生物技术通报 ›› 2023, Vol. 39 ›› Issue (1): 84-94.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0473
金云倩1,3(), 王彬1, 郭书磊2, 赵霖熙1, 韩赞平1()
收稿日期:
2022-04-15
出版日期:
2023-01-26
发布日期:
2023-02-02
作者简介:
金云倩,女,硕士研究生,研究方向:玉米、棉花种子活力;E-mail: 基金资助:
JIN Yun-qian1,3(), WANG Bin1, GUO Shu-lei2, ZHAO Lin-xi1, HAN Zan-ping1()
Received:
2022-04-15
Published:
2023-01-26
Online:
2023-02-02
摘要:
玉米是我国总产与平均单产最高的主要农作物,对于保障国家粮食安全具有举足轻重的作用。种子活力是衡量种子质量和应用价值的关键指标,高活力种子是确保作物高产、稳产的基础。赤霉素是重要的植物生长调节物质,具有解除种子休眠、促进萌发的作用,外源赤霉素的喷施已被广泛应用于农业生产以提高作物产量。目前赤霉素对玉米种子活力的影响研究多侧重于施加外源GA影响种子活力的相关生理指标上,而赤霉素调控玉米种子活力的作用机理尚需深入研究。本文综述了赤霉素的生物合成、信号转导、作用机制以及对玉米和其他作物种子活力影响的研究进展,旨为深入探究GA对于玉米种子活力的调控机制乃至玉米育种实践中高活力玉米新种质的创制提供参考。
金云倩, 王彬, 郭书磊, 赵霖熙, 韩赞平. 赤霉素调控玉米种子活力的研究进展[J]. 生物技术通报, 2023, 39(1): 84-94.
JIN Yun-qian, WANG Bin, GUO Shu-lei, ZHAO Lin-xi, HAN Zan-ping. Research Progress in Gibberellin Regulation on Maize Seed Vigor[J]. Biotechnology Bulletin, 2023, 39(1): 84-94.
图1 赤霉素的生物合成 2ox:GA2- 氧化酶;3ox:GA3- 氧化酶;13ox:GA13- 氧化酶;20ox:GA20- 氧化酶;GGDP:牻牛儿基牻牛儿基焦磷酸;CPS:ent-copalyl 古巴焦磷酸合成酶;KS:ent-kaurene 贝壳杉烯合成酶;KO:ent-Kaurene 贝壳杉烯氧化酶;KAO:ent-kaurenoic 贝壳杉烯酸氧化酶
Fig. 1 Biosynthesis of gibberellin(GA) 2ox: GA2-oxidase. 3ox: GA3-oxidase. 13ox: GA13-oxidase. 20ox: GA20-oxidase. GGDP: Geranylgeranyl diphosphate. CPS: Ent-copalyl diphosphate synthase. KS: Ent-kaurene synthase. KO: Ent-kaurene oxidase. KAO: Ent-kaurenoic acid oxidase
图2 赤霉素的信号转导 A:当GA浓度升高时,GA与GID1结合,GA被GIDI封闭在GID1内,便与DELLA蛋白结合,促使DELLA蛋白被活化SCF降解,最终GA信号被释放发挥生理促进作用;B:当GA浓度降低时,GID1与GA结合分离,DELLA蛋白抑制GA信号的转导,GA信号受到抑制
Fig. 2 Signal transduction of gibberellin(GA) A: When GA concentration is increasing, GA binds to GID1, GA is enclosed in GID1 by GIDI, and then binds to DELLA protein, prompting DELLA protein to be activated and degraded by SCF, and finally GA signal is released to play A physiological promoting role. B: When GA concentration is decreasing, GID1 does not bind to GA, DELLA protein inhibits GA signal transduction, and GA signal is inhibited
[1] | 路立平, 赵化春, 赵娜, 等. 世界玉米产业现状及发展前景[J]. 玉米科学, 2006, 14(5): 149-151, 156. |
Lu LP, Zhao HC, Zhao N, et al. Status and development prospects of the world's corn industry[J]. J Maize Sci, 2006, 14(5): 149-151, 156. | |
[2] | 陈秀兰, 王兴旺. 中美玉米消费结构比较研究[J]. 世界农业, 2016(6): 109-114. |
Chen XL, Wang XW. Comparative study on corn consumption structure between China and American[J]. World Agric, 2016(6): 109-114. | |
[3] | 王济学, 郭军平, 黄福海. 中国玉米供求趋势[J]. 粮食与饲料工业, 2021(2): 1-4. |
Wang JX, Guo JP, Huang FH. The supply and demand trend of corn in China[J]. Cereal Feed Ind, 2021(2): 1-4. | |
[4] | 王延琴, 陆许可. 棉花种子检验实务[M]. 北京: 中国农业出版社, 2018. |
Wang YQ, Lu XK. Practice of cotton seed inspection[M]. Beijing: Chinese Agriculture Press, 2018. | |
[5] | 张红生, 胡晋. 种子学[M]. 北京: 科学出版社, 2010. |
Zhang HS, Hu J. Seed science[M]. Beijing: Science Press, 2010. | |
[6] | 李巧峡, 张丽, 王玉, 等. 赤霉素调控植物开花及花器官发育的研究进展[J]. 中国细胞生物学学报, 2019, 41(4): 746-758. |
Li QX, Zhang L, Wang Y, et al. The research progress of gibberellin on the regulation of flowering and floral organ development in plant[J]. Chin J Cell Biol, 2019, 41(4): 746-758. | |
[7] | 颜启传. 种子学[M]. 北京: 中国农业出版社2010. |
Yan QC. Seed science[M]. Beijing: China Agriculture Press, 2010. | |
[8] | 潘瑞炽. 植物生理学[M]. 6版. 北京: 高等教育出版社, 2008. |
Pan RC. Plant physiology[M]. 6th ed. Beijing: Higher Education Press, 2008. | |
[9] |
Yamaguchi S. Gibberellin metabolism and its regulation[J]. Annu Rev Plant Biol, 2008, 59:225-251.
doi: 10.1146/annurev.arplant.59.032607.092804 pmid: 18173378 |
[10] | 李强, 吴建明, 梁和, 等. 高等植物赤霉素生物合成及其信号转导途径[J]. 生物技术通报, 2014(10): 16-22. |
Li Q, Wu JM, Liang H, et al. Gibberellins biosynthesis and signaling transduction pathway in higher plant[J]. Biotechnol Bull, 2014(10): 16-22. | |
[11] |
Appleford NEJ, Evans DJ, Lenton JR, et al. Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat[J]. Planta, 2006, 223(3): 568-582.
doi: 10.1007/s00425-005-0104-0 pmid: 16160850 |
[12] |
Chen Y, Hou MM, Liu LJ, et al. The maize DWARF1 encodes a gibberellin 3-oxidase and is dual localized to the nucleus and cytosol[J]. Plant Physiol, 2014, 166(4): 2028-2039.
doi: 10.1104/pp.114.247486 pmid: 25341533 |
[13] |
Thomas SG, Phillips AL, Hedden P. Molecular cloning and functional expression of gibberellin 2- oxidases, multifunctional enzymes involved in gibberellin deactivation[J]. PNAS, 1999, 96(8): 4698-4703.
doi: 10.1073/pnas.96.8.4698 pmid: 10200325 |
[14] |
Lee DJ, Zeevaart JAD. Molecular cloning of GA 2-oxidase3 from spinach and its ectopic expression in Nicotiana sylvestris[J]. Plant Physiol, 2005, 138(1): 243-254.
doi: 10.1104/pp.104.056499 URL |
[15] |
Varbanova M, Yamaguchi S, Yang Y, et al. Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2[J]. Plant Cell, 2007, 19(1): 32-45.
doi: 10.1105/tpc.106.044602 pmid: 17220201 |
[16] |
Zhang YY, Zhang BC, Yan DW, et al. Two Arabidopsis cytochrome P450 monooxygenases, CYP714A1 and CYP714A2, function redundantly in plant development through gibberellin deactivation[J]. Plant J, 2011, 67(2): 342-353.
doi: 10.1111/j.1365-313X.2011.04596.x URL |
[17] |
Ueguchi-Tanaka M, Ashikari M, Nakajima M, et al. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin[J]. Nature, 2005, 437(7059): 693-698.
doi: 10.1038/nature04028 URL |
[18] |
Sun TP. The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants[J]. Curr Biol, 2011, 21(9): R338-R345.
doi: 10.1016/j.cub.2011.02.036 URL |
[19] | 黄桃鹏, 李媚娟, 王睿, 等. 赤霉素生物合成及信号转导途径研究进展[J]. 植物生理学报, 2015, 51(8): 1241-1247. |
Huang TP, Li MJ, Wang R, et al. Progress in study of gibberellins biosynthesis and signaling transduction pathway[J]. Plant Physiol J, 2015, 51(8): 1241-1247. | |
[20] |
Dill A, Jung HS, Sun TP. The DELLA motif is essential for gibberellin-induced degradation of RGA[J]. PNAS, 2001, 98(24): 14162-14167.
doi: 10.1073/pnas.251534098 pmid: 11717468 |
[21] |
Park J, Nguyen KT, Park E, et al. DELLA proteins and their interacting RING finger proteins repress gibberellin responses by binding to the promoters of a subset of gibberellin-responsive genes in Arabidopsis[J]. Plant Cell, 2013, 25(3): 927-943.
doi: 10.1105/tpc.112.108951 URL |
[22] |
Chen X, Chang M, Wang B, et al. Cloning of a Ca2+-ATPase gene and the role of cytosolic Ca2+ in the gibberellin-dependent signaling pathway in aleurone cells[J]. Plant J, 1997, 11(3): 363-371.
doi: 10.1046/j.1365-313x.1997.11030363.x pmid: 9107028 |
[23] |
Bastian R, Dawe A, Meier S, et al. Gibberellic acid and cGMP-dependent transcriptional regulation in Arabidopsis thaliana[J]. Plant Signal Behav, 2010, 5(3): 224-232.
doi: 10.4161/psb.5.3.10718 pmid: 20118660 |
[24] |
Yuasa K, Uehara S, et al. Transcriptional regulation of cGMP-dependent protein kinase II(cGK-II)in chondrocytes[J]. Biosci Biotechnol Biochem, 2010, 74(1): 44-49.
doi: 10.1271/bbb.90529 URL |
[25] |
Cho SH, Kang K, Lee SH, et al. OsWOX3A is involved in negative feedback regulation of the gibberellic acid biosynthetic pathway in rice(Oryza sativa)[J]. J Exp Bot, 2016, 67(6): 1677-1687.
doi: 10.1093/jxb/erv559 URL |
[26] | 王振, 邓杰, 高树仁, 等. 老化处理对不同活力玉米种子生理特性的影响[J]. 黑龙江农业科学, 2021(11): 7-12. |
Wang Z, Deng J, Gao SR, et al. Effects of aging treatment on physiological characteristics of maize seeds with different vigor[J]. Heilongjiang Agric Sci, 2021(11): 7-12. | |
[27] | 祁亚淑, 狄红艳, 段继凤. 人工老化对水稻种子活力的影响试验研究[J]. 种子科技, 2021, 39(1): 2-4. |
Qi YS, Di HY, Duan JF. Experimental study on the effect of artificial aging on rice seed vigor[J]. Seed Sci Technol, 2021, 39(1): 2-4. | |
[28] |
邓晓娟, 苏秀娟, 玛依拉·依不拉音, 等. 人工老化和低温胁迫对陆地棉种子活力的影响和评价[J]. 新疆农业科学, 2021, 58(6): 998-1005.
doi: 10.6048/j.issn.1001-4330.2021.06.003 |
Deng XJ, Su XJ, Mayila Y, et al. Effects of artificial aging and low-temperature stress on the vigor of upland cotton seed and relevant evaluation[J]. Xinjiang Agric Sci, 2021, 58(6): 998-1005.
doi: 10.6048/j.issn.1001-4330.2021.06.003 |
|
[29] |
赵凯, 李珊珊, 马倩, 等. 花生种子自然老化对品质及发芽的影响[J]. 核农学报, 2021, 35(2): 490-497.
doi: 10.11869/j.issn.100-8551.2021.02.0490 |
Zhao K, Li SS, Ma Q, et al. Effects of natural aging on quality and germination characteristics of peanut[J]. J Nucl Agric Sci, 2021, 35(2): 490-497.
doi: 10.11869/j.issn.100-8551.2021.02.0490 |
|
[30] | 孙群, 王建华, 孙宝启. 种子活力的生理和遗传机理研究进展[J]. 中国农业科学, 2007, 40(1): 48-53. |
Sun Q, Wang JH, Sun BQ. Advances on seed vigor physiological and genetic mechanisms[J]. Sci Agric Sin, 2007, 40(1): 48-53. | |
[31] |
Jin J, Long WX, Wang LT, et al. QTL mapping of seed vigor of backcross inbred lines derived from Oryza longistaminata under artificial aging[J]. Front Plant Sci, 2018, 9:1909.
doi: 10.3389/fpls.2018.01909 URL |
[32] |
Yuan ZY, Fan K, Xia LF, et al. Genetic dissection of seed storability and validation of candidate gene associated with antioxidant capability in rice(Oryza sativa L.)[J]. Int J Mol Sci, 2019, 20(18): 4442.
doi: 10.3390/ijms20184442 URL |
[33] |
Han ZP, Ku LX, Zhang ZZ, et al. QTLs for seed vigor-related traits identified in maize seeds germinated under artificial aging conditions[J]. PLoS One, 2014, 9(3): e92535.
doi: 10.1371/journal.pone.0092535 URL |
[34] |
Renard J, Niñoles R, Martínez-Almonacid I, et al. Identification of novel seed longevity genes related to oxidative stress and seed coat by genome-wide association studies and reverse genetics[J]. Plant Cell Environ, 2020, 43(10): 2523-2539.
doi: 10.1111/pce.13822 URL |
[35] | Li L, Wang F, Li XH, et al. Comparative analysis of the accelerated aged seed transcriptome profiles of two maize chromosome segment substitution lines[J]. PLoS One, 2019, 14(11): e0216977. |
[36] |
Gong SM, Ding YF, Huang SX, et al. Identification of miRNAs and their target genes associated with sweet corn seed vigor by combined small RNA and degradome sequencing[J]. J Agric Food Chem, 2015, 63(22): 5485-5491.
doi: 10.1021/acs.jafc.5b00522 URL |
[37] | 徐妍, 李政达, 张婧文, 等. 赤霉素对植物生长的调控效应[J]. 农业开发与装备, 2022(4): 125-126. |
Xu Y, Li ZD, Zhang JW, et al. Regulation effect of gibberellin on plant growth[J]. Agric Dev Equip, 2022(4): 125-126. | |
[38] | 邢瑞霞, 朱金洁, 祁显涛, 等. 玉米开花期调控机制研究进展[J]. 安徽农业科学, 2022, 50(9): 23-26, 29. |
Xing RX, Zhu JJ, Qi XT, et al. Research progress on the regulation mechanism of maize flowering period[J]. J Anhui Agric Sci, 2022, 50(9): 23-26, 29. | |
[39] | 黎家, 李传友. 新中国成立70年来植物激素研究进展[J]. 中国科学:生命科学, 2019, 49(10): 1227-1281. |
Li J, Li CY. Seventy-year major research progress in plant hormones by Chinese scholars[J]. Sci Sin Vitae, 2019, 49(10): 1227-1281. | |
[40] | 王改净, 陈亚龙, 赵明君, 等. GA3浸种对玉米种子发芽及生理性状的影响[J]. 种子, 2020, 39(6): 37-42. |
Wang GJ, Chen YL, Zhao MJ, et al. Effects of GA3 soaking on germinationand physiological charateristics of maize(Zea mays L.)seeds[J]. Seed, 2020, 39(6): 37-42. | |
[41] | 刘海艳. 玉米种子活力与赤霉素和脱落酸的关系研究[D]. 郑州: 河南农业大学, 2010. |
Liu HY. Studies on the relationship of gibberellins, abscisic acid and seed vigor in maize[D]. Zhengzhou: Henan Agricultural University, 2010. | |
[42] | 王科翰. 不同浓度赤霉素包衣对甜玉米种子萌发的影响[J]. 农村百事通, 2021(24): 22-23. |
Wang Kh. Effects of different concentrations of gibberellin coating on seed germination of sweet maize[J]. Nongcun Baishitong, 2021(24): 22-23. | |
[43] | 魏晓梅, 吴丽芳, 张龄丹, 等. 植物生长调节剂对玉米及水稻种子活力的影响[J]. 作物研究, 2017, 31(6): 653-658. |
Wei XM, Wu LF, Zhang LD, et al. Effects of plant growth regulator to seed vigor of maize and rice[J]. Crop Res, 2017, 31(6): 653-658. | |
[44] | 左月桃, 王子沐, 焦健, 等. GA3浸种对低温下玉米种胚抗氧化酶及内源激素的影响[J]. 生态学杂志, 2021, 40(5): 1340-1346. |
Zuo YT, Wang ZM, Jiao J, et al. Effects of GA3 seed soaking on antioxidant enzymes and endogenous hormones of maize embryo under low temperature[J]. Chin J Ecol, 2021, 40(5): 1340-1346. | |
[45] | 陈士林, 赵新亮, 卫秀英, 等. 钙和赤霉素对玉米种子活力的影响[J]. 中国农学通报, 2003, 19(4): 64-67. |
Chen SL, Zhao XL, Wei XY, et al. Eeffects of calcium and gibberellin on vigor of seeds of maize[J]. Chin Agric Sci Bull, 2003, 19(4): 64-67. | |
[46] | 孙刚, 曹敏建, 张弘, 等. 赤霉素、PEG对玉米种子活力的影响[J]. 玉米科学, 2013, 21(6): 73-75. |
Sun G, Cao MJ, Zhang H, et al. Effect of gibberellin, PEG on seed vigor of corn[J]. J Maize Sci, 2013, 21(6): 73-75. | |
[47] | 廖尔华, 李红, 孔凡磊, 等. 赤霉素和硝酸镧浸种对杂交玉米种子发芽的影响[J]. 种子, 2015, 34(2): 66-68, 73. |
Liao EH, Li H, Kong FL, et al. Effect of presoaking with gibberellin and lanthanum nitrate on seed germination of hybrid maize seeds[J]. Seed, 2015, 34(2): 66-68, 73. | |
[48] |
White CN, Proebsting WM, Hedden P, et al. Gibberellins and seed development in maize. I. Evidence that gibberellin/abscisic acid balance governs germination versus maturation pathways[J]. Plant Physiol, 2000, 122(4): 1081-1088.
doi: 10.1104/pp.122.4.1081 pmid: 10759503 |
[49] |
Song J, Guo BJ, Song FW, et al. Genome-wide identification of gibberellins metabolic enzyme genes and expression profiling analysis during seed germination in maize[J]. Gene, 2011, 482(1/2): 34-42.
doi: 10.1016/j.gene.2011.05.008 URL |
[50] |
Zheng XK, Hou HL, Zhang H, et al. Histone acetylation is involved in GA-mediated 45S rDNA decondensation in maize aleurone layers[J]. Plant Cell Rep, 2018, 37(1): 115-123.
doi: 10.1007/s00299-017-2207-z pmid: 28939922 |
[51] | Lv HY, Li X, Li H, et al. Gibberellin induced transcription factor bZIP53 regulates CesA1 expression in maize kernels[J]. PLoS One, 2021, 16(3): e0244591. |
[52] |
常博文, 钟鹏, 等. 低温胁迫和赤霉素对花生种子萌发和幼苗生理响应的影响[J]. 作物学报, 2019, 45(1): 118-130.
doi: 10.3724/SP.J.1006.2019.84043 |
Chang BW, Zhong P, et al. Effect of low-temperature stress and gibberellin on seed germination and seedling physiological responses in peanut[J]. Acta Agron Sin, 2019, 45(1): 118-130.
doi: 10.3724/SP.J.1006.2019.84043 URL |
|
[53] | 屈旭, 焦禹顺, 王仁汉, 等. 赤霉素和复硝酚钠对辣椒种子萌发及幼苗活力的影响[J]. 中国瓜菜, 2019, 32(11): 59-63. |
Qu X, Jiao YS, Wang RH, et al. Effects of gibberellin and sodium nitrophenolate on seed germination and seedling vigor of pepper[J]. China Cucurbits Veg, 2019, 32(11): 59-63. | |
[54] | 朱丽伟. 杂交水稻种子成熟过程活力、生理生化和耐藏力的变化及脱水剂应用效果的研究[D]. 杭州: 浙江大学, 2015. |
Zhu LW. Changes of vigor, physiology, biochemistry and storability during hybrid rice seed maturity and the effect of dehydrating agent application[D]. Hangzhou: Zhejiang University, 2015. | |
[55] | 余晓丛, 李莹莹, 等. 一种利用赤霉素浸种提高草坪草萌发对盐胁迫抗性的方法:CN112567925A[P]. 2021-03-30. |
Yu XC, Li YY, et al. Method for improving salt stress resistance of turfgrass germination by soaking seeds with gibberellin:CN112567925A[P]. 2021-03-30. | |
[56] |
Fan S, Zhang D, Zhang LZ, et al. Comprehensive analysis of GASA family members in the Malus domestica genome:identification, characterization, and their expressions in response to apple flower induction[J]. BMC Genomics, 2017, 18(1): 827.
doi: 10.1186/s12864-017-4213-5 URL |
[57] | 毛家旺, 杨艳华, 陈克平, 等. 植物激素与microRNA调控种子大小和发育的分子机制研究进展[J]. 植物生理学报, 2021, 57(2): 274-292. |
Mao JW, Yang YH, Chen KP, et al. Research progress in molecular mechanisms of plant hormone and microRNA regulating seed size and development[J]. Plant Physiol J, 2021, 57(2): 274-292.
doi: 10.1104/pp.57.2.274 URL |
|
[58] | 石鹏, 王永, 张大鹏. 赤霉素调控林木生长发育的研究进展[J]. 江西农业学报, 2021, 33(2): 33-41. |
Shi P, Wang Y, Zhang DP. Advances in gibberellins regulating growth and development of tree[J]. Acta Agric Jiangxi, 2021, 33(2): 33-41. | |
[59] | 张运城. 针叶树赤霉素受体GID1的克隆与功能分析[D]. 北京: 北京林业大学, 2015. |
Zhang YC. The cloning and functional analysis of GA receptor GID1 in conifers[D]. Beijing: Beijing Forestry University, 2015. | |
[60] |
Li B, Zhang P, Wang FD, et al. Integrated analysis of the transcriptome and metabolome revealed candidate genes involved in GA 3-induced dormancy release in Leymus chinensis seeds[J]. Int J Mol Sci, 2021, 22(8): 4161.
doi: 10.3390/ijms22084161 URL |
[61] |
Pearce S, Saville R, Vaughan SP, et al. Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat[J]. Plant Physiol, 2011, 157(4): 1820-1831.
doi: 10.1104/pp.111.183657 pmid: 22013218 |
[62] | 李毅丹, 单晓辉. 赤霉素代谢调控与绿色革命[J]. 生物技术通报, 2022, 38(2): 195-204. |
Li YD, Shan XH. Gibberellin metabolism regulation and green revolution[J]. Biotechnol Bull, 2022, 38(2): 195-204. | |
[63] |
Sarnowska EA, Rolicka AT, Bucior E, et al. DELLA-interacting SWI3C core subunit of switch/sucrose nonfermenting chromatin remodeling complex modulates gibberellin responses and hormonal cross talk in Arabidopsis[J]. Plant Physiol, 2013, 163(1): 305-317.
doi: 10.1104/pp.113.223933 pmid: 23893173 |
[64] |
杨立文, 刘双荣, 林荣呈. 光信号与激素调控种子休眠和萌发研究进展[J]. 植物学报, 2019, 54(5): 569-581.
doi: 10.11983/CBB19038 |
Yang LW, Liu SR, Lin RC. Advances in light and hormones in regulating seed dormancy and germination[J]. Chin Bull Bot, 2019, 54(5): 569-581. | |
[65] |
Spielmeyer W, Ellis MH, Chandler PM. Semidwarf(sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene[J]. PNAS, 2002, 99(13): 9043-9048.
doi: 10.1073/pnas.132266399 pmid: 12077303 |
[66] | Wang YJ, Deng DX, Ding HD, et al. Gibberellin biosynthetic deficiency is responsible for maize dominant Dwarf11(D11)mutant phenotype:physiological and transcriptomic evidence[J]. PLoS One, 2013, 8(6): e66466. |
[67] |
Chen ZQ, Liu Y, Yin YJ, et al. Development of dwarfish and yield-effective GM maize through passivation of bioactive gibberellin[J]. Transgenic Res, 2019, 28(5/6): 589-599.
doi: 10.1007/s11248-019-00172-z URL |
[1] | 韩浩章, 张丽华, 李素华, 赵荣, 王芳, 王晓立. 盐碱胁迫诱导的猴樟酵母cDNA文库构建及CbP5CS上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 236-245. |
[2] | 薛宁, 王瑾, 李世新, 刘叶, 程海娇, 张玥, 毛雨丰, 王猛. 多基因同步调控结合高通量筛选构建高产L-苯丙氨酸的谷氨酸棒杆菌工程菌株[J]. 生物技术通报, 2023, 39(9): 268-280. |
[3] | 王宝宝, 王海洋. 理想株型塑造之于玉米耐密改良[J]. 生物技术通报, 2023, 39(8): 11-30. |
[4] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[5] | 张道磊, 甘雨军, 乐亮, 普莉. 玉米产量性状的表观遗传调控机制和育种应用[J]. 生物技术通报, 2023, 39(8): 31-42. |
[6] | 冷燕, 马晓薇, 陈光, 任鹤, 李翔. 玉米高产竞赛助力中国玉米种业振兴[J]. 生物技术通报, 2023, 39(8): 4-10. |
[7] | 王天依, 王荣焕, 王夏青, 张如养, 徐瑞斌, 焦炎炎, 孙轩, 王继东, 宋伟, 赵久然. 玉米矮秆基因与矮秆育种研究[J]. 生物技术通报, 2023, 39(8): 43-51. |
[8] | 刘月娥, 徐田军, 蔡万涛, 吕天放, 张勇, 薛洪贺, 王荣焕, 赵久然. 我国玉米超高产研究现状与展望[J]. 生物技术通报, 2023, 39(8): 52-61. |
[9] | 张勇, 徐田军, 吕天放, 邢锦丰, 刘宏伟, 蔡万涛, 刘月娥, 赵久然, 王荣焕. 种植密度对夏播玉米茎秆质量和根系表型性状的影响[J]. 生物技术通报, 2023, 39(8): 70-79. |
[10] | 叶云芳, 田清尹, 施婷婷, 王亮, 岳远征, 杨秀莲, 王良桂. 植物中β-紫罗兰酮生物合成及调控研究进展[J]. 生物技术通报, 2023, 39(8): 91-105. |
[11] | 李英, 岳祥华. DNA甲基化在解析毛竹自然变异中的应用[J]. 生物技术通报, 2023, 39(7): 48-55. |
[12] | 成婷, 苑帅, 张晓元, 林良才, 李欣, 张翠英. 酿酒酵母异丁醇合成途径调控的研究进展[J]. 生物技术通报, 2023, 39(7): 80-90. |
[13] | 朱少喜, 金肇阳, 葛建镕, 王蕊, 王凤格, 路运才. 基于KASP平台的转基因玉米高通量特异性检测方法[J]. 生物技术通报, 2023, 39(6): 133-140. |
[14] | 史建磊, 宰文珊, 苏世闻, 付存念, 熊自立. 番茄青枯病抗性相关miRNA的鉴定与表达分析[J]. 生物技术通报, 2023, 39(5): 233-242. |
[15] | 周定定, 李辉虎, 汤兴涌, 余发新, 孔丹宇, 刘毅. 甘草酸和甘草苷生物合成与调控的研究进展[J]. 生物技术通报, 2023, 39(5): 44-53. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||