生物技术通报 ›› 2021, Vol. 37 ›› Issue (5): 28-37.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1203
徐子涵1(), 刘倩1, 苗大鹏1, 陈跃2, 胡凤荣1()
收稿日期:
2020-09-23
出版日期:
2021-05-26
发布日期:
2021-06-11
作者简介:
徐子涵,女,博士,研究方向:园林植物遗传育种;E-mail: 基金资助:
XU Zi-han1(), LIU Qian1, MIAO Da-peng1, CHEN Yue2, HU Feng-rong1()
Received:
2020-09-23
Published:
2021-05-26
Online:
2021-06-11
摘要:
为研究春兰miR396(cgo-miR396)基因在植物叶片生长发育中的作用,针对春兰的栽培和生产提供新的研究思路。将该基因前体cgo-MIR396在拟南芥中过量表达,观察其形态指标的变化并对相应的光合和叶绿素荧光参数进行测定。春兰miR396基因在花期叶片中的表达量最高,过表达该基因可以显著增加拟南芥的叶长、叶宽、叶面积和株高,并明显降低叶片的叶绿素含量、气孔导度(gs)和蒸腾速率(Tr),提高了水分利用效率(WUE);另外,cgo-miR396的过表达还导致反应中心吸收的光能用于电子传递的量子产额(φEo)、性能指数(PIABS)、推动力(DFABS)等叶绿素荧光参数的下降。春兰miR396主要于生殖生长时期发挥作用,在保证净光合效率和叶片生长发育的同时,适当降低了叶片的气孔导度及PSII受体侧的部分性能。
徐子涵, 刘倩, 苗大鹏, 陈跃, 胡凤荣. 春兰miR396过表达对拟南芥叶片生长、光合及叶绿素荧光特性的影响[J]. 生物技术通报, 2021, 37(5): 28-37.
XU Zi-han, LIU Qian, MIAO Da-peng, CHEN Yue, HU Feng-rong. Impacts of Cymbidium goeringii’s miR396 Overexpression on the Leaf Growth,Photosynthesis and Chlorophyll Fluorescence in Arabidopsis thaliana[J]. Biotechnology Bulletin, 2021, 37(5): 28-37.
株系 | 叶绿素a | 叶绿素b | 叶绿素 a+b | 叶绿素a/b |
---|---|---|---|---|
Line | Chla/(mg·g-1) | Chlb/(mg·g-1) | Chl(a+b)/(mg·g-1) | Chla/b |
WT | 1.797±0.09a | 0.467±0.02a | 2.267±0.11a | 3.853±0.04a |
Line1 | 1.300±0.09b | 0.340±0.03b | 1.637±0.12b | 3.883±0.13a |
Line2 | 1.280±0.10b | 0.330±0.04b | 1.607±0.14b | 3.923±0.18a |
Line3 | 1.300±0.06b | 0.337±0.02b | 1.640±0.08b | 3.857±0.06a |
Line4 | 1.497±0.05b | 0.397±0.03ab | 1.893±0.08b | 3.770±0.12a |
表1 叶绿素含量的测定
Table 1 Determination of chlorophyll content
株系 | 叶绿素a | 叶绿素b | 叶绿素 a+b | 叶绿素a/b |
---|---|---|---|---|
Line | Chla/(mg·g-1) | Chlb/(mg·g-1) | Chl(a+b)/(mg·g-1) | Chla/b |
WT | 1.797±0.09a | 0.467±0.02a | 2.267±0.11a | 3.853±0.04a |
Line1 | 1.300±0.09b | 0.340±0.03b | 1.637±0.12b | 3.883±0.13a |
Line2 | 1.280±0.10b | 0.330±0.04b | 1.607±0.14b | 3.923±0.18a |
Line3 | 1.300±0.06b | 0.337±0.02b | 1.640±0.08b | 3.857±0.06a |
Line4 | 1.497±0.05b | 0.397±0.03ab | 1.893±0.08b | 3.770±0.12a |
株系 | 初始荧光 | 最大荧光 | 可变荧光 | PS II最大光化学效率 | PS II 潜在光化学效率 |
---|---|---|---|---|---|
Line | Fo | Fm | Fv | Fv/Fm | Fv/Fo |
WT | 547.5±9.93a | 3229.5±35.62a | 2682.0±27.04a | 0.831±0.002a | 4.905±0.05a |
Line1 | 541.7±26.21a | 3252.3±115.61a | 2710.7±104.80a | 0.833±0.007a | 5.023±0.27a |
Line2 | 537.5±0.29a | 3115.5±79.39a | 2578.0±79.10a | 0.828±0.004a | 4.796±0.14a |
Line3 | 564.7±21.36a | 3104.3±17.64a | 2539.7±5.46a | 0.818±0.006a | 4.511±0.18a |
Line4 | 551.0±8.89a | 3282.0±96.16a | 2731.0±87.47a | 0.832±0.002a | 4.954±0.08a |
表2 快速叶绿素荧光参数的测定
Table 2 Rapid determination of chlorophyll fluorescence parameters
株系 | 初始荧光 | 最大荧光 | 可变荧光 | PS II最大光化学效率 | PS II 潜在光化学效率 |
---|---|---|---|---|---|
Line | Fo | Fm | Fv | Fv/Fm | Fv/Fo |
WT | 547.5±9.93a | 3229.5±35.62a | 2682.0±27.04a | 0.831±0.002a | 4.905±0.05a |
Line1 | 541.7±26.21a | 3252.3±115.61a | 2710.7±104.80a | 0.833±0.007a | 5.023±0.27a |
Line2 | 537.5±0.29a | 3115.5±79.39a | 2578.0±79.10a | 0.828±0.004a | 4.796±0.14a |
Line3 | 564.7±21.36a | 3104.3±17.64a | 2539.7±5.46a | 0.818±0.006a | 4.511±0.18a |
Line4 | 551.0±8.89a | 3282.0±96.16a | 2731.0±87.47a | 0.832±0.002a | 4.954±0.08a |
叶面积 | 叶长 | 叶宽 | 株高 | 叶绿素a+b | 叶绿素a/b | Ci | gs | A | E | WUE | Fo | Fm | Fv | Fv/Fm | Fv/Fo | ABS/RC | DIo/RC | TRo/RC | ETo/RC | φPo | ψo | φEo | PI ABS | DF ABS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
叶面积 | 1 | ||||||||||||||||||||||||
叶长 | 0.883** | 1 | |||||||||||||||||||||||
叶宽 | 0.953** | 0.733** | 1 | ||||||||||||||||||||||
株高 | 0.464 | 0.470 | 0.408 | 1 | |||||||||||||||||||||
叶绿素a+b | -0.194 | -0.046 | -0.284 | -0.281 | 1 | ||||||||||||||||||||
叶绿素a/b | 0.017 | -0.239 | 0.179 | -0.037 | -0.257 | 1 | |||||||||||||||||||
Ci | -0.206 | -0.361 | -0.154 | -0.299 | 0.290 | 0.471 | 1 | ||||||||||||||||||
gs | -0.551* | -0.579* | -0.524* | -0.269 | 0.426 | 0.363 | 0.778** | 1 | |||||||||||||||||
A | -0.004 | -0.033 | 0.070 | 0.139 | -0.049 | -0.153 | -0.072 | -0.018 | 1 | ||||||||||||||||
E | -0.412 | -0.488 | -0.364 | -0.332 | 0.326 | 0.312 | 0.868** | 0.890** | 0.087 | 1 | |||||||||||||||
WUE | 0.261 | 0.384 | 0.227 | 0.419 | -0.279 | -0.420 | -0.922** | -0.797** | 0.177 | -0.921** | 1 | ||||||||||||||
Fo | 0.143 | 0.268 | 0.118 | 0.034 | 0.004 | 0.178 | 0.218 | 0.248 | 0.360 | 0.214 | -0.169 | 1 | |||||||||||||
Fm | -0.137 | -0.029 | -0.254 | -0.199 | 0.291 | -0.032 | 0.261 | 0.233 | 0.286 | 0.226 | -0.173 | 0.327 | 1 | ||||||||||||
Fv | -0.171 | -0.083 | -0.289 | -0.215 | 0.304 | -0.068 | 0.230 | 0.196 | 0.229 | 0.195 | -0.148 | 0.146 | 0.983** | 1 | |||||||||||
Fv/Fm | -0.249 | -0.276 | -0.323 | -0.191 | 0.227 | -0.177 | 0.030 | -0.015 | -0.085 | 0.007 | -0.004 | -0.629* | 0.529* | 0.677** | 1 | ||||||||||
Fv/Fo | -0.256 | -0.289 | -0.319 | -0.195 | 0.237 | -0.183 | 0.029 | -0.027 | -0.062 | -0.003 | 0.011 | -0.636* | 0.518* | 0.667** | 0.996** | 1 | |||||||||
ABS/RC | 0.346 | 0.408 | 0.352 | 0.271 | -0.243 | 0.052 | -0.308 | -0.314 | 0.007 | -0.453 | 0.407 | 0.419 | -0.177 | -0.267 | -0.516* | -0.510 | 1 | ||||||||
DIo/RC | 0.350 | 0.369 | 0.417 | 0.239 | -0.267 | 0.240 | -0.110 | -0.115 | 0.057 | -0.193 | 0.153 | 0.631* | -0.409 | -0.552* | -0.901** | -0.893** | 0.824** | 1 | |||||||
TRo/RC | 0.302 | 0.377 | 0.278 | 0.253 | -0.202 | -0.044 | -0.366 | -0.371 | -0.018 | -0.522* | 0.478 | 0.266 | -0.044 | -0.098 | -0.269 | -0.264 | 0.962** | 0.639* | 1 | ||||||
ETo/RC | -0.049 | 0.092 | -0.164 | -0.348 | 0.216 | -0.159 | -0.140 | -0.033 | -0.227 | -0.287 | 0.191 | 0.218 | 0.369 | 0.343 | 0.111 | 0.090 | 0.461 | 0.138 | 0.560* | 1 | |||||
φPo | -0.273 | -0.261 | -0.368 | -0.167 | 0.222 | -0.325 | -0.055 | -0.058 | -0.075 | -0.040 | 0.066 | -0.648** | 0.490 | 0.640* | 0.986** | 0.981** | -0.506 | -0.905** | -0.252 | 0.129 | 1 | ||||
ψo | -0.277 | -0.159 | -0.398 | -0.607* | 0.405 | -0.159 | 0.098 | 0.228 | -0.259 | 0.032 | -0.116 | 0.080 | 0.476 | 0.482 | 0.319 | 0.291 | -0.123 | -0.281 | -0.033 | 0.810** | 0.330 | 1 | |||
φEo | -0.309 | -0.196 | -0.439 | -0.592* | 0.415 | -0.211 | 0.078 | 0.197 | -0.250 | 0.021 | -0.092 | -0.050 | 0.533* | 0.568* | 0.484 | 0.457 | -0.212 | -0.434 | -0.079 | 0.769** | 0.496 | 0.983** | 1 | ||
PI ABS | -0.343 | -0.357 | -0.402 | -0.624* | 0.430 | 0.075 | 0.310 | 0.301 | -0.214 | 0.233 | -0.314 | -0.240 | 0.605* | 0.680** | 0.710** | 0.697** | -0.559* | -0.707** | -0.420 | 0.395 | 0.657** | 0.773** | 0.838** | 1 | |
DF ABS | -0.313 | -0.334 | -0.379 | -0.580* | 0.430 | 0.070 | 0.302 | 0.285 | -0.237 | 0.211 | -0.297 | -0.267 | 0.596* | 0.676** | 0.727** | 0.712** | -0.561* | -0.721** | -0.416 | 0.394 | 0.676** | 0.768** | 0.837** | 0.997** | 1 |
表3 各单项指标的相关系数矩阵
Table 3 Correlation coefficient matrix of each single index
叶面积 | 叶长 | 叶宽 | 株高 | 叶绿素a+b | 叶绿素a/b | Ci | gs | A | E | WUE | Fo | Fm | Fv | Fv/Fm | Fv/Fo | ABS/RC | DIo/RC | TRo/RC | ETo/RC | φPo | ψo | φEo | PI ABS | DF ABS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
叶面积 | 1 | ||||||||||||||||||||||||
叶长 | 0.883** | 1 | |||||||||||||||||||||||
叶宽 | 0.953** | 0.733** | 1 | ||||||||||||||||||||||
株高 | 0.464 | 0.470 | 0.408 | 1 | |||||||||||||||||||||
叶绿素a+b | -0.194 | -0.046 | -0.284 | -0.281 | 1 | ||||||||||||||||||||
叶绿素a/b | 0.017 | -0.239 | 0.179 | -0.037 | -0.257 | 1 | |||||||||||||||||||
Ci | -0.206 | -0.361 | -0.154 | -0.299 | 0.290 | 0.471 | 1 | ||||||||||||||||||
gs | -0.551* | -0.579* | -0.524* | -0.269 | 0.426 | 0.363 | 0.778** | 1 | |||||||||||||||||
A | -0.004 | -0.033 | 0.070 | 0.139 | -0.049 | -0.153 | -0.072 | -0.018 | 1 | ||||||||||||||||
E | -0.412 | -0.488 | -0.364 | -0.332 | 0.326 | 0.312 | 0.868** | 0.890** | 0.087 | 1 | |||||||||||||||
WUE | 0.261 | 0.384 | 0.227 | 0.419 | -0.279 | -0.420 | -0.922** | -0.797** | 0.177 | -0.921** | 1 | ||||||||||||||
Fo | 0.143 | 0.268 | 0.118 | 0.034 | 0.004 | 0.178 | 0.218 | 0.248 | 0.360 | 0.214 | -0.169 | 1 | |||||||||||||
Fm | -0.137 | -0.029 | -0.254 | -0.199 | 0.291 | -0.032 | 0.261 | 0.233 | 0.286 | 0.226 | -0.173 | 0.327 | 1 | ||||||||||||
Fv | -0.171 | -0.083 | -0.289 | -0.215 | 0.304 | -0.068 | 0.230 | 0.196 | 0.229 | 0.195 | -0.148 | 0.146 | 0.983** | 1 | |||||||||||
Fv/Fm | -0.249 | -0.276 | -0.323 | -0.191 | 0.227 | -0.177 | 0.030 | -0.015 | -0.085 | 0.007 | -0.004 | -0.629* | 0.529* | 0.677** | 1 | ||||||||||
Fv/Fo | -0.256 | -0.289 | -0.319 | -0.195 | 0.237 | -0.183 | 0.029 | -0.027 | -0.062 | -0.003 | 0.011 | -0.636* | 0.518* | 0.667** | 0.996** | 1 | |||||||||
ABS/RC | 0.346 | 0.408 | 0.352 | 0.271 | -0.243 | 0.052 | -0.308 | -0.314 | 0.007 | -0.453 | 0.407 | 0.419 | -0.177 | -0.267 | -0.516* | -0.510 | 1 | ||||||||
DIo/RC | 0.350 | 0.369 | 0.417 | 0.239 | -0.267 | 0.240 | -0.110 | -0.115 | 0.057 | -0.193 | 0.153 | 0.631* | -0.409 | -0.552* | -0.901** | -0.893** | 0.824** | 1 | |||||||
TRo/RC | 0.302 | 0.377 | 0.278 | 0.253 | -0.202 | -0.044 | -0.366 | -0.371 | -0.018 | -0.522* | 0.478 | 0.266 | -0.044 | -0.098 | -0.269 | -0.264 | 0.962** | 0.639* | 1 | ||||||
ETo/RC | -0.049 | 0.092 | -0.164 | -0.348 | 0.216 | -0.159 | -0.140 | -0.033 | -0.227 | -0.287 | 0.191 | 0.218 | 0.369 | 0.343 | 0.111 | 0.090 | 0.461 | 0.138 | 0.560* | 1 | |||||
φPo | -0.273 | -0.261 | -0.368 | -0.167 | 0.222 | -0.325 | -0.055 | -0.058 | -0.075 | -0.040 | 0.066 | -0.648** | 0.490 | 0.640* | 0.986** | 0.981** | -0.506 | -0.905** | -0.252 | 0.129 | 1 | ||||
ψo | -0.277 | -0.159 | -0.398 | -0.607* | 0.405 | -0.159 | 0.098 | 0.228 | -0.259 | 0.032 | -0.116 | 0.080 | 0.476 | 0.482 | 0.319 | 0.291 | -0.123 | -0.281 | -0.033 | 0.810** | 0.330 | 1 | |||
φEo | -0.309 | -0.196 | -0.439 | -0.592* | 0.415 | -0.211 | 0.078 | 0.197 | -0.250 | 0.021 | -0.092 | -0.050 | 0.533* | 0.568* | 0.484 | 0.457 | -0.212 | -0.434 | -0.079 | 0.769** | 0.496 | 0.983** | 1 | ||
PI ABS | -0.343 | -0.357 | -0.402 | -0.624* | 0.430 | 0.075 | 0.310 | 0.301 | -0.214 | 0.233 | -0.314 | -0.240 | 0.605* | 0.680** | 0.710** | 0.697** | -0.559* | -0.707** | -0.420 | 0.395 | 0.657** | 0.773** | 0.838** | 1 | |
DF ABS | -0.313 | -0.334 | -0.379 | -0.580* | 0.430 | 0.070 | 0.302 | 0.285 | -0.237 | 0.211 | -0.297 | -0.267 | 0.596* | 0.676** | 0.727** | 0.712** | -0.561* | -0.721** | -0.416 | 0.394 | 0.676** | 0.768** | 0.837** | 0.997** | 1 |
[1] |
Arvidsson S, Perez-Rodrıguez P, Mueller-Roeber B, et al. A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling forrobust quantification of genotype effects[J]. New Phytologist, 2011,191:895-907.
doi: 10.1111/nph.2011.191.issue-3 URL |
[2] | 孙崇波, 向林, 施季森, 等. 春兰AGL6基因的克隆及实时定量表达分析[J]. 分子植物育种, 2010,8(5):939-944. |
Sun CB, Xiang L, Shi JS, et al. Cloning and real-time expression analysis of AGL6 gene from Cymbidium goeringii[J]. Molecular Plant Breeding, 2010,8:939-944. | |
[3] |
Omidbakhshfard MA, Proost S, Fujikura U, et al. Growth-regulating factors(GRFs):A small transcription factor family with important functions in plant biology[J]. Molecular Plant, 2015,8:998-1010.
doi: 10.1016/j.molp.2015.01.013 pmid: 25620770 |
[4] | 翟俊淼, 栾雨时, 崔娟娟. miR396基因家族的进化及功能分析[J]. 植物研究, 2013,33(4):421-428. |
Zhai JM, Luan YS, Cui JJ. Evolution and function analysis of miR396 gene family[J]. Bulletin of Botanical Research, 2013,33:421-428. | |
[5] | 吕帝瑾, 赵佳媛, 陈婧, 等. 植物microRNA的研究进展[J]. 植物生理学报, 2013,49(9):847-854. |
Lv DJ, Zhao JY, Chen J, et al. Advances in the research of plant microRNA[J]. Plant Physiology Journal, 2013,49:847-854. | |
[6] |
Liu J, Hua W, Yang HL, et al. The BnGRF2 gene(GRF2-like gene from Brassica napus)enhances seed oil production through regulating cell number and plant photosynjournal[J]. Journal of Experimental Botany, 2012,63:3727-3740.
doi: 10.1093/jxb/ers066 URL |
[7] |
Wu L, Zhang DF, Xue M, et al. Overexpression of the maize GRF10, an endogenous truncated growth-regulating factor protein, leads to reduction in leaf size and plant height[J]. Journal of Integrative Plant Biology, 2014,56:1053-1063.
doi: 10.1111/jipb.12220 URL |
[8] |
Wang L, Gu X, Xu D, et al. miR396-targeted AtGRF transcription factors are required for coordination of cell division and differentiation during leaf development in Arabidopsis[J]. Journal of Experimental Botany, 2011,62:761-773.
doi: 10.1093/jxb/erq307 pmid: 21036927 |
[9] |
Rodriguezr ER, Mecchia MA, Debernardi JM, et al. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396[J]. Development, 2010,137:103-112.
doi: 10.1242/dev.043067 pmid: 20023165 |
[10] | 周厚君. 杨树GRF基因家族分析及PtGRF1/2d功能研究[D]. 北京:中国林业科学研究院, 2016. |
Zhou HJ. Genome wide analysis of PtGRF gene family and functional characterization of PtGRF1/2d[D]. Beijing:Chinese Academy of Forestry, 2016. | |
[11] | 张治平, 汪良驹, 姚泉洪. 过量合成ALA转基因烟草叶片光合与叶绿素荧光特性的研究[J]. 西北植物学报, 2008,28(6):1196-1202. |
Zhang ZP, Wang LJ, Yao QH. Study on leaf photosynjournal and chlorophyll fluorescence of transgenic tobacco over-producing 5-Aminolevulinic Acid(ALA)[J]. Acta Botanica Boreali -Occidentalia Sinica, 2008,28:1196-1202. | |
[12] |
Appenroth KJ, Stöckel J, Srivastava A, et al. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements[J]. Environmental Pollution, 2001,115:49-64.
doi: 10.1016/S0269-7491(01)00091-4 URL |
[13] |
Heerden PDR, Strasser RJ, Krüger GHJ, et al. Reduction of dark chilling stress in N2-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics[J]. Physiologia Plantarum, 2004,121:239-249.
doi: 10.1111/ppl.2004.121.issue-2 URL |
[14] | 李鹏民, 高辉远, Strasser RJ. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J]. 植物生理学与分子生物学学报, 2005,31(6):559-566. |
Li PM, Gao HY, Strasser RJ. Application of the chlorophyll fluorescence induction dynamics in photosynjournal study[J]. Journal of Plant Physiology and Molecular Biology, 2005,31:559-566. | |
[15] | 叶子飘, 胡文海, 闫小红, 等. 基于光响应机理模型的不同植物光合特性[J]. 生态学杂志, 2016,35(9):2544-2552. |
Ye ZP, Hu WH, Yan XH, et al. Photosynthetic characteristics of different plant species based on a mechanistic model of light-response of photosynjournal[J]. Chinese Journal of Ecology, 2016,35:2544-2552. | |
[16] |
叶子飘, 胡文海, 肖宜安, 等. 光合电子流对光响应的机理模型及其应用[J]. 植物生态学报, 2014,38(11):1241-1249.
doi: 10.3724/SP.J.1258.2014.00119 |
Ye ZP, Hu WH, Xiao YA, et al. A mechanistic model of light-response of photosynthetic electron flow and its application[J]. Chinese Journal of Plant Ecology, 2014,38:1241-1249.
doi: 10.3724/SP.J.1258.2014.00119 URL |
[1] | 杨志晓, 侯骞, 刘国权, 卢志刚, 曹毅, 芶剑渝, 王轶, 林英超. 不同抗性烟草品系Rubisco及其活化酶对赤星病胁迫的响应[J]. 生物技术通报, 2023, 39(9): 202-212. |
[2] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[3] | 李宇, 李素贞, 陈茹梅, 卢海强. 植物bHLH转录因子调控铁稳态的研究进展[J]. 生物技术通报, 2023, 39(7): 26-36. |
[4] | 李帜奇, 袁月, 苗荣庆, 庞秋颖, 张爱琴. 盐胁迫盐芥和拟南芥褪黑素含量及合成相关基因表达模式分析[J]. 生物技术通报, 2023, 39(5): 142-151. |
[5] | 王琪, 胡哲, 富薇, 李光哲, 郝林. 伯克霍尔德氏菌GD17对黄瓜幼苗耐干旱的调节[J]. 生物技术通报, 2023, 39(3): 163-175. |
[6] | 崔吉洁, 蔡文波, 庄庆辉, 高爱平, 黄建峰, 陈亚辉, 宋志忠. 杧果Fe-S簇装配基因MiISU1的生物学功能[J]. 生物技术通报, 2023, 39(2): 139-146. |
[7] | 鄢梦雨, 韦晓薇, 曹婧, 兰海燕. 异子蓬SabHLH169基因的克隆及抗旱功能分析[J]. 生物技术通报, 2023, 39(11): 328-339. |
[8] | 阮航, 多浩源, 范文艳, 吕清晗, 姜述君, 朱生伟. AtERF49在拟南芥应答盐碱胁迫中的作用[J]. 生物技术通报, 2023, 39(1): 150-156. |
[9] | 林蓉, 郑月萍, 徐雪珍, 李丹丹, 郑志富. 拟南芥ACOL8基因在乙烯合成与响应中的功能分析[J]. 生物技术通报, 2023, 39(1): 157-165. |
[10] | 高聪, 萧楚健, 鲁帅, 王苏蓉, 袁卉华, 曹云英. 氧化石墨烯对拟南芥生长的促进作用[J]. 生物技术通报, 2022, 38(6): 120-128. |
[11] | 徐红云, 张明意. GRAS转录因子AtSCL4负调控拟南芥应答渗透胁迫[J]. 生物技术通报, 2022, 38(6): 129-135. |
[12] | 古盼, 齐学影, 李莉, 张曦, 单晓昳. AtRGS1胞吞动态调控G蛋白参与拟南芥生长发育和抗性反应[J]. 生物技术通报, 2022, 38(6): 34-42. |
[13] | 祖国蔷, 胡哲, 王琪, 李光哲, 郝林. Burkholderia sp. GD17对水稻幼苗镉耐受的调节[J]. 生物技术通报, 2022, 38(4): 153-162. |
[14] | 石广成, 杨万明, 杜维俊, 王敏. 大豆耐盐种质的筛选及其耐盐生理特性分析[J]. 生物技术通报, 2022, 38(4): 174-183. |
[15] | 周娟, 阎晋东, 李新梅, 刘雪晴, 赵强, 赵小英. 拟南芥F-box蛋白FKF1与转录因子FUL互作调控开花研究[J]. 生物技术通报, 2022, 38(3): 1-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||