10.1016/j.eti.2018.11.001 URL |
[11] |
Etesami H, Maheshwari DK. Use of plant growth promoting rhizobacteria(PGPRs)with multiple plant growth promoting traits in stress agriculture:action mechanisms and future prospects[J]. Ecotoxicol Environ Saf, 2018, 156:225-246.
doi: 10.1016/j.ecoenv.2018.03.013 URL |
[12] | 孙培. 根际促生菌和BPA降解菌的筛选及其对玉米幼苗促生功能的研究[D]. 天津: 天津大学, 2019. |
Sun P. Screening of rhizosphere growth promoting bacteria and BPA degrading bacteria and study on the function growth promoting growth of maize seedlings[D]. Tianjin: Tianjin University, 2019. | |
[13] | Ghosal D, Ghosh S, Dutta TK, et al. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons(PAHs):a review[J]. Front Microbiol, 2016, 7:1369. |
[14] |
Li XZ, Peng DL, Zhang Y, et al. Klebsiella sp. PD3, a phenanthrene(PHE)-degrading strain with plant growth promoting properties enhances the PHE degradation and stress tolerance in rice plants[J]. Ecotoxicol Environ Saf, 2020, 201:110804.
doi: 10.1016/j.ecoenv.2020.110804 URL |
[15] |
Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms[J]. FEMS Microbiol Lett, 1999, 170(1):265-270.
pmid: 9919677 |
[16] |
Ribeiro CM, Cardoso EJBN. Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil Pine(Araucaria angustifolia)[J]. Microbiol Res, 2012, 167(2):69-78.
doi: 10.1016/j.micres.2011.03.003 URL |
[17] |
Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores[J]. Anal Biochem, 1987, 160(1):47-56.
pmid: 2952030 |
[18] |
Liu J, Zhang ZM, Sheng YH, et al. Phenanthrene-degrading bacteria on root surfaces:a natural defense that protects plants from phenanthrene contamination[J]. Plant Soil, 2018, 425(1/2):335-350.
doi: 10.1007/s11104-018-3575-z URL |
[19] | Rathour R, Gupta J, Tyagi B, et al. Biodegradation of Pyrene in soil microcosm by Shewanella sp. ISTPL2, a psychrophilic, alkalophilic and halophilic bacterium[J]. Bioresour Technol Rep, 2018, 4:129-136. |
[20] |
Gordon SA, Weber RP. Colorimetric estimation of indoleacetic acid[J]. Plant Physiol, 1951, 26(1):192-195.
doi: 10.1104/pp.26.1.192 pmid: 16654351 |
[21] | Sultana S, Alam S, Karim MM. Screening of siderophore-producing salt-tolerant rhizobacteria suitable for supporting plant growth in saline soils with iron limitation[J]. J Agric Food Res, 2021, 4:100150. |
[22] | 荣良燕, 姚拓, 赵桂琴, 等. 产铁载体PGPR菌筛选及其对病原菌的拮抗作用[J]. 植物保护, 2011, 37(1):59-64. |
Rong LY, Yao T, Zhao GQ, et al. Screening of siderophore-producing PGPR bacteria and their antagonism against the pathogens[J]. Plant Prot, 2011, 37(1):59-64. | |
[23] |
Murphy J, Riley JP. A modified single solution method for the determination of phosphate in natural waters[J]. Anal Chimica Acta, 1962, 27:31-36.
doi: 10.1016/S0003-2670(00)88444-5 URL |
[24] |
Kotoky R, Das S, Singha LP, et al. Biodegradation of Benzo(a)Pyrene by biofilm forming and plant growth promoting Acinetobacter sp. strain PDB4[J]. Environ Technol Innov, 2017, 8:256-268.
doi: 10.1016/j.eti.2017.07.007 URL |
[25] |
Lu C, Hong Y, Liu J, et al. A PAH-degrading bacterial community enriched with contaminated agricultural soil and its utility for microbial bioremediation[J]. Environ Pollut, 2019, 251:773-782.
doi: S0269-7491(18)35569-6 pmid: 31121542 |
[26] |
Jeffrey SW, Humphrey GF. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton[J]. Biochem Und Physiol Der Pflanzen, 1975, 167(2):191-194.
doi: 10.1016/S0015-3796(17)30778-3 URL |
[27] |
Shao P, Wang P, Niu B, et al. Environmental stress stability of pectin-stabilized resveratrol liposomes with different degree of esterification[J]. Int J Biol Macromol, 2018, 119:53-59.
doi: S0141-8130(18)32298-0 pmid: 30036624 |
[28] |
Gao YZ, Hu XJ, Zhou ZY, et al. Phytoavailability and mechanism of bound PAH residues in filed contaminated soils[J]. Environ Pollut, 2017, 222:465-476.
doi: S0269-7491(16)32420-4 pmid: 28063713 |
[29] |
Haller H, Jonsson A. Growing food in polluted soils:a review of risks and opportunities associated with combined phytoremediation and food production(CPFP)[J]. Chemosphere, 2020, 254:126826.
doi: 10.1016/j.chemosphere.2020.126826 URL |
[30] |
Nzila A, Ramirez CO, Musa MM, et al. Pyrene biodegradation and proteomic analysis in Achromobacter xylosoxidans, PY 4 strain[J]. Int Biodeterior Biodegrad, 2018, 130:40-47.
doi: 10.1016/j.ibiod.2018.03.014 URL |
[31] |
Vaidya S, Jain K, Madamwar D. Metabolism of Pyrene through phthalic acid pathway by enriched bacterial consortium composed of Pseudomonas, Burkholderia, and Rhodococcus(PBR)[J]. 3 Biotech, 2017, 7(1):29.
doi: 10.1007/s13205-017-0598-8 pmid: 28401465 |
[32] | 张金宝, 李凤梅, 郭书海, 等. 高分子量多环芳烃降解菌筛选及在土壤电动-生物修复中应用[J]. 生态学杂志, 2020, 39(1):260-269. |
Zhang JB, Li FM, Guo SH, et al. Isolation of high molecular weight PAHs degrading bacteria and its application in the electro-bioremediation of contaminated soil[J]. Chin J Ecol, 2020, 39(1):260-269. | |
[33] |
Seo Y, Bishop PL. Influence of nonionic surfactant on attached biofilm formation and phenanthrene bioavailability during simulated surfactant enhanced bioremediation[J]. Environ Sci Technol, 2007, 41(20):7107-7113.
pmid: 17993155 |
[34] |
Chen S, Ma Z, Li SY, et al. Colonization of polycyclic aromatic hydrocarbon-degrading bacteria on roots reduces the risk of PAH contamination in vegetables[J]. Environ Int, 2019, 132:105081.
doi: 10.1016/j.envint.2019.105081 URL |
[35] |
Liu J, Liu S, Sun K, et al. Colonization on root surface by a phenanthrene-degrading endophytic bacterium and its application for reducing plant phenanthrene contamination[J]. PLoS One, 2014, 9(9):e108249.
doi: 10.1371/journal.pone.0108249 URL |
[36] |
Tian K, Bao HY, Liu XP, et al. Accumulation and distribution of PAHs in winter wheat from areas influenced by coal combustion in China[J]. Environ Sci Pollut Res Int, 2018, 25(24):23780-23790.
doi: 10.1007/s11356-018-2456-6 URL |
[37] |
Lu SJ, Teng YG, Wang JS, et al. Enhancement of Pyrene removed from contaminated soils by Bidens maximowicziana[J]. Chemosphere, 2010, 81(5):645-650.
doi: 10.1016/j.chemosphere.2010.08.022 URL |
[38] |
Yu LY, Huang HB, Wang XH, et al. Novel phosphate-solubilising bacteria isolated from sewage sludge and the mechanism of phosphate solubilisation[J]. Sci Total Environ, 2019, 658:474-484.
doi: 10.1016/j.scitotenv.2018.12.166 URL |
[39] |
Golubev SN, Muratova AY, Wittenmayer L, et al. Rhizosphere indole-3-acetic acid as a mediator in the Sorghum bicolor-phenanthrene-Sinorhizobium meliloti interactions[J]. Plant Physiol Biochem, 2011, 49(6):600-608.
doi: 10.1016/j.plaphy.2011.03.007 URL |
[40] | 龚诚君, 周昕霏, 杨昳, 等. 产IAA菌与生物炭对镍和镉复合污染土壤的修复[J]. 环境科学与技术, 2021, 44(5):140-147. |
Gong CJ, Zhou XF, Yang Y, et al. Remediation of Ni and Cd compound contaminated soil by IAA producing bacteria and biochar[J]. Environ Sci & Technol, 2021, 44(5):140-147. | |
[41] | 龙云川, 陈轩, 周少奇. 高产铁载体根际菌的筛选鉴定及硒活化特性评价[J]. 生物技术进展, 2017, 7(5):402-408. |
Long YC, Chen X, Zhou SQ. Isolation, identification and assessment on selenium biofortification of siderophore-producing rhizobacteria[J]. Curr Biotechnol, 2017, 7(5):402-408. | |
[42] |
Zhang XY, Su C, Liu XY, et al. Effect of plant-growth-promoting rhizobacteria on phytoremediation efficiency of Scirpus triqueter in Pyrene-Ni co-contaminated soils[J]. Chemosphere, 2020, 241:125027.
doi: 10.1016/j.chemosphere.2019.125027 URL |
[1] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[2] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[3] | 康凌云, 韩露露, 韩德平, 陈建胜, 甘瀚凌, 邢凯, 马友记, 崔凯. 褪黑素缓解空肠黏膜上皮细胞氧化损伤的效果研究[J]. 生物技术通报, 2023, 39(9): 291-299. |
[4] | 李雪琪, 张素杰, 于曼, 黄金光, 周焕斌. 基于CRISPR/CasX介导的水稻基因组编辑技术的建立[J]. 生物技术通报, 2023, 39(9): 40-48. |
[5] | 吴元明, 林佳怡, 柳雨汐, 李丹婷, 张宗琼, 郑晓明, 逄洪波. 基于BSA-seq和RNA-seq挖掘水稻株高相关QTL[J]. 生物技术通报, 2023, 39(8): 173-184. |
[6] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[7] | 李宇, 李素贞, 陈茹梅, 卢海强. 植物bHLH转录因子调控铁稳态的研究进展[J]. 生物技术通报, 2023, 39(7): 26-36. |
[8] | 任沛东, 彭健玲, 刘圣航, 姚姿婷, 朱桂宁, 陆光涛, 李瑞芳. 沙福芽孢杆菌GX-H6的分离鉴定及对水稻细菌性条斑病的防病效果[J]. 生物技术通报, 2023, 39(5): 243-253. |
[9] | 李怡君, 吴晨晨, 李睿, 王喆, 何山文, 韦善君, 张晓霞. 水稻内生细菌新资源分离培养方案探究[J]. 生物技术通报, 2023, 39(4): 201-211. |
[10] | 卢振万, 李雪琪, 黄金光, 周焕斌. 利用胞嘧啶碱基编辑技术创制耐草甘膦水稻[J]. 生物技术通报, 2023, 39(2): 63-69. |
[11] | 杨茂, 林宇丰, 戴阳朔, 潘素君, 彭伟业, 严明雄, 李魏, 王冰, 戴良英. OsDIS1通过抗氧化途径负调控水稻耐旱性[J]. 生物技术通报, 2023, 39(2): 88-95. |
[12] | 蒋铭轩, 李康, 罗亮, 刘建祥, 芦海平. 植物表达外源蛋白研究进展及展望[J]. 生物技术通报, 2023, 39(11): 110-122. |
[13] | 姜南, 石杨, 赵志慧, 李斌, 赵熠辉, 杨俊彪, 闫家铭, 靳雨璠, 陈稷, 黄进. 镉胁迫下水稻OsPT1的表达及功能分析[J]. 生物技术通报, 2023, 39(1): 166-174. |
[14] | 陈光, 李佳, 杜瑞英, 王旭. 水稻盐敏感突变体ss2的鉴定与基因功能分析[J]. 生物技术通报, 2022, 38(9): 158-166. |
[15] | 黄婧, 朱亮, 薛蓬勃, 付强. 水稻叶和籽粒镉积累机制及QTL定位研究[J]. 生物技术通报, 2022, 38(8): 118-126. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||