生物技术通报 ›› 2023, Vol. 39 ›› Issue (6): 126-132.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0860
李典典1(), 粟元1, 李洁2, 许文涛1, 朱龙佼1()
收稿日期:
2022-07-11
出版日期:
2023-06-26
发布日期:
2023-07-07
通讯作者:
朱龙佼,女,副教授,博士生导师,研究方向:功能核酸生物传感器检测技术;E-mail: zhulongjiao@cau.edu.cn作者简介:
李典典,女,硕士研究生,研究方向: 生物与医药工程;E-mail: 3219435892@qq.com
基金资助:
LI Dian-dian1(), SU Yuan1, LI Jie2, XU Wen-tao1, ZHU Long-jiao1()
Received:
2022-07-11
Published:
2023-06-26
Online:
2023-07-07
摘要:
现代医学及分子生物技术当前所面临的一个重大挑战是探索新的治疗方案来应对细菌感染。因多重耐药细菌的比率不断增加,同时结合抗菌药物的功效、研发进程及成本,更加重了细菌感染治疗形势的严峻性。针对这一形势,最有希望的解决方案是寻找抗菌药物的替代来源,而经SELEX筛选获得的抗菌适配体是极具潜力的替代品。抗菌适配体可通过干扰细菌生化进程、控制细菌菌膜形成、阻断毒素侵染等机制降低细菌的致病能力。目前,基于适配体的抗菌策略主要包括单一适配体抑菌、适配体复合纳米材料、适配体复合抗生素等。本文总结了关于常见致病菌细胞或其相关成分适配体的筛选策略,并从适配体的裁剪修饰、抑菌机制及其在抑菌治疗中的应用等方面展开论述,展望了基于抗菌适配体的抑菌策略在感染治疗中的发展前景,旨在为致病菌引发的感染性疾病的诊治提供新思路。
李典典, 粟元, 李洁, 许文涛, 朱龙佼. 抗菌适配体的筛选与应用进展[J]. 生物技术通报, 2023, 39(6): 126-132.
LI Dian-dian, SU Yuan, LI Jie, XU Wen-tao, ZHU Long-jiao. Progress in Selection and Application of Antibacterial Aptamers[J]. Biotechnology Bulletin, 2023, 39(6): 126-132.
常见致病菌 Common pathogenic bacterium | 菌型 Bacterial type | 靶标 Target | 适配体(类型) Aptamer(type) | 序列 Sequence(5'-3') | Kd/ (nmol·L-1) | 参考文献 Reference |
---|---|---|---|---|---|---|
沙门氏菌 Salmonellae | 鼠伤寒沙门氏菌 S. typhimurium | IVB型菌毛 Type IVB pili | S-PS8.4(RNA) | UCACUGUUAUCCGAUAGCAGCGCGGGAUGA | 8.56 | [ |
全细胞 Whole cells | ST-12, ST-33(DNA) | CTCCTCTGACTGTAACCACGGTGGTTTGATCACTATTGGGCCTTTGTGATGTCGGTAGT, CTCCTCTGACTGTAACCACGGTGGGAGAGATGCTATACAATCTTGTAAGGCGATGGACCG | 4.5±0.4, 51.0±4.3 | [ | ||
肠炎沙门氏菌 S. enteritidis | SipA蛋白 SipA protein | Apt17(DNA) | TAGGGAAGAGAAGGACATATGATGCAATGGAACCGCTGAACGACCCTAG CATTATCAGTGTGGTTGACTAGTACATGACCACTTGA | 114.9(27℃), 63.4(37℃) | [ | |
猪霍乱沙门氏菌 S. choleraesuis | 鞭毛蛋白 Flagellin | Aptamer 3(DNA) | GGCAGGACAACAGCGTGTAGTATCAGCTTACGGTG | 41.0±2.0 | [ | |
结核分枝杆菌 Mycobacterium tuberculosis | H37Rv | PPK2 | G9(DNA) | AACACATAGGTTTGGTTAGGTTGGTTGGTTGAATTA | 870±220 | [ |
全细胞 Whole cells | MS10-Trunc(DNA) | GGTGTGTTGACTGAGGGGGTGGGGTGGGTGGTGGTGGATATAGC | 0.019 | [ | ||
铜绿假单胞菌 Pseudomonas aeruginosa | C4-HSL | A16(DNA) | CCATCCACACTCCGCAAGTGGGGAGGGGAGAGACGACGATCCTGTGGGT TTTCTGCAGTGAGTCGTGTTTTCGACTTATTGCGTCGGCTGCCTCTACAT | 28.47 | [ | |
金黄色葡萄球菌 Staphylococcus aureus | 肠毒素A Enterotoxin A | S3(DNA) | CCCGCCTCTGAGCATTATTAATGTTATACCTTACGGCTGG | 36.93±7.29 | [ |
表1 经SELEX技术筛选出的抗菌适体
Table 1 Antibacterial aptamers screened by SELEX technique
常见致病菌 Common pathogenic bacterium | 菌型 Bacterial type | 靶标 Target | 适配体(类型) Aptamer(type) | 序列 Sequence(5'-3') | Kd/ (nmol·L-1) | 参考文献 Reference |
---|---|---|---|---|---|---|
沙门氏菌 Salmonellae | 鼠伤寒沙门氏菌 S. typhimurium | IVB型菌毛 Type IVB pili | S-PS8.4(RNA) | UCACUGUUAUCCGAUAGCAGCGCGGGAUGA | 8.56 | [ |
全细胞 Whole cells | ST-12, ST-33(DNA) | CTCCTCTGACTGTAACCACGGTGGTTTGATCACTATTGGGCCTTTGTGATGTCGGTAGT, CTCCTCTGACTGTAACCACGGTGGGAGAGATGCTATACAATCTTGTAAGGCGATGGACCG | 4.5±0.4, 51.0±4.3 | [ | ||
肠炎沙门氏菌 S. enteritidis | SipA蛋白 SipA protein | Apt17(DNA) | TAGGGAAGAGAAGGACATATGATGCAATGGAACCGCTGAACGACCCTAG CATTATCAGTGTGGTTGACTAGTACATGACCACTTGA | 114.9(27℃), 63.4(37℃) | [ | |
猪霍乱沙门氏菌 S. choleraesuis | 鞭毛蛋白 Flagellin | Aptamer 3(DNA) | GGCAGGACAACAGCGTGTAGTATCAGCTTACGGTG | 41.0±2.0 | [ | |
结核分枝杆菌 Mycobacterium tuberculosis | H37Rv | PPK2 | G9(DNA) | AACACATAGGTTTGGTTAGGTTGGTTGGTTGAATTA | 870±220 | [ |
全细胞 Whole cells | MS10-Trunc(DNA) | GGTGTGTTGACTGAGGGGGTGGGGTGGGTGGTGGTGGATATAGC | 0.019 | [ | ||
铜绿假单胞菌 Pseudomonas aeruginosa | C4-HSL | A16(DNA) | CCATCCACACTCCGCAAGTGGGGAGGGGAGAGACGACGATCCTGTGGGT TTTCTGCAGTGAGTCGTGTTTTCGACTTATTGCGTCGGCTGCCTCTACAT | 28.47 | [ | |
金黄色葡萄球菌 Staphylococcus aureus | 肠毒素A Enterotoxin A | S3(DNA) | CCCGCCTCTGAGCATTATTAATGTTATACCTTACGGCTGG | 36.93±7.29 | [ |
[1] |
Soares NC, Bou G, Blackburn JM. Editorial: proteomics of microbial human pathogens[J]. Front Microbiol, 2016, 7: 1742.
pmid: 27867374 |
[2] |
Garber B, Glauser J. Recent developments in infectious disease chemotherapy: review for emergency department practitioners 2020[J]. Curr Emerg Hosp Med Rep, 2020, 8(3): 116-121.
doi: 10.1007/s40138-020-00218-1 |
[3] |
Moldoveanu AL, Rycroft JA, Helaine S. Impact of bacterial persisters on their host[J]. Curr Opin Microbiol, 2021, 59: 65-71.
doi: 10.1016/j.mib.2020.07.006 pmid: 32866708 |
[4] | Kumar A, Ellermann M, Sperandio V. Taming the beast: interplay between gut small molecules and enteric pathogens[J]. Infect Immun, 2019, 87(9): e00131-e00119. |
[5] |
Buroni S, Chiarelli LR. Antivirulence compounds: a future direction to overcome antibiotic resistance?[J]. Future Microbiol, 2020, 15: 299-301.
doi: 10.2217/fmb-2019-0294 pmid: 32286100 |
[6] | Zhao YW, Wang HX, Jia GC, et al. Application of aptamer-based biosensor for rapid detection of pathogenic Escherichia coli[J]. Sensors(Basel), 2018, 18(8): 2518. |
[7] |
Pan Q, Zhang XL, Wu HY, et al. Aptamers that preferentially bind type IVB pili and inhibit human monocytic-cell invasion by Salmonella enterica serovar typhi[J]. Antimicrob Agents Chemother, 2005, 49(10): 4052-4060.
doi: 10.1128/AAC.49.10.4052-4060.2005 URL |
[8] |
Kolovskaya OS, Savitskaya AG, Zamay TN, et al. Development of bacteriostatic DNA aptamers for salmonella[J]. J Med Chem, 2013, 56(4): 1564-1572.
doi: 10.1021/jm301856j pmid: 23387511 |
[9] |
Shatila F, Yalçın HT, Özyurt C, et al. Single-stranded DNA(ssDNA)Aptamer targeting SipA protein inhibits Salmonella Enteritidis invasion of intestinal epithelial cells[J]. Int J Biol Macromol, 2020, 148: 518-524.
doi: S0141-8130(19)38677-5 pmid: 31953175 |
[10] | Ning Y, Cheng LJ, Ling M, et al. Efficient suppression of biofilm formation by a nucleic acid aptamer[J]. Pathog Dis, 2015, 73(6): ftv034. |
[11] |
Shum KT, Lui ELH, Wong SCK, et al. Aptamer-mediated inhibition of Mycobacterium tuberculosis polyphosphate kinase 2[J]. Biochemistry, 2011, 50(15): 3261-3271.
doi: 10.1021/bi2001455 pmid: 21381755 |
[12] |
Dhiman A, Kumar C, Mishra SK, et al. Theranostic application of a novel G-quadruplex-forming DNA aptamer targeting malate synthase of Mycobacterium tuberculosis[J]. Mol Ther Nucleic Acids, 2019, 18: 661-672.
doi: 10.1016/j.omtn.2019.09.026 URL |
[13] |
Zhao M, Li WB, Liu KC, et al. C4-HSL aptamers for blocking qurom sensing and inhibiting biofilm formation in Pseudomonas aeruginosa and its structure prediction and analysis[J]. PLoS One, 2019, 14(2): e0212041.
doi: 10.1371/journal.pone.0212041 URL |
[14] |
Wang KY, Wu D, Chen Z, et al. Inhibition of the superantigenic activities of Staphylococcal enterotoxin A by an aptamer antagonist[J]. Toxicon, 2016, 119: 21-27.
doi: 10.1016/j.toxicon.2016.05.006 pmid: 27179422 |
[15] |
Takahashi M. Aptamers targeting cell surface proteins[J]. Biochimie, 2018, 145: 63-72.
doi: S0300-9084(17)30328-0 pmid: 29198584 |
[16] |
Duan N, Wu SJ, Chen XJ, et al. Selection and identification of a DNA aptamer targeted to Vibrio parahemolyticus[J]. J Agric Food Chem, 2012, 60(16): 4034-4038.
doi: 10.1021/jf300395z URL |
[17] | Zon G. Mini-review: recent advances in aptamer applications[J]. J Cancer Treatment Diagn, 2020, 5(3): 1-5. |
[18] |
Sun YH, Duan N, Ma PF, et al. Colorimetric aptasensor based on truncated aptamer and trivalent DNAzyme for Vibrio parahemolyticus determination[J]. J Agric Food Chem, 2019, 67(8): 2313-2320.
doi: 10.1021/acs.jafc.8b06893 URL |
[19] |
Li JY, Tang M, Xue YY. Review of the effects of silver nanoparticle exposure on gut bacteria[J]. J Appl Toxicol, 2019, 39(1): 27-37.
doi: 10.1002/jat.3729 pmid: 30247756 |
[20] |
Baig IA, Moon JY, Lee SC, et al. Development of ssDNA aptamers as potent inhibitors of Mycobacterium tuberculosis acetohydroxyacid synthase[J]. Biochim Biophys Acta Proteins Proteom, 2015, 1854(10): 1338-1350.
doi: 10.1016/j.bbapap.2015.05.003 URL |
[21] |
Kim SK, Sims CL, Wozniak SE, et al. Antibiotic resistance in bacteria: novel metalloenzyme inhibitors[J]. Chem Biol Drug Des, 2009, 74(4): 343-348.
doi: 10.1111/jpp.2009.74.issue-4 URL |
[22] |
de la Fuente-Núñez C, Reffuveille F, Haney EF, et al. Broad-spectrum anti-biofilm peptide that targets a cellular stress response[J]. PLoS Pathog, 2014, 10(5): e1004152.
doi: 10.1371/journal.ppat.1004152 URL |
[23] |
Bjarnsholt T, Kirketerp-Møller K, Jensen PØ, et al. Why chronic wounds will not heal: a novel hypothesis[J]. Wound Repair Regen, 2008, 16(1): 2-10.
doi: 10.1111/j.1524-475X.2007.00283.x pmid: 18211573 |
[24] |
Thormann KM, Saville RM, Shukla S, et al. Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms[J]. J Bacteriol, 2005, 187(3): 1014-1021.
pmid: 15659679 |
[25] |
Wang KY, Gan LJ, Jiang L, et al. Neutralization of staphylococcal enterotoxin B by an aptamer antagonist[J]. Antimicrob Agents Chemother, 2015, 59(4): 2072-2077.
doi: 10.1128/AAC.04414-14 pmid: 25624325 |
[26] |
Du YL, Wang XY, Han ZL, et al. Polyphosphate kinase 1 is a pathogenesis determinant in enterohemorrhagic Escherichia coli O157: H7[J]. Front Microbiol, 2021, 12: 762171.
doi: 10.3389/fmicb.2021.762171 URL |
[27] |
Rao NN, Gómez-García MR, Kornberg A. Inorganic polyphosphate: essential for growth and survival[J]. Annu Rev Biochem, 2009, 78: 605-647.
doi: 10.1146/annurev.biochem.77.083007.093039 pmid: 19344251 |
[28] |
Choi WI, Sahu A, Kim YH, et al. Photothermal cancer therapy and imaging based on gold nanorods[J]. Ann Biomed Eng, 2012, 40(2): 534-546.
doi: 10.1007/s10439-011-0388-0 pmid: 21887589 |
[29] |
Feng YH, Liu L, Zhang J, et al. Photoactive antimicrobial nanomaterials[J]. J Mater Chem B, 2017, 5(44): 8631-8652.
doi: 10.1039/c7tb01860f pmid: 32264259 |
[30] | 谢其鹏. 中空介孔二氧化硅纳米材料在抑菌和检测中的应用[D]. 无锡: 江南大学, 2021. |
Xie Q P. Application of hollow mesoporous silica nanomaterials in bacteriostatic and detection[D]. Wuxi: Jiangnan University, 2021. | |
[31] | 余梦群. 抗生素功能化金纳米材料用于铁离子和致病菌检测以及抗菌作用研究[D]. 重庆: 西南大学, 2017. |
Yu MQ. Application of antibiotic functionalized gold nanomaterials in detection of iron ions and pathogenic bacteria and study on antibacterial activity[D]. Chongqing: Southwest University, 2017. | |
[32] |
Yang M, Chen X, Zhu LJ, et al. Aptamer-functionalized DNA-silver nanocluster nanofilm for visual detection and elimination of bacteria[J]. ACS Appl Mater Interfaces, 2021, 13(32): 38647-38655.
doi: 10.1021/acsami.1c05751 URL |
[33] |
Akasaka T, Matsuoka M, Hashimoto T, et al. The bactericidal effect of carbon nanotube/agar composites irradiated with near-infrared light on Streptococcus mutans[J]. Mater Sci Eng B, 2010, 173(1/2/3): 187-190.
doi: 10.1016/j.mseb.2010.01.001 URL |
[34] |
Levi-Polyachenko N, Young C, MacNeill C, et al. Eradicating group A streptococcus bacteria and biofilms using functionalised multi-wall carbon nanotubes[J]. Int J Hyperth, 2014, 30(7): 490-501.
doi: 10.3109/02656736.2014.966790 URL |
[35] |
Wang S, Mao BY, Wu MX, et al. Influence of aptamer-targeted antibiofilm agents for treatment of Pseudomonas aeruginosa biofilms[J]. Antonie Van Leeuwenhoek, 2018, 111(2): 199-208.
doi: 10.1007/s10482-017-0941-4 URL |
[36] | 毛必瑶. 基于适配体靶向传递技术的菌膜控制方法研究[D]. 长沙: 湖南师范大学, 2017. |
Mao BY. Study on bacterial membrane control method based on aptamer targeted delivery technology[D]. Chagnsha: Hunan Normal University, 2017. | |
[37] |
Perez F, Endimiani A, Hujer KM, et al. The continuing challenge of ESBLs[J]. Curr Opin Pharmacol, 2007, 7(5): 459-469.
doi: 10.1016/j.coph.2007.08.003 pmid: 17875405 |
[38] |
Schlesinger S, Lahousse M, Foster T, et al. Metallo-β-lactamases and aptamer-based inhibition[J]. Pharmaceuticals, 2011, 4(2): 419-428.
doi: 10.3390/ph4020419 URL |
[1] | 温晓蕾, 李建嫄, 李娜, 张娜, 杨文香. 小麦叶锈菌与小麦互作的酵母双杂交cDNA文库构建与应用[J]. 生物技术通报, 2023, 39(9): 136-146. |
[2] | 吴巧茵, 施友志, 李林林, 彭政, 谭再钰, 刘利平, 张娟, 潘勇. 类胡萝卜素降解菌株的原位筛选及其在雪茄提质增香中的应用[J]. 生物技术通报, 2023, 39(9): 192-201. |
[3] | 江海溶, 崔若琪, 王玥, 白淼, 张明露, 任连海. NH3和H2S降解功能菌的分离鉴定及降解特性研究[J]. 生物技术通报, 2023, 39(9): 246-254. |
[4] | 薛宁, 王瑾, 李世新, 刘叶, 程海娇, 张玥, 毛雨丰, 王猛. 多基因同步调控结合高通量筛选构建高产L-苯丙氨酸的谷氨酸棒杆菌工程菌株[J]. 生物技术通报, 2023, 39(9): 268-280. |
[5] | 马俊秀, 吴皓琼, 姜威, 闫更轩, 胡基华, 张淑梅. 蔬菜软腐病菌广谱拮抗细菌菌株筛选鉴定及防效研究[J]. 生物技术通报, 2023, 39(7): 228-240. |
[6] | 谢东, 汪流伟, 李宁健, 李泽霖, 徐子航, 张庆华. 一株多功能菌株的发掘、鉴定及解磷条件优化[J]. 生物技术通报, 2023, 39(7): 241-253. |
[7] | 董聪, 高庆华, 王玥, 罗同阳, 王庆庆. 基于联合策略提高FAD依赖的葡萄糖脱氢酶的酵母表达[J]. 生物技术通报, 2023, 39(6): 316-324. |
[8] | 李天顺, 李宸葳, 王佳, 朱龙佼, 许文涛. 功能核酸筛选过程中次级文库的有效制备[J]. 生物技术通报, 2023, 39(3): 116-122. |
[9] | 崔若琪, 张玲悦, 江海溶, 张毓羚, 张明露, 任连海. NH3和H2S除臭菌剂的制备及其对厨余垃圾堆肥除臭效果和机理探究[J]. 生物技术通报, 2023, 39(10): 311-322. |
[10] | 王欣怡, 王晓倩, 王红军, 晁跃辉. FLAG标签纳米抗体的筛选、表达及验证[J]. 生物技术通报, 2023, 39(10): 323-331. |
[11] | 刘金升, 陈振娅, 霍毅欣, 郭淑元. FACS技术在酶定向进化中的应用[J]. 生物技术通报, 2023, 39(10): 93-106. |
[12] | 江美彦, 周杨, 刘仁浪, 姚菲, 杨云舒, 侯凯, 冯冬菊, 吴卫. 白芷根际促生菌的筛选及其促生效果研究[J]. 生物技术通报, 2022, 38(8): 167-178. |
[13] | 王亚军, 司运美. 除磷菌CP-7的筛选及其降解特性研究[J]. 生物技术通报, 2022, 38(7): 258-268. |
[14] | 赵子玉, 王春光, 吕建存, 李继开, 张铁. 超广谱β-内酰胺酶CTX-M-14中药抑制剂的筛选及芸香苷抑酶作用研究[J]. 生物技术通报, 2022, 38(6): 235-244. |
[15] | 张鸿雁, 林国莉, 李如莲, 纪晓琦. 番茄果腐病拮抗菌的筛选及对番茄的防腐保鲜作用[J]. 生物技术通报, 2022, 38(3): 69-78. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||