生物技术通报 ›› 2023, Vol. 39 ›› Issue (6): 31-48.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1274
肖亮(), 吴正丹, 陆柳英, 施平丽, 尚小红, 曹升, 曾文丹, 严华兵()
收稿日期:
2022-10-17
出版日期:
2023-06-26
发布日期:
2023-07-07
通讯作者:
严华兵,男,博士,研究员,研究方向:生物技术与良种繁育;E-mail: 34126730@qq.com作者简介:
肖亮,男,博士,副研究员,研究方向:作物遗传育种;E-mail: xiaoliang0918@163.com
基金资助:
XIAO Liang(), WU Zheng-dan, LU Liu-ying, SHI Ping-li, SHANG Xiao-hong, CAO Sheng, ZENG Wen-dan, YAN Hua-bing()
Received:
2022-10-17
Published:
2023-06-26
Online:
2023-07-07
摘要:
木薯是全球热区的重要粮食作物、经济作物和能源作物,但其生物学研究和育种进展落后于主要粮食作物,分子育种是木薯遗传改良的重要驱动力,挖掘木薯重要性状相关基因是实现其传统育种向分子育种转变的基础和前提。本文系统地总结了木薯株型、产量、品质、抗逆等性状基因以及相关基因功能表征的最新进展,并指出构建自交分离群体和多组学整合是未来挖掘木薯关键基因的重要手段。本文拟为推进功能基因组研究成果应用于木薯育种技术体系建设提供参考,为木薯遗传改良提供理论指导。
肖亮, 吴正丹, 陆柳英, 施平丽, 尚小红, 曹升, 曾文丹, 严华兵. 木薯重要性状基因的研究进展[J]. 生物技术通报, 2023, 39(6): 31-48.
XIAO Liang, WU Zheng-dan, LU Liu-ying, SHI Ping-li, SHANG Xiao-hong, CAO Sheng, ZENG Wen-dan, YAN Hua-bing. Research Progress of Important Traits Genes in Cassava[J]. Biotechnology Bulletin, 2023, 39(6): 31-48.
性状 Trait | 基因ID Gene ID | 基因注释 Gene annotation | 参考文献Reference |
---|---|---|---|
第一分支高度 The first branch height | Manes.09G041800 | 钙调素蛋白激酶20 Calcium-dependent protein kinase 20 | [ |
Manes.09G041900 | ABC-2型转运蛋白 ABC-2 type transporter protein | ||
Manes.02G212100 | 果胶酸酯裂解酶超家族蛋白 Pectin lyase-like superfamily protein | ||
Manes.02G212200 | 未知蛋白 Unknown protein | ||
Manes.03G061100 | 半胱氨酸氨基转移 Cysteine aminotransferase | ||
Manes.03G061200 | 四跨膜蛋白 Tetraspanin | ||
Manes.10G123100 | 跨膜蛋白9超家族成员1 Transmembrane 9 superfamily member 1 | ||
Manes.09G143900 | 未知蛋白 Unknown protein | ||
Manes.09G144000 | 未知蛋白 Unknown protein | ||
Manes.09G143800 | NAC转录因子87 NAC transcriptional factor 87 | ||
Manes.03G059800 | 未知蛋白 Unknown protein | ||
茎直径 Stem diameter | Manes.03G059800 | 未知蛋白 Unknown protein | [ |
Manes.03G170000 | 加工rRNA蛋白EFG1 rRNA-processing protein EFG1 | ||
Manes.03G169900 | α-甘露糖苷酶 alpha-mannosidase | ||
Manes.14G021000 | NADH脱氢酶-1-α-亚基复合体亚基5 NADH dehydrogenase-1-alpha-subcomplex subunit 5 | ||
Manes.14G020900 | SNARE-like蛋白 SNARE-like protein | ||
Manes.07G117800 | POTUNDIFOLIA蛋白 POTUNDIFOLIA protein | ||
Manes.07G117700 | 未知蛋白 Unknown protein | ||
Manes.07G007700 | 细胞色素b5域RLF Cytochrome b5 domain-containing protein RLF | ||
Manes.07G007800 | 环阿屯醇-碳-24-甲基转移酶 Cycloartenol-C-24-methyltransferase | ||
Manes.06G047300 | 未知蛋白 Unknown protein | ||
叶指宽 Lobular width | Manes.05G164600 | 核糖体蛋白S9 Ribosomal protein S9 | [ |
Manes.05G164500 | 多药物及有毒化合物外排转运蛋白 Multidrug and toxic compound extrusion | ||
Manes.03G156800 | 线粒体编辑因子22 Mitochondrial editing factor 22 | ||
Manes.03G156900 | MYB转录因子 MYB transcriptional factor | ||
Manes.03G157000 | 膜蛋白PM19L Membrane protein PM19L | ||
Manes.10G312000 | OBF3蛋白 OBF3 protein | ||
叶指长 Lobular length | Manes.05G026500 | 葡萄糖-6-磷酸差相异构酶 Glucose-6-phosphate1-epimerase | [ |
Manes.05G026600 | 未知蛋白 Unknown protein | ||
Manes.05G026700 | G-box结合因子 G-box binding factor | ||
Manes.06G034000 | 26S蛋白酶体调节亚基 26S proteasome regulatory subunit | ||
Manes.18G018500 | 组氨酸超家族蛋白 Histone superfamily protein | ||
Manes.04G057300 | 醛氧化酶2 Aldehyde oxidase 2 | ||
叶柄长度 Petiole length | Manes.01G201900 | bHLH转录因子 bHLH transcriptional factor | [ |
Manes.01G202000 | 未知蛋白 Unknown protein | ||
叶指长宽比 Leaf aspect ratio | Manes.03G156800 | 线粒体编辑因子22 Mitochondrial editing factor 22 | [ |
Manes.03G156900 | MYB转录因子 MYB transcriptional factor | ||
Manes.03G157000 | AWPM-19-like家族蛋白 AWPM-19-like family protein | ||
Manes.06G034000 | 26S蛋白酶体调节亚基 26S proteasome regulatory subunit | ||
Manes.14G056200 | MA3蛋白 MA3 protein | ||
Manes.14G056100 | MA3蛋白 MA3 protein | ||
Manes.14G056300 | 未知蛋白 Unknown protein | ||
Manes.01G182700 | 蔗糖转化酶/果胶甲基转移酶抑制子 Invertase/pectin methylesterase inhibitor | ||
Manes.01G182800 | 未知蛋白 Unknown protein | ||
Manes.01G182900 | 甘氨酸富集蛋白 Glycine-rich protein | ||
Manes.03G184600 | P-loop-核苷三磷酸水解酶 P-loop-containing nucleoside triphosphate hydrolase | ||
Manes.03G186500 | α-水解酶 α-hydrolase | ||
Manes.10G031200 | OBF3蛋白 OBF3 protein | ||
叶形 The shape of leaf | Manes.15G136200 | KNOX1和KNOX2蛋白 KNOX1 and KNOX2 protein | [ |
叶柄颜色 Petiole color | Manes.01G115400 | MYB转录因子6 MYB transcriptional factor 6 | [ |
绿叶 Green leaf | Manes.01G115400 | MYB转录因子6 MYB transcriptional factor 6 | [ |
干物质重量 Dry mass weight | Manes.02G192500 | 未知蛋白 Unknown protein | [ |
Manes.02G192600 | RING/U-box锌指家族蛋白 RING/U-box zinc finger family protein | ||
Manes.02G169700 | 结瘤MtN3家族蛋白 Nodulin MtN3 family protein | ||
Manes.02G169800 | 未知蛋白 Unknown protein | ||
Manes.02G154700 | β-D-木糖苷酶7 Beta-D-xylosidase 7 | ||
Manes.02G154800 | 类钙神经素金属磷酸酯酶 Calcineurin-like metallo-phosphoesterase | ||
储藏根数目 Number of storage roots | Manes.05G125100 | 丝氨酸/苏氨酸蛋白激酶IRE1b Ser/Thr protein kinase IRE1b | [ |
Manes.05G125200 | 3-磷酸甘油醛脱氢酶B亚基 Glyceraldehyde-3-phosphate dehydrogenase B subunit | ||
Manes.05G125300 | 未知蛋白 Unknown protein | ||
Manes.04G057900 | 未知蛋白 Unknown protein | ||
Manes.04G058000 | 未知蛋白 Unknown protein | ||
Manes.09G099100 | 未知蛋白 Unknown protein | ||
Manes.09G099200 | 铜转运蛋白6 Copper transport protein 6 | ||
Manes.09G099300 | 热激蛋白HSP20-like Heat shock protein HSP20-like | ||
储藏根重量 Storage roots weight | Manes.02G169700 | 结瘤MtN3家族蛋白 Nodulin MtN3 family protein | [ |
Manes.02G169800 | 未知蛋白 Unknown protein | ||
收获指数 Harvest index | Manes.02G035900 | β-果糖基转移酶 Beta-fructofuranosidase | [ |
Manes.02G037700 | 4 glucan phosphorylase L isozyme | ||
淀粉含量 Starch content | Manes.13G023300 | β-1,4-氮-乙酰葡糖氨基转移酶 Beta-1,4-N-acetylglucosaminyl transferase | [ |
Manes.13G023400 | NAD(P)-氧化还原酶 NAD(P)-linked oxidoreductase | ||
Manes.05G177800 | 碳水化合物酯酶 Carbohydrate esterase | ||
总类胡萝卜素含量 Total carotenoid content | Manes.01G124200 | 八氢番茄红素酶2 Phytoene synthase 2 | [ |
Manes.05G051700 | β-胡萝卜素双加氧酶 Beta-carotene dioxgenese | [ | |
Manes.15G102000 | β-胡萝卜素双加氧酶 Beta-carotene dioxgenese | ||
Manes.16G099600 | β-番茄红素环化酶 Lycopene beta cyclase | [ | |
Manes.09G008200 | ε-番茄红素E环化酶 Lycopene epsilon cyclase | ||
Manes.06G152200 | β-胡萝卜素羟化酶 Beta-carotene hydroxylase | ||
干物质含量 Dry mass content | Manes.14G007500 | 质体3-磷酸甘油醛脱氢酶2 Glyceraldehyde-3-phosphate dehydrogenase of plastid 2 | [ |
Manes.16G000700 | ATP酶WRNIP1 ATPase WRNIP1 | ||
Manes.16G000800 | 亮氨酸富集蛋白受体激酶 Leucine rich repeat receptor like kinase | ||
Manes.01G123000 | UDP-葡萄糖焦磷酸化酶 UTP-glucose pyrophosphorylase | [ | |
Manes.01G123800 | 蔗糖合酶 Sucrose synthase | ||
Manes.06G103600 | 双向糖转运蛋白SWEET5 Bidirectional sugar transporter SWEET5 | [ | |
Manes.15G011300 | RAG1激活蛋白 RAG1 activating protein | ||
Manes.16G109200 | 解螺旋酶 Helicase | ||
氢氰酸苷含量 HCN content | Manes.16G007900 | 多药物及有毒化合物外排转运蛋白 Multidrug and toxic compound extrusion | [ |
CMD2抗性 CMD2 resistance | Manes.12G076200 | 过氧化物酶 Peroxidase | [ |
Manes.12G076300 | 过氧化物酶 Peroxidase | ||
Manes.14G058400 | TCP家族转录因子 TCP family transcriptional factor | ||
CBSD抗性 CBSD resistance | Manes.11G130500 | 甘氨酸富集蛋白 Glycine-rich repeat protein | [ |
Manes.11G130000 | 亮氨酸富集蛋白Leucine-rich repeat protein | ||
Manes.11G130200 | 触发因子分子伴侣 Trigger factor chaperone | ||
Manes.11G131100 | U-box蛋白33 U-box domain-containing protein 33 | ||
Manes.11G127100 | 甘氨酸富集蛋白 Glycine-rich repeat protein | [ | |
Cassava4.1_019379m | LysM结构域包含蛋白 LysM domain containing protein | ||
Cassava4.1_00037m | 3.5.2.9-5-羟脯氨酸酶 3.5.2.9-5-oxoprolinase enzyme | ||
CGM抗性CGM resistance | Manes.08G058000 | MYB转录因子106 MYB transcriptional factor 106 | [ |
Manes.08G045400 | MYB-like螺旋-转角-螺旋转录因子 MYB-like helix-turn-helix transcriptional factor | [ | |
Manes.08G058500 | C2H2-like锌指转录因子 C2H2-like Zn finger transcriptional factor | ||
Manes.08G048200 | C2H2-type锌指转录因子 C2H2-type Zn finger transcriptional factor | ||
Manes.08G048800 | 富含ARM重复域CCCH锌指转录因子 CCCH-type Zn finger transcriptional factor with ARM repeat domain | ||
Manes.08G034200 | Dof-type锌指转录因子 Dof-type Zn finger transcriptional factor | ||
Manes.08G046400 | K同源域CCCH-type锌指转录因子 K homology-domain-containing protein-/-Zn finger(CCCH-type)transcriptional factor | ||
Manes.08G041900 | 锌指转录因子8 Zn finger transcriptional factor 8 | ||
Manes.08G035100 | MADS-box转录因子AGAMOUS-like 80 MADS-box transcriptional factor AGAMOUS-like 80 | ||
Manes.08G043900 | 同源框亮氨酸拉链蛋白HOX11 Homeobox-leucine zipper protein HOX11 | ||
Manes.08G024700 | 亮氨酸拉链转录因子 Basic leucine zipper transcriptional factor | ||
Manes.08G046700 | 亮氨酸拉链转录因子 Basic leucine zipper transcriptional factor | ||
Manes.08G026900 | SAUR-like生长素响应因子 SAUR-like auxin-responsive factor | ||
Manes.08G026500 | 三角状五肽重复蛋白 Pentatricopeptide repeat protein | ||
Manes.08G053900 | 三角状五肽重复蛋白 Pentatricopeptide repeat protein | ||
Manes.08G060500 | 三角状五肽重复蛋白 Pentatricopeptide repeat protein | ||
Manes.08G044000 | 表皮毛双折射相关蛋白 Trichome birefringence-like protein |
表1 利用正向遗传学方法定位到的木薯重要性状候选基因
Table 1 Candidate genes for important traits using forward genetic approach in cassava
性状 Trait | 基因ID Gene ID | 基因注释 Gene annotation | 参考文献Reference |
---|---|---|---|
第一分支高度 The first branch height | Manes.09G041800 | 钙调素蛋白激酶20 Calcium-dependent protein kinase 20 | [ |
Manes.09G041900 | ABC-2型转运蛋白 ABC-2 type transporter protein | ||
Manes.02G212100 | 果胶酸酯裂解酶超家族蛋白 Pectin lyase-like superfamily protein | ||
Manes.02G212200 | 未知蛋白 Unknown protein | ||
Manes.03G061100 | 半胱氨酸氨基转移 Cysteine aminotransferase | ||
Manes.03G061200 | 四跨膜蛋白 Tetraspanin | ||
Manes.10G123100 | 跨膜蛋白9超家族成员1 Transmembrane 9 superfamily member 1 | ||
Manes.09G143900 | 未知蛋白 Unknown protein | ||
Manes.09G144000 | 未知蛋白 Unknown protein | ||
Manes.09G143800 | NAC转录因子87 NAC transcriptional factor 87 | ||
Manes.03G059800 | 未知蛋白 Unknown protein | ||
茎直径 Stem diameter | Manes.03G059800 | 未知蛋白 Unknown protein | [ |
Manes.03G170000 | 加工rRNA蛋白EFG1 rRNA-processing protein EFG1 | ||
Manes.03G169900 | α-甘露糖苷酶 alpha-mannosidase | ||
Manes.14G021000 | NADH脱氢酶-1-α-亚基复合体亚基5 NADH dehydrogenase-1-alpha-subcomplex subunit 5 | ||
Manes.14G020900 | SNARE-like蛋白 SNARE-like protein | ||
Manes.07G117800 | POTUNDIFOLIA蛋白 POTUNDIFOLIA protein | ||
Manes.07G117700 | 未知蛋白 Unknown protein | ||
Manes.07G007700 | 细胞色素b5域RLF Cytochrome b5 domain-containing protein RLF | ||
Manes.07G007800 | 环阿屯醇-碳-24-甲基转移酶 Cycloartenol-C-24-methyltransferase | ||
Manes.06G047300 | 未知蛋白 Unknown protein | ||
叶指宽 Lobular width | Manes.05G164600 | 核糖体蛋白S9 Ribosomal protein S9 | [ |
Manes.05G164500 | 多药物及有毒化合物外排转运蛋白 Multidrug and toxic compound extrusion | ||
Manes.03G156800 | 线粒体编辑因子22 Mitochondrial editing factor 22 | ||
Manes.03G156900 | MYB转录因子 MYB transcriptional factor | ||
Manes.03G157000 | 膜蛋白PM19L Membrane protein PM19L | ||
Manes.10G312000 | OBF3蛋白 OBF3 protein | ||
叶指长 Lobular length | Manes.05G026500 | 葡萄糖-6-磷酸差相异构酶 Glucose-6-phosphate1-epimerase | [ |
Manes.05G026600 | 未知蛋白 Unknown protein | ||
Manes.05G026700 | G-box结合因子 G-box binding factor | ||
Manes.06G034000 | 26S蛋白酶体调节亚基 26S proteasome regulatory subunit | ||
Manes.18G018500 | 组氨酸超家族蛋白 Histone superfamily protein | ||
Manes.04G057300 | 醛氧化酶2 Aldehyde oxidase 2 | ||
叶柄长度 Petiole length | Manes.01G201900 | bHLH转录因子 bHLH transcriptional factor | [ |
Manes.01G202000 | 未知蛋白 Unknown protein | ||
叶指长宽比 Leaf aspect ratio | Manes.03G156800 | 线粒体编辑因子22 Mitochondrial editing factor 22 | [ |
Manes.03G156900 | MYB转录因子 MYB transcriptional factor | ||
Manes.03G157000 | AWPM-19-like家族蛋白 AWPM-19-like family protein | ||
Manes.06G034000 | 26S蛋白酶体调节亚基 26S proteasome regulatory subunit | ||
Manes.14G056200 | MA3蛋白 MA3 protein | ||
Manes.14G056100 | MA3蛋白 MA3 protein | ||
Manes.14G056300 | 未知蛋白 Unknown protein | ||
Manes.01G182700 | 蔗糖转化酶/果胶甲基转移酶抑制子 Invertase/pectin methylesterase inhibitor | ||
Manes.01G182800 | 未知蛋白 Unknown protein | ||
Manes.01G182900 | 甘氨酸富集蛋白 Glycine-rich protein | ||
Manes.03G184600 | P-loop-核苷三磷酸水解酶 P-loop-containing nucleoside triphosphate hydrolase | ||
Manes.03G186500 | α-水解酶 α-hydrolase | ||
Manes.10G031200 | OBF3蛋白 OBF3 protein | ||
叶形 The shape of leaf | Manes.15G136200 | KNOX1和KNOX2蛋白 KNOX1 and KNOX2 protein | [ |
叶柄颜色 Petiole color | Manes.01G115400 | MYB转录因子6 MYB transcriptional factor 6 | [ |
绿叶 Green leaf | Manes.01G115400 | MYB转录因子6 MYB transcriptional factor 6 | [ |
干物质重量 Dry mass weight | Manes.02G192500 | 未知蛋白 Unknown protein | [ |
Manes.02G192600 | RING/U-box锌指家族蛋白 RING/U-box zinc finger family protein | ||
Manes.02G169700 | 结瘤MtN3家族蛋白 Nodulin MtN3 family protein | ||
Manes.02G169800 | 未知蛋白 Unknown protein | ||
Manes.02G154700 | β-D-木糖苷酶7 Beta-D-xylosidase 7 | ||
Manes.02G154800 | 类钙神经素金属磷酸酯酶 Calcineurin-like metallo-phosphoesterase | ||
储藏根数目 Number of storage roots | Manes.05G125100 | 丝氨酸/苏氨酸蛋白激酶IRE1b Ser/Thr protein kinase IRE1b | [ |
Manes.05G125200 | 3-磷酸甘油醛脱氢酶B亚基 Glyceraldehyde-3-phosphate dehydrogenase B subunit | ||
Manes.05G125300 | 未知蛋白 Unknown protein | ||
Manes.04G057900 | 未知蛋白 Unknown protein | ||
Manes.04G058000 | 未知蛋白 Unknown protein | ||
Manes.09G099100 | 未知蛋白 Unknown protein | ||
Manes.09G099200 | 铜转运蛋白6 Copper transport protein 6 | ||
Manes.09G099300 | 热激蛋白HSP20-like Heat shock protein HSP20-like | ||
储藏根重量 Storage roots weight | Manes.02G169700 | 结瘤MtN3家族蛋白 Nodulin MtN3 family protein | [ |
Manes.02G169800 | 未知蛋白 Unknown protein | ||
收获指数 Harvest index | Manes.02G035900 | β-果糖基转移酶 Beta-fructofuranosidase | [ |
Manes.02G037700 | 4 glucan phosphorylase L isozyme | ||
淀粉含量 Starch content | Manes.13G023300 | β-1,4-氮-乙酰葡糖氨基转移酶 Beta-1,4-N-acetylglucosaminyl transferase | [ |
Manes.13G023400 | NAD(P)-氧化还原酶 NAD(P)-linked oxidoreductase | ||
Manes.05G177800 | 碳水化合物酯酶 Carbohydrate esterase | ||
总类胡萝卜素含量 Total carotenoid content | Manes.01G124200 | 八氢番茄红素酶2 Phytoene synthase 2 | [ |
Manes.05G051700 | β-胡萝卜素双加氧酶 Beta-carotene dioxgenese | [ | |
Manes.15G102000 | β-胡萝卜素双加氧酶 Beta-carotene dioxgenese | ||
Manes.16G099600 | β-番茄红素环化酶 Lycopene beta cyclase | [ | |
Manes.09G008200 | ε-番茄红素E环化酶 Lycopene epsilon cyclase | ||
Manes.06G152200 | β-胡萝卜素羟化酶 Beta-carotene hydroxylase | ||
干物质含量 Dry mass content | Manes.14G007500 | 质体3-磷酸甘油醛脱氢酶2 Glyceraldehyde-3-phosphate dehydrogenase of plastid 2 | [ |
Manes.16G000700 | ATP酶WRNIP1 ATPase WRNIP1 | ||
Manes.16G000800 | 亮氨酸富集蛋白受体激酶 Leucine rich repeat receptor like kinase | ||
Manes.01G123000 | UDP-葡萄糖焦磷酸化酶 UTP-glucose pyrophosphorylase | [ | |
Manes.01G123800 | 蔗糖合酶 Sucrose synthase | ||
Manes.06G103600 | 双向糖转运蛋白SWEET5 Bidirectional sugar transporter SWEET5 | [ | |
Manes.15G011300 | RAG1激活蛋白 RAG1 activating protein | ||
Manes.16G109200 | 解螺旋酶 Helicase | ||
氢氰酸苷含量 HCN content | Manes.16G007900 | 多药物及有毒化合物外排转运蛋白 Multidrug and toxic compound extrusion | [ |
CMD2抗性 CMD2 resistance | Manes.12G076200 | 过氧化物酶 Peroxidase | [ |
Manes.12G076300 | 过氧化物酶 Peroxidase | ||
Manes.14G058400 | TCP家族转录因子 TCP family transcriptional factor | ||
CBSD抗性 CBSD resistance | Manes.11G130500 | 甘氨酸富集蛋白 Glycine-rich repeat protein | [ |
Manes.11G130000 | 亮氨酸富集蛋白Leucine-rich repeat protein | ||
Manes.11G130200 | 触发因子分子伴侣 Trigger factor chaperone | ||
Manes.11G131100 | U-box蛋白33 U-box domain-containing protein 33 | ||
Manes.11G127100 | 甘氨酸富集蛋白 Glycine-rich repeat protein | [ | |
Cassava4.1_019379m | LysM结构域包含蛋白 LysM domain containing protein | ||
Cassava4.1_00037m | 3.5.2.9-5-羟脯氨酸酶 3.5.2.9-5-oxoprolinase enzyme | ||
CGM抗性CGM resistance | Manes.08G058000 | MYB转录因子106 MYB transcriptional factor 106 | [ |
Manes.08G045400 | MYB-like螺旋-转角-螺旋转录因子 MYB-like helix-turn-helix transcriptional factor | [ | |
Manes.08G058500 | C2H2-like锌指转录因子 C2H2-like Zn finger transcriptional factor | ||
Manes.08G048200 | C2H2-type锌指转录因子 C2H2-type Zn finger transcriptional factor | ||
Manes.08G048800 | 富含ARM重复域CCCH锌指转录因子 CCCH-type Zn finger transcriptional factor with ARM repeat domain | ||
Manes.08G034200 | Dof-type锌指转录因子 Dof-type Zn finger transcriptional factor | ||
Manes.08G046400 | K同源域CCCH-type锌指转录因子 K homology-domain-containing protein-/-Zn finger(CCCH-type)transcriptional factor | ||
Manes.08G041900 | 锌指转录因子8 Zn finger transcriptional factor 8 | ||
Manes.08G035100 | MADS-box转录因子AGAMOUS-like 80 MADS-box transcriptional factor AGAMOUS-like 80 | ||
Manes.08G043900 | 同源框亮氨酸拉链蛋白HOX11 Homeobox-leucine zipper protein HOX11 | ||
Manes.08G024700 | 亮氨酸拉链转录因子 Basic leucine zipper transcriptional factor | ||
Manes.08G046700 | 亮氨酸拉链转录因子 Basic leucine zipper transcriptional factor | ||
Manes.08G026900 | SAUR-like生长素响应因子 SAUR-like auxin-responsive factor | ||
Manes.08G026500 | 三角状五肽重复蛋白 Pentatricopeptide repeat protein | ||
Manes.08G053900 | 三角状五肽重复蛋白 Pentatricopeptide repeat protein | ||
Manes.08G060500 | 三角状五肽重复蛋白 Pentatricopeptide repeat protein | ||
Manes.08G044000 | 表皮毛双折射相关蛋白 Trichome birefringence-like protein |
基因名称 Gene name | 功能 Function | 产物 Product | 生理机制 Physiological mechanism | 参考文献 Reference |
---|---|---|---|---|
MeCWINV3 | 负调控淀粉积累 Negative regulation of starch accumulation | 细胞壁转化酶 Cell wall invertases | 抑制叶片中蔗糖向块根转移Inhibited sugar export from leaves to storage roots | [ |
MeSBE1 | 负调控直链淀粉形成 Negative regulation of high-amylose production | 淀粉分支酶1 Starch branch enzyme 1 | 促进块根中支链淀粉链长分布 Promoted chain-length distribution of amylopectin | [ |
MeSBE2 | 负调控直链淀粉形成 Negative regulation of high-amylose production | 淀粉分支酶2 Starch branch enzyme 2 | 促进块根中支链淀粉链长分布 Promoted chain-length distribution of amylopectin | [ |
MeGBSSI | 正调控糯木薯形成 Positive regulation of waxy cassava | 颗粒结合淀粉合酶I Granule-bound starch synthase I | 合成蜡质淀粉 Synthesized waxy starch | [ |
MePSY2 | 正调控黄色薯肉形成 Positive regulation of yellow tuber | 八氢番茄红素酶2 Phytoene synthase 2 | 促进β-胡萝卜素合成 Promoted β-carotene accumulation | [ |
MeCAT1 (Co-expressed with MeCu/ZnSOD) | 延缓PPD Delay PPD | 过氧化氢酶 Catalase | 强化ROS清除 Enhanced ROS scavenging | [ |
HNL | 负调控块根中HCN含量 Negative regulation of HCN content in tuber | 羟基腈裂解酶Hydroxynitrile lyase | 促进丙酮氰醇分解 Promoted the decomposition of acetone cyanol | [ |
MeDREB1D | 正调控抗旱 Positive regulation of drought resistance | AP2转录因子 AP2 transcriptional factor | 降低MDA含量,并可能强化了ROS清除 Decreased MDA content, and may enhance ROS scavenging | [ |
正调控抗寒 Positive regulation of cold resistance | AP2转录因子 AP2 transcriptional factor | 可能强化了ROS清除 May enhance ROS scavenging | ||
MeDREB1A | 正调控抗旱 Positive regulation of drought resistance | AP2转录因子 AP2 transcriptional factor | 增加脯氨酸含量 Increased proline content | [ |
正调控抗寒 Positive regulation of cold resistance | AP2转录因子 AP2 transcriptional factor | 增加脯氨酸含量 Increased proline content | ||
MeRAV5 | 正调控抗旱 Positive regulation of drought resistance | AP2转录因子 AP2 transcriptional factor | 降低H2O2含量和促进木质素积累 Decreased H2O2 content and promote lignin accumulation | [ |
MeGRX360 | 正调控抗旱 Positive regulation of drought resistance | CC型谷氧还蛋白 CC-type Glutaredoxins | 降低H2O2含量 Decreased H2O2 content | [ |
MeGRX058 | 正调控抗旱 Positive regulation of drought resistance | CC型谷氧还蛋白 CC-type Glutaredoxins | 降低H2O2含量 Decreased H2O2 content | |
MeGRX785 | 负调控抗旱 Negative regulation of drought resistance | CC型谷氧还蛋白 CC-type Glutaredoxins | 降低H2O2含量 Decreased H2O2 content | |
MeGRX232 | 负调控抗旱 Negative regulation of drought resistance | CC型谷氧还蛋白 CC-type Glutaredoxins | 降低H2O2含量 Decreased H2O2 content | |
MeGRX15 | 负调控抗旱 Negative regulation of drought resistance | CC型谷氧还蛋白 CC-type Glutaredoxins | 降低MDA含量 Decreased MDA content | [ |
MeGRX3 | 负调控抗旱 Negative regulation of drought resistance | CC型谷氧还蛋白 CC-type Glutaredoxins | 介导H2O2分配,引起ABA途径介导的气孔关闭 Mediated H2O2 homeostasis and stomatal closure | [ |
MeCAT1 (Co-expressed with MeCu/ZnSOD) | 正调控抗旱 Positive regulation of drought resistance | 过氧化氢酶 Catalase | 强化ROS清除 Enhanced ROS scavenging | [ |
正调控抗寒 Positive regulation of cold resistance | 超氧化物歧化酶 Superoxide dismutase | 强化ROS清除 Enhanced ROS scavenging | ||
MeMYB2 | 负调控抗旱 Negative regulation of drought resistance | MYB转录因子 MYB transcriptional factor | 调节ABA依赖途径 Regulated ABA-dependent pathway | [ |
负调控抗寒 Negative regulation of cold resistance | MYB转录因子 MYB transcriptional factor | 调节ABA依赖途径 Regulated ABA-dependent pathway | ||
MeNCED1/5 | 正调控抗旱 Positive regulation of drought resistance | ABA合成酶 ABA synthetase | 促进ABA积累 Promoted ABA accumulation | [ |
MeCIPK23 | 正调控抗旱 Positive regulation of drought resistance | 蛋白激酶 CBL interact protein kinase | 促进ABA积累 Promoted ABA accumulation | |
MeWHY1/2/3 | 正调控抗旱 Positive regulation of drought resistance | Whirly转录因子 Whirly transcriptional factor | 促进ABA积累 Promoted ABA accumulation | |
MeWRKY20 | 正调控抗旱 Positive regulation of drought resistance | WRKY转录因子 WRKY transcriptional factor | 促进ABA积累 Promoted ABA accumulation | [ |
MeHSP90.9 | 正调控抗旱 Positive regulation of drought resistance | 热激蛋白 Heat shock protein | and decrease H2O2 content | |
MeSPL9 | 负调控抗旱 Negative regulation of drought resistance | SPL转录因子 SPL transcriptional factor | 抑制花青素、脯氨酸、可溶性糖和JA积累 Inhibited anthocyanin, proline, soluble sugar, and JA accumulation | [ |
MeSDD1 | 正调控抗旱 Positive regulation of drought resistance | 枯草杆菌蛋白酶 Subtilase | 降低气孔密度 Decreased stomatal density | [ |
MeSCL30 | 正调控抗旱 Positive regulation of drought resistance | 剪切因子 Spliceosomal component-like | 强化ROS清除 Enhanced ROS scavenging | [ |
MeRSZ21b | 正调控抗旱 Positive regulation of drought resistance | 丝氨酸/精氨酸剪接因子 Two-Zn-knuckles-type serine/arginine-rich protein | 调节ABA依赖途径的气孔关闭 Regulated stomatal closure of ABA-dependent pathway | [ |
DIR | 正调控抗旱 Positive regulation of drought resistance | 长链非编码RNA Long non-coding RNA | 增加脯氨酸含量 Increased proline content | [ |
MeIPT | 正调控抗旱 Positive regulation of drought resistance | 异戊烯基转移酶 Isopentenyl transferase | 延缓叶片衰老 Delayed leaf senescence | [ |
MeMYB108 | 正调控抗旱 Positive regulation of drought resistance | MYB转录因子 MYB transcriptional factor | 降低叶片脱落率 Reduced leaf abscission rate | [ |
MeAPX2 (Co-expressed with MeCu/ZnSOD) | 正调控抗寒 Positive regulation of cold resistance | 抗坏血酸过氧化物酶 Ascorbate peroxidase | 强化ROS清除 Enhanced ROS scavenging | [ |
MeTCP4 | 正调控抗寒 Positive regulation of drought resistance | TCP转录因子 TCP transcriptional factor | 强化ROS清除 Enhanced ROS scavenging | [ |
CRIR1 | 正调控抗寒 Positive regulation of cold resistance | 长链非编码RNA Long non-coding RNA | 增强非CBF途径的低温胁迫相关基因的翻译 Improved the translation efficiency of cold stress-related genes in a CBF-independent pathway | [ |
MeNPF4.5 | 正调控氮利用效率和产量 Positive regulation of nitrogen use efficiency and yield | 氮转运蛋白 Nitrate transporter | 可能促进了IAA积累 May promote IAA accumulation | [ |
MeWRKY79 | 正调控CBB抗性 Positive regulation of CBB resistance | WRKY转录因子 WRKY transcriptional factor | 促进褪黑素积累 Promoted melatonin accumulation | [ |
MeHsf20 | 正调控CBB抗性 Positive regulation of CBB resistance | 热激蛋白 Heat shock protein | 促进褪黑素积累 Promoted melatonin accumulation | |
MeASMT2 | 正调控CBB抗性 Positive regulation of CBB resistance | 褪黑素合成酶 Melatonin synthetase | 促进褪黑素积累 Promoted melatonin accumulation | |
MeHsfs3 | 正调控CBB抗性 Positive regulation of CBB resistance | 热胁迫转录因子 Heat stress transcriptional factor | 促进SA的积累 Promoted SA accumulation | [ |
MeDELLA1/2/3/4 | 正调控CBB抗性 Positive regulation of CBB resistance | DELLA蛋白 DELLA protein | 促进胼胝质沉积 Promoted callose depostion | [ |
MeLRR1/2/3/4 | 正调控CBB抗性 Positive regulation of CBB resistance | NBS-LRR蛋白 NBS-LRR protein | 促进SA和ROS积累 Promoted SA and ROS accumulation | [ |
MeWRKY27 | 正调控CBB抗性 Positive regulation of CBB resistance | WRKY转录因子 WRKY transcriptional factor | 未知 Unknown | [ |
MeWRKY33 | 正调控CBB抗性 Positive regulation of CBB resistance | WRKY转录因子 WRKY transcriptional factor | 未知 Unknown | |
MeWRKY20 | 正调控CBB抗性 Positive regulation of CBB resistance | WRKY转录因子 WRKY transcriptional factor | 促进胼胝质增加,触发自噬信号途径 Promoted callose deposition, and triggered autophagy signaling pathway | [ |
MeHSP90.9 | 正调控CBB抗性 Positive regulation of CBB resistance | 热激蛋白 Heat shock protein | 触发自噬信号途径 Triggered autophagy signaling Pathway | [ |
MeDNAJA2 | 正调控CBB抗性 Positive regulation of CBB resistance | DnaJ热激蛋白 DnaJ heat shock protein family | 促进SA积累 Promoted SA accumulation | [ |
MeHAM1 | 正调控CBB抗性 Positive regulation of CBB resistance | 组蛋白乙酰转移 Histone acetyltransferases | 促进SA积累 Promoted SA accumulation | |
MeLAR | 正调控TMMS抗性 Positive regulation of TMMS resistance | 无花色素还原酶 Leucoanthocyanidin reductase | 促进单宁积累 Promoted tannin accumulation | [ |
MeANR | 正调控TMMS抗性 Positive regulation of TMMS resistance | 花青素还原酶Anthocyanin reductase | 促进单宁积累 Promoted tannin accumulation |
表2 木薯中克隆到的重要性状基因及其功能表征
Table 2 Cloned important traits genes and their functional characterization in cassava
基因名称 Gene name | 功能 Function | 产物 Product | 生理机制 Physiological mechanism | 参考文献 Reference |
---|---|---|---|---|
MeCWINV3 | 负调控淀粉积累 Negative regulation of starch accumulation | 细胞壁转化酶 Cell wall invertases | 抑制叶片中蔗糖向块根转移Inhibited sugar export from leaves to storage roots | [ |
MeSBE1 | 负调控直链淀粉形成 Negative regulation of high-amylose production | 淀粉分支酶1 Starch branch enzyme 1 | 促进块根中支链淀粉链长分布 Promoted chain-length distribution of amylopectin | [ |
MeSBE2 | 负调控直链淀粉形成 Negative regulation of high-amylose production | 淀粉分支酶2 Starch branch enzyme 2 | 促进块根中支链淀粉链长分布 Promoted chain-length distribution of amylopectin | [ |
MeGBSSI | 正调控糯木薯形成 Positive regulation of waxy cassava | 颗粒结合淀粉合酶I Granule-bound starch synthase I | 合成蜡质淀粉 Synthesized waxy starch | [ |
MePSY2 | 正调控黄色薯肉形成 Positive regulation of yellow tuber | 八氢番茄红素酶2 Phytoene synthase 2 | 促进β-胡萝卜素合成 Promoted β-carotene accumulation | [ |
MeCAT1 (Co-expressed with MeCu/ZnSOD) | 延缓PPD Delay PPD | 过氧化氢酶 Catalase | 强化ROS清除 Enhanced ROS scavenging | [ |
HNL | 负调控块根中HCN含量 Negative regulation of HCN content in tuber | 羟基腈裂解酶Hydroxynitrile lyase | 促进丙酮氰醇分解 Promoted the decomposition of acetone cyanol | [ |
MeDREB1D | 正调控抗旱 Positive regulation of drought resistance | AP2转录因子 AP2 transcriptional factor | 降低MDA含量,并可能强化了ROS清除 Decreased MDA content, and may enhance ROS scavenging | [ |
正调控抗寒 Positive regulation of cold resistance | AP2转录因子 AP2 transcriptional factor | 可能强化了ROS清除 May enhance ROS scavenging | ||
MeDREB1A | 正调控抗旱 Positive regulation of drought resistance | AP2转录因子 AP2 transcriptional factor | 增加脯氨酸含量 Increased proline content | [ |
正调控抗寒 Positive regulation of cold resistance | AP2转录因子 AP2 transcriptional factor | 增加脯氨酸含量 Increased proline content | ||
MeRAV5 | 正调控抗旱 Positive regulation of drought resistance | AP2转录因子 AP2 transcriptional factor | 降低H2O2含量和促进木质素积累 Decreased H2O2 content and promote lignin accumulation | [ |
MeGRX360 | 正调控抗旱 Positive regulation of drought resistance | CC型谷氧还蛋白 CC-type Glutaredoxins | 降低H2O2含量 Decreased H2O2 content | [ |
MeGRX058 | 正调控抗旱 Positive regulation of drought resistance | CC型谷氧还蛋白 CC-type Glutaredoxins | 降低H2O2含量 Decreased H2O2 content | |
MeGRX785 | 负调控抗旱 Negative regulation of drought resistance | CC型谷氧还蛋白 CC-type Glutaredoxins | 降低H2O2含量 Decreased H2O2 content | |
MeGRX232 | 负调控抗旱 Negative regulation of drought resistance | CC型谷氧还蛋白 CC-type Glutaredoxins | 降低H2O2含量 Decreased H2O2 content | |
MeGRX15 | 负调控抗旱 Negative regulation of drought resistance | CC型谷氧还蛋白 CC-type Glutaredoxins | 降低MDA含量 Decreased MDA content | [ |
MeGRX3 | 负调控抗旱 Negative regulation of drought resistance | CC型谷氧还蛋白 CC-type Glutaredoxins | 介导H2O2分配,引起ABA途径介导的气孔关闭 Mediated H2O2 homeostasis and stomatal closure | [ |
MeCAT1 (Co-expressed with MeCu/ZnSOD) | 正调控抗旱 Positive regulation of drought resistance | 过氧化氢酶 Catalase | 强化ROS清除 Enhanced ROS scavenging | [ |
正调控抗寒 Positive regulation of cold resistance | 超氧化物歧化酶 Superoxide dismutase | 强化ROS清除 Enhanced ROS scavenging | ||
MeMYB2 | 负调控抗旱 Negative regulation of drought resistance | MYB转录因子 MYB transcriptional factor | 调节ABA依赖途径 Regulated ABA-dependent pathway | [ |
负调控抗寒 Negative regulation of cold resistance | MYB转录因子 MYB transcriptional factor | 调节ABA依赖途径 Regulated ABA-dependent pathway | ||
MeNCED1/5 | 正调控抗旱 Positive regulation of drought resistance | ABA合成酶 ABA synthetase | 促进ABA积累 Promoted ABA accumulation | [ |
MeCIPK23 | 正调控抗旱 Positive regulation of drought resistance | 蛋白激酶 CBL interact protein kinase | 促进ABA积累 Promoted ABA accumulation | |
MeWHY1/2/3 | 正调控抗旱 Positive regulation of drought resistance | Whirly转录因子 Whirly transcriptional factor | 促进ABA积累 Promoted ABA accumulation | |
MeWRKY20 | 正调控抗旱 Positive regulation of drought resistance | WRKY转录因子 WRKY transcriptional factor | 促进ABA积累 Promoted ABA accumulation | [ |
MeHSP90.9 | 正调控抗旱 Positive regulation of drought resistance | 热激蛋白 Heat shock protein | and decrease H2O2 content | |
MeSPL9 | 负调控抗旱 Negative regulation of drought resistance | SPL转录因子 SPL transcriptional factor | 抑制花青素、脯氨酸、可溶性糖和JA积累 Inhibited anthocyanin, proline, soluble sugar, and JA accumulation | [ |
MeSDD1 | 正调控抗旱 Positive regulation of drought resistance | 枯草杆菌蛋白酶 Subtilase | 降低气孔密度 Decreased stomatal density | [ |
MeSCL30 | 正调控抗旱 Positive regulation of drought resistance | 剪切因子 Spliceosomal component-like | 强化ROS清除 Enhanced ROS scavenging | [ |
MeRSZ21b | 正调控抗旱 Positive regulation of drought resistance | 丝氨酸/精氨酸剪接因子 Two-Zn-knuckles-type serine/arginine-rich protein | 调节ABA依赖途径的气孔关闭 Regulated stomatal closure of ABA-dependent pathway | [ |
DIR | 正调控抗旱 Positive regulation of drought resistance | 长链非编码RNA Long non-coding RNA | 增加脯氨酸含量 Increased proline content | [ |
MeIPT | 正调控抗旱 Positive regulation of drought resistance | 异戊烯基转移酶 Isopentenyl transferase | 延缓叶片衰老 Delayed leaf senescence | [ |
MeMYB108 | 正调控抗旱 Positive regulation of drought resistance | MYB转录因子 MYB transcriptional factor | 降低叶片脱落率 Reduced leaf abscission rate | [ |
MeAPX2 (Co-expressed with MeCu/ZnSOD) | 正调控抗寒 Positive regulation of cold resistance | 抗坏血酸过氧化物酶 Ascorbate peroxidase | 强化ROS清除 Enhanced ROS scavenging | [ |
MeTCP4 | 正调控抗寒 Positive regulation of drought resistance | TCP转录因子 TCP transcriptional factor | 强化ROS清除 Enhanced ROS scavenging | [ |
CRIR1 | 正调控抗寒 Positive regulation of cold resistance | 长链非编码RNA Long non-coding RNA | 增强非CBF途径的低温胁迫相关基因的翻译 Improved the translation efficiency of cold stress-related genes in a CBF-independent pathway | [ |
MeNPF4.5 | 正调控氮利用效率和产量 Positive regulation of nitrogen use efficiency and yield | 氮转运蛋白 Nitrate transporter | 可能促进了IAA积累 May promote IAA accumulation | [ |
MeWRKY79 | 正调控CBB抗性 Positive regulation of CBB resistance | WRKY转录因子 WRKY transcriptional factor | 促进褪黑素积累 Promoted melatonin accumulation | [ |
MeHsf20 | 正调控CBB抗性 Positive regulation of CBB resistance | 热激蛋白 Heat shock protein | 促进褪黑素积累 Promoted melatonin accumulation | |
MeASMT2 | 正调控CBB抗性 Positive regulation of CBB resistance | 褪黑素合成酶 Melatonin synthetase | 促进褪黑素积累 Promoted melatonin accumulation | |
MeHsfs3 | 正调控CBB抗性 Positive regulation of CBB resistance | 热胁迫转录因子 Heat stress transcriptional factor | 促进SA的积累 Promoted SA accumulation | [ |
MeDELLA1/2/3/4 | 正调控CBB抗性 Positive regulation of CBB resistance | DELLA蛋白 DELLA protein | 促进胼胝质沉积 Promoted callose depostion | [ |
MeLRR1/2/3/4 | 正调控CBB抗性 Positive regulation of CBB resistance | NBS-LRR蛋白 NBS-LRR protein | 促进SA和ROS积累 Promoted SA and ROS accumulation | [ |
MeWRKY27 | 正调控CBB抗性 Positive regulation of CBB resistance | WRKY转录因子 WRKY transcriptional factor | 未知 Unknown | [ |
MeWRKY33 | 正调控CBB抗性 Positive regulation of CBB resistance | WRKY转录因子 WRKY transcriptional factor | 未知 Unknown | |
MeWRKY20 | 正调控CBB抗性 Positive regulation of CBB resistance | WRKY转录因子 WRKY transcriptional factor | 促进胼胝质增加,触发自噬信号途径 Promoted callose deposition, and triggered autophagy signaling pathway | [ |
MeHSP90.9 | 正调控CBB抗性 Positive regulation of CBB resistance | 热激蛋白 Heat shock protein | 触发自噬信号途径 Triggered autophagy signaling Pathway | [ |
MeDNAJA2 | 正调控CBB抗性 Positive regulation of CBB resistance | DnaJ热激蛋白 DnaJ heat shock protein family | 促进SA积累 Promoted SA accumulation | [ |
MeHAM1 | 正调控CBB抗性 Positive regulation of CBB resistance | 组蛋白乙酰转移 Histone acetyltransferases | 促进SA积累 Promoted SA accumulation | |
MeLAR | 正调控TMMS抗性 Positive regulation of TMMS resistance | 无花色素还原酶 Leucoanthocyanidin reductase | 促进单宁积累 Promoted tannin accumulation | [ |
MeANR | 正调控TMMS抗性 Positive regulation of TMMS resistance | 花青素还原酶Anthocyanin reductase | 促进单宁积累 Promoted tannin accumulation |
[1] |
严华兵, 叶剑秋, 李开绵. 中国木薯育种研究进展[J]. 中国农学通报, 2015, 31(15): 63-70.
doi: 10.11924/j.issn.1000-6850.casb14110159 |
Yan HB, Ye JQ, Li KM. Progress of cassava breeding in China. Chinese Agric Sci Bull, 2015, 31(15): 63-70. | |
[2] |
张鹏. 我国薯类基础研究的动态与展望[J]. 生物技术通报, 2015, 31(4): 65-71.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.03.002 |
Zhang P. Trends and prospect of basic research on root and tuber crops in China[J]. Biotechnol Bull, 2015, 31(4): 65-71.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.03.002 |
|
[3] |
El-Sharkawy MA. Cassava biology and physiology[J]. Plant Mol Biol, 2004, 56: 481-501.
doi: 10.1007/s11103-005-2270-7 pmid: 15669146 |
[4] | 蒋和平, 倪印峰, 朱福守. 中国木薯产业发展模式及对策建议[J]. 农业展望, 2014, 10(8): 41-48. |
Jiang HP, Ni YF, Zhu FS. Development mode and strategies of China's cassava industry[J]. Agric Outlook, 2014, 10(8): 41-48.
doi: 10.1177/003072707901000107 URL |
|
[5] | 王雷, 郭岩, 杨淑华. 非生物胁迫与环境适应性育种的现状及对策[J]. 中国科学: 生命科学, 2021, 51(10): 1424-1434. |
Wang L, GuoY, Yang SH. Designed breeding for adaptation of crops to environmental abiotic stresses[J]. Sci Sin Vitae, 2021, 51(10): 1424-1434.
doi: 10.1360/SSV-2021-0162 URL |
|
[6] | Burns A, Gleadow R, Cliff J, et al. Cassava: The drought, war and famine crop in a changing world[J]. Sustainability-Basel, 2010, 2(11): 3572-3607. |
[7] |
Wang WQ, Feng BX, Xiao JF, et al. Cassava genome from a wild ancestor to cultivated varieties[J]. Nat Commun, 2014, 5: 5110.
doi: 10.1038/ncomms6110 pmid: 25300236 |
[8] |
Bredeson JV, Lyons JB, Prochnik SE, et al. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity[J]. Nat biotechnol, 2016, 34(5): 562-571.
doi: 10.1038/nbt.3535 pmid: 27088722 |
[9] |
Ramu P, Esuma W, Kawuki R, et al. Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation[J]. Nat Genet, 2017, 49: 959-653.
doi: 10.1038/ng.3845 pmid: 28416819 |
[10] |
Hu W, Ji CM, Shi HT, et al. Allele-defined genome reveals biallelic differentiation during cassava evolution[J]. Mol Plant, 2021, 14(6): 851-854.
doi: 10.1016/j.molp.2021.04.009 pmid: 33866024 |
[11] |
Boonchanawiwat A, Sraphet S, Boonseng O, et al. QTL underlying plant and first branch height in cassava(Manihot esculenta Crantz)[J]. Field Crop Res, 2011, 121(3): 343-349.
doi: 10.1016/j.fcr.2010.12.022 URL |
[12] |
Zhang SK, Chen X, Lu C, et al. Genome-wide association studies of 11 agronomic traits in cassava(Manihot esculenta Crantz)[J]. Front Plant Sci, 2018, 9: 503.
doi: 10.3389/fpls.2018.00503 URL |
[13] |
Rabbi IY, Kayondo SI, Bauchet G, et al. Genome-wide association analysis reveals new insights into the genetic architecture of defensive, agro-morphological and quality-related traits in cassava[J]. Plant Mol Biol, 2022, 109: 195-213.
doi: 10.1007/s11103-020-01038-3 |
[14] |
Welsch R, Arango J, Bär C, et al. Provitamin A accumulation in cassava(Manihot esculenta)roots driven by a single nucleotide polymorphism in a phytoene synthase gene[J]. Plant Cell, 2010, 22(10): 3348-3356.
doi: 10.1105/tpc.110.077560 URL |
[15] |
Esuma W, Herselman L, Labuschagne MT, et al. Genome wide association mapping of provitamin A carotenoid content in cassava[J]. Euphytica, 2016, 212: 97-110.
doi: 10.1007/s10681-016-1772-5 |
[16] |
Udoh LI, Gedil M, Parkes EY, et al. Candidate gene sequencing and validation of SNP markers linked to carotenoid content in cassava(Manihot esculenta Crantz)[J]. Mol Breed, 2017, 37(10): 123.
doi: 10.1007/s11032-017-0718-5 URL |
[17] | Rabbi IY, Udoh LI, Wolfe M, et al. Genome-wide association mapping of correlated trait in cassava: dry matter and total carotenoid content[J]. Plant Genome, 2017, 10(3): 1-4. |
[18] |
Ogbonna AC, Luciano Rogerio Braatz de Andrade, Rabbi IY, et al. Large-scale genome-wide association study, using historical data, identifies conserved genetic architecture of cyanogenic glucoside content in cassava(Manihot esculenta Crantz)root[J]. Plant J, 2021, 105(3): 754-770.
doi: 10.1111/tpj.v105.3 URL |
[19] |
Kayondo SI, Carpio DPD, Lozano R, et al. Genome-wide association mapping and genomic prediction for CBSD resistance in Manihot esculenta[J]. Sci Rep, 2018, 8(1): 1549.
doi: 10.1038/s41598-018-19696-1 pmid: 29367617 |
[20] |
Kawuki RS, Kaweesi T, Esuma W, et al. Eleven years of breeding efforts to combat cassava brown streak disease[J]. Breed Sci, 2016, 66(4): 560-571.
doi: 10.1270/jsbbs.16005 URL |
[21] |
Ezenwaka L, Carpio DPD, Jannink J, et al. Genome-wide association study of resistance to cassava green mite pest and related traits in cassava[J]. Crop Sci, 2018, 58(5): 1907-1918.
doi: 10.2135/cropsci2018.01.0024 URL |
[22] |
Chavarriaga-Aguirre P, Brand A, Medina A, et al. The potential of using biotechnology to improve cassava: a review[J]. In Vitro Cell Dev Biol-Plant, 2016, 52: 461-478.
doi: 10.1007/s11627-016-9776-3 URL |
[23] | FAO. Food outlook-biannual report on global food markets[J]. Rome. Licence: CC BY-NC-SA 3.0 IGO. 2019. |
[24] | 张鹏, 杨俊, 周文智, 等. 能源木薯高淀粉抗逆分子育种研究进展与展望[J]. 生命科学, 2014, 26(5): 465-473. |
Zhang P, Yang J, Zhou WZ, et al. Progress and perspective of cassava molecular breeding for bioenergy development[J]. Chinese Bull Life Sci, 2014, 26(5): 465-473. | |
[25] |
Yan W, Wu XY, Li YN, et al. Cell wall invertase 3 affects cassava productivity via regulating sugar allocation from source to sink[J]. Front Plant Sci, 2019, 10: 541.
doi: 10.3389/fpls.2019.00541 pmid: 31114601 |
[26] |
Utsumi Y, Utsumi C, Tanaka M, et al. Suppressed expression of starch branching enzyme 1 and 2 increases resistant starch and amylose content and modifies amylopectin structure in cassava[J]. Plant Mol Biol, 2022, 108: 413-427.
doi: 10.1007/s11103-021-01209-w |
[27] |
Aiemnaka P, Wongkaew A, Chanthaworn J, et al. Molecular characterization of a spontaneous waxy starch mutation in cassava[J]. Crop Sci, 2007, 52(5): 2121-2130.
doi: 10.2135/cropsci2012.01.0058 URL |
[28] |
Xu J, Duan XG, Yang J, et al. Enhanced reactive oxygen species scavenging by over-production of superoxide dismutase and catalase delays post-harvest physiological deterioration of cassava storage roots[J]. Plant Physiol, 2013, 161(3): 1517-1528.
doi: 10.1104/pp.112.212803 URL |
[29] |
Narayanan NN, Ihemere U, Ellery C, et al. Overexpression of hydroxynitrile lyase in cassava roots elevates protein and free amino acids while reducing residual cyanogen levels[J]. PLoS One, 2011, 6: e21996.
doi: 10.1371/journal.pone.0021996 URL |
[30] |
Yang YL, Liao WB, Yu XL, et al. Overexpression of MeDREB1D confers tolerance to both drought and cold stresses in transgenic Arabidopsis[J]. Acta Physiol Plant, 2016, 38: 243.
doi: 10.1007/s11738-016-2258-8 URL |
[31] |
An D, Ma QX, Wang HX, et al. Cassava C-repeat binding factor 1 gene responds to low temperature and enhances cold tolerance when overexpressed in Arabidopsis and cassava[J]. Plant Mol Biol, 2017, 94(1-2): 109-124.
doi: 10.1007/s11103-017-0596-6 URL |
[32] |
Yan Y, Wang P, Lu Y, et al. MeRAV5 promotes drought stress resistance in cassava by modulating hydrogen peroxide and lignin accumulation[J]. Plant J, 2021, 107(3): 847-860.
doi: 10.1111/tpj.v107.3 URL |
[33] | 杨仪伶. 木薯CC-type MeGRXs及MeDREB1D基因抗旱功能研究[D]. 武汉: 华中农业大学, 2016. |
Yang YL. Funtional analysis of CC-type MeGRXs and MeDREB1D genes from cassava in drought tolerance[D]. Wuhan: Huazhong Agricultural University, 2016. | |
[34] |
Ruan MB, Yang YL, Li KM, et al. Identification and characterization of drought-responsive CC-type glutaredoxins from cassava cultivars reveals their involvement in ABA signaling[J]. BMC Plant Biol, 2018, 18(1): 329.
doi: 10.1186/s12870-018-1528-6 |
[35] |
Guo X, Yu XL, Xu ZY, et al. CC-type glutaredoxin, MeGRXC3, associates with catalases and negatively regulates drought tolerance in cassava(Manihot esculenta Crantz)[J]. Plant Biotechnol J, 2022, 20(12): 2389-2405.
doi: 10.1111/pbi.v20.12 URL |
[36] |
Xu J, Duan XG, Yang J, et al. Coupled expression of Cu/Zn superoxide dismutase and catalase in cassava improves tolerance against cold and drought stresses[J]. Plant Signal Behav, 2013, 8(6): e24525.
doi: 10.4161/psb.24525 URL |
[37] |
Ruan MB, Guo XG, Wang B, et al. Genome-wide characterization and expression analysis enables identification of abiotic stress-responsive MYB transcription factors in cassava(Manihot esculenta)[J]. J Exp Bot, 2017, 68(13): 3657-3672.
doi: 10.1093/jxb/erx202 URL |
[38] |
Yan Y, Liu W, Wei YX, et al. MeCIPK23 interacts with Whirly transcription factors to activate abscisic acid biosynthesis and regulate drought resistance in cassava[J]. Plant Biotechnol J, 2020, 18(7): 1504-1506.
doi: 10.1111/pbi.13321 pmid: 31858710 |
[39] |
Wei YX, Liu W, Hu W, et al. The chaperone MeHSP90 recruits MeWRKY20 and MeCatalase1 to regulate drought stress resistance in cassava[J]. New Phytol, 2020, 226(2): 476-491.
doi: 10.1111/nph.16346 pmid: 31782811 |
[40] |
Li SX, Cheng ZH, Li ZB, et al. MeSPL9 attenuates drought resistance by regulating JA signaling and protectant metabolite contents in cassava[J]. Theor Appl Genet, 2021, 135(3): 817-832.
doi: 10.1007/s00122-021-04000-z |
[41] |
肖亮, 鲍茹雪, 曹升, 等. 木薯枯草杆菌蛋白酶家族鉴定及MeSDD1的功能分析[J]. 核农学报, 2022, 36(7): 1308-1317.
doi: 10.11869/j.issn.100-8551.2022.07.1308 |
Xiao L, Bao RX, Cao S, et al. Identification of cassava SBT gene family and function analysis of MeSDD1[J]. J Nucl Agr Sci, 2022, 36(7): 1308-1317. | |
[42] |
Weng X, Zhou XX, Xie SQ, et al. Identification of cassava alternative splicing-related genes and functional characterization of MeSCL30 involvement in drought stress[J]. Plant Physiol Biochem, 2021, 160: 130-142.
doi: 10.1016/j.plaphy.2021.01.016 URL |
[43] |
Chen YH, Weng X, Zhou XX, et al. Overexpression of cassava RSZ21b enhances drought tolerance in Arabidopsis[J]. J Plant Physiol, 2022, 268: 153574.
doi: 10.1016/j.jplph.2021.153574 URL |
[44] |
Dong SM, Xiao L, Li ZB, et al. A novel long non-coding RNA, DIR, increases drought tolerance in cassava by modifying stress-related gene expression[J]. J Integr Agr, 2022, 21(9): 2588-2602.
doi: 10.1016/j.jia.2022.07.022 URL |
[45] |
Zhang P, Wang WQ, Zhang GL, et al. Senescence inducible expression of isopentenyl transferase extends leaf life, increases drought stress resistance and alters cytokinin metabolism in cassava[J]. J Integr Plant Biol, 2010, 52(7): 653-69.
doi: 10.1111/j.1744-7909.2010.00956.x |
[46] |
Wang B, Li S, Zou L, et al. Natural variation MeMYB108 associated with tolerance to stress-induced leaf abscission linked to enhanced protection against reactive oxygen species in cassava[J]. Plant Cell Rep, 2022, 41(7): 1573-1587.
doi: 10.1007/s00299-022-02879-6 |
[47] |
Xu J, Yang J, Duan XG, et al. Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava(Manihot esculenta Crantz)[J]. BMC Plant Biol, 2014, 14(1): 208.
doi: 10.1186/s12870-014-0208-4 URL |
[48] |
Cheng ZH, Lei N, Li SX, et al. The regulatory effects of MeTCP4 on cold stress tolerance in Arabidopsis thaliana: A transcriptome analysis[J]. Plant Physiol Biochem, 2019, 138: 9-16.
doi: 10.1016/j.plaphy.2019.02.015 URL |
[49] |
Li SX, Cheng ZH, Dong SM, et al. Global identification of full-length cassava lncRNAs unveils the role of cold-responsive intergenic lncRNA 1 in cold stress response[J]. Plant Cell Environ, 2022, 45(2): 412-426.
doi: 10.1111/pce.v45.2 URL |
[50] |
Liang QY, Dong MM, Gu MH, et al. MeNPF4.5 improves cassava nitrogene use efficiency and yield by regulating nitrogen uptake and allocation[J]. Front Plant Sci, 2022, 13: 866855.
doi: 10.3389/fpls.2022.866855 URL |
[51] |
Wei YX, Liu GY, Bai YJ, et al. Two transcriptional activators of N-acetylserotonin O-methyltransferase 2 and melatonin biosynthesis in cassava[J]. J Exp Bot, 2017, 68(17): 4997-5006.
doi: 10.1093/jxb/erx305 pmid: 28992113 |
[52] |
Wei YX, Liu GY, Chang YL, et al. Heat shock transcription factor 3 regulates plant immune response through modulation of salicylic acid accumulation and signalling in cassava[J]. Mol Plant Pathol, 2018, 19(10): 2209-2220.
doi: 10.1111/mpp.12691 pmid: 29660238 |
[53] |
Li XL, Liu W, Li B, et al. Identification and functional analysis of cassava DELLA proteins in plant disease resistance against cassava bacterial blight[J]. Plant Physiol Biochem, 2018, 124: 70-76.
doi: 10.1016/j.plaphy.2017.12.022 URL |
[54] |
Zhang H, Ye Z, Liu ZX, et al. The cassava NBS-LRR genes confer resistance to cassava bacterial blight[J]. Front Plant Sci, 2022, 13: 790140.
doi: 10.3389/fpls.2022.790140 URL |
[55] |
Zhu SS, Fan RC, Xiong X, et al. MeWRKY IIas, subfamily genes of WRKY transcription factors from cassava, play an important role in disease resistance[J]. Front Plant Sci, 2022, 13: 890555.
doi: 10.3389/fpls.2022.890555 URL |
[56] |
Yan Y, Wang P, He CZ, et al. MeWRKY20 and its interacting and activating autophagy-related protein 8(MeATG8)regulate plant disease resistance in cassava[J]. Biochem Bioph Res Co, 2017, 494(1-2): 20-26.
doi: S0006-291X(17)32070-3 pmid: 29056507 |
[57] |
Wei YX, Zeng HQ, Liu W, et al. Autophagy-related genes serve as heat shock protein 90 co-chaperones in disease resistance against cassava bacterial blight[J]. Plant J, 2021, 107(3): 925-937.
doi: 10.1111/tpj.v107.3 URL |
[58] |
Zhao HP, Ge ZY, Zhou MM, et al. Histone acetyltransferase HAM1 interacts with molecular chaperone DNAJA2 and confers immune responses through salicylic acid biosynthetic genes in cassava[J]. Plant Cell Environ, 2022. doi.org/10.1111/pce.14501.
doi: doi.org/10.1111/pce.14501 |
[59] |
Chen Q, Liang X, Wu CL, et al. Overexpression of leucoanthocyanidin reductase or anthocyanidin reductase elevates tannins content and confers cassava resistance to two-spotted spider mite[J]. Front Plant Sci, 2022, 13: 994866.
doi: 10.3389/fpls.2022.994866 URL |
[60] |
Noh SA, Lee HS, Huh EJ, et al. SRD1 is involved in the auxin-mediated initial thickening growth of storage root by enhancing proliferation of metaxylem and cambium cells in sweetpotato(Ipomoea batatas)[J]. J Exp Bot, 2010, 61(5): 1337-49.
doi: 10.1093/jxb/erp399 URL |
[61] |
Noh SA, Lee HS, Kim YS, et al. Down-regulation of the IbEXP1 gene enhanced storage root development in sweetpotato[J]. J Exp Bot, 2013, 64(1): 129-42.
doi: 10.1093/jxb/ers236 URL |
[62] |
Luo S, Ma QX, Zhong YY, et al. Editing of the starch branching enzyme gene SBE2 generates high-amylose storage roots in cassava[J]. Plant Mol Biol, 2022, 108:429-442.
doi: 10.1007/s11103-021-01215-y |
[63] |
Koehorst-van Putten HJJ, Sudarmonowati E, Herman M, et al. Field testing and exploitation of genetically modified cassava with low-amylose or amylose-free starch in Indonesia[J]. Transgenic Res, 2012, 21(1): 39-50.
doi: 10.1007/s11248-011-9507-9 pmid: 21465166 |
[64] |
Zhao SS, Dufour D, Sánchez T, et al. Development of waxy cassava with different biological and physico-chemical characteristics of starches for industrial applications[J]. Biotechnol Bioeng, 2011, 108(8): 1925-1935.
doi: 10.1002/bit.23120 URL |
[65] |
Koehorst-van Putten HJJ, Wolters AM, Pereira-Bertram IM, et al. Cloning and characterization of a tuberous root specific promoter from cassava(Manihot esculenta Crantz)[J]. Planta, 2012, 236(6): 1955-65.
doi: 10.1007/s00425-012-1796-6 pmid: 23132522 |
[66] | 尚小红, 周慧文, 严华兵, 等. 木薯块根肉质颜色基因CAPS标记的开发与验证[J]. 分子植物育种, 2018, 16(3): 873-879. |
Shang XH, Zhou HW, Yan HB, et al. Development and verification of a CAPS marker for color gene in cassava tuber[J]. Mol Plant Breed, 2018, 16(3): 873-879. | |
[67] | 朴朴森, 尚小红, 许丰收, 等. 基于PSY2基因单碱基突变的薯肉颜色分子标记开发与利用[J]. 核农学报, 2022, 36(1): 0034-0041. |
Phyu PT, Shang XH, Xu FS, et al. Development and utilization of cassava root color marker basing on a single nucleotide mutation in PSY2 gene[J]. J Nuc Agr Sci, 2022, 36(1): 0034-0041. | |
[68] |
Bechof A, Tomlins K, Fliedel G, et al. Cassava traits and end-user preference: relating traits to consumer liking, sensory perception, and genetics[J]. Crit Rev Food Sci Nutr, 2018, 58(4): 547-567.
doi: 10.1080/10408398.2016.1202888 pmid: 27494196 |
[69] |
Kizito EB, Ann-Christin R-W, Thomas E, et al. Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava(Manihot esculenta Crantz)roots[J]. Hereditas, 2007, 144(4): 129-136.
doi: 10.1111/j.2007.0018-0661.01975.x URL |
[70] |
Ceballos H, Morante N, Sánchez T, et al. Rapid cycling recurrent selection for increased carotenoids content in cassava roots[J]. Crop Sci, 2013, 53: 2342-2351.
doi: 10.2135/cropsci2013.02.0123 URL |
[71] | Ceballos H, Davrieux F, Talsma EF, et al. Carotenoids in cassava roots[M]. In: Carotenoids. InTech, Rijeka. 2017. |
[72] |
Njoku DN, Gracen VE, Ofei SK, et al. Parent-ofspring regression analysis for total carotenoids and some agronomic traits in cassava[J]. Euphytica, 2015, 206: 657-666.
doi: 10.1007/s10681-015-1482-4 URL |
[73] |
Okeke UG, Akdemir D, Rabbi I, et al. Regional heritability mapping provides insights into dry matter content in African white and yellow cassava populations[J]. Plant Genome, 2018, 11(1): 170050.
doi: 10.3835/plantgenome2017.06.0050 URL |
[74] |
Reilly K, Bernal D, Cortes DF, et al. Towards identifying the full set of genes expressed during cassava post-harvest physiological deterioration[J]. Plant Mol Biol, 2007, 64(1-2): 187-203.
pmid: 17318318 |
[75] |
Owiti J, Grossmann J, Gehrig P, et al. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration[J]. Plant J, 2011, 67(1): 145-156.
doi: 10.1111/tpj.2011.67.issue-1 URL |
[76] | Andersen MD, Busk PK, Svendsen I, et al. Cytochromes P-450 from cassava(Manihot esculenta Crantz)catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin[J]. Plant Physiol, 2000, 275(3): 1966-1975. |
[77] |
Jørgensen K, Bak S, Busk PK, et al. Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology[J]. Plant Physiol, 2005, 139(1): 363-374.
pmid: 16126856 |
[78] |
Kannangara R, Motawia MS, Hansen NK, et al. Characterization and expression profile of two UDP-glucosyltransferases, UGT85K4 and UGT85K5, catalyzing the last step in cyanogenic glucoside biosynthesis in cassava[J]. Plant J, 2011, 68(2): 287-301.
doi: 10.1111/j.1365-313X.2011.04695.x URL |
[79] |
Whankaew S, Poopear K, Kanjanawattanawong S, et al. A genome scan for quantitative trait loci affecting cyanogenic potential of cassava root in an outbred population[J]. BMC Genomics, 2011, 12: 266.
doi: 10.1186/1471-2164-12-266 pmid: 21609492 |
[80] | Santisopasri V, Kurotjanawong K, Chotineeranat S, et al. Impact of water stress on yield and quality of cassava starch[J]. Ind Crops Prod, 2001, 13(2): 129. |
[81] |
Vandegeer R, Miller RE, Bain M, et al. Drought adversely affects tuber development and nutritional quality of the staple crop cassava(Manihot esculenta Crantz)[J]. Funct Plant Biol, 2013, 40(2): 195-200.
doi: 10.1071/FP12179 pmid: 32481099 |
[82] |
Ibrahim OR, Opabode JT. Pre-treatment of two contrasting water-stressed genotypes of cassava(Manihot esculenta Crantz)with ascorbic acid. I. Growth, physiological and antioxidant responses[J]. Physiol Mol Biol Plants, 2019, 25: 1385-1394.
doi: 10.1007/s12298-019-00709-w |
[83] | Okogbenin E, Setter TL, Ferguson M, et al. Phenotypic approaches to drought in cassava: review[J]. Front Physiol, 2013, 4(93): 93. |
[84] |
Alves AA, Setter TL. Response of cassava to water deficit: leaf area growth and abscisic acid[J]. Crop Sci, 2000, 40(1): 131-137.
doi: 10.2135/cropsci2000.401131x URL |
[85] | Alves AA, Setter TL. Response of cassava leaf area expansion to water deficit: cell proliferation, cell expansion and delayed development[J]. Ann Bot, 2004, 94(4): 605613. |
[86] |
Devi B, Kumar MN, Chutia M, et al. Abiotic and biotic stress challenges of cassava in changing climate and strategies to overcome: A review[J]. Sci Hortic-amsterdam, 2022, 305: 111432.
doi: 10.1016/j.scienta.2022.111432 URL |
[87] |
Ziemann M, Bhave M, Zachgo S. Origin and diversfication of land plant CC-type glutaredoxins[J]. Genome Biol Evol, 2009, 1: 265-77.
doi: 10.1093/gbe/evp025 pmid: 20333196 |
[88] |
Meyer Y, Belin C, Delorme-Hinoux V, et al. Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, cross talks, and functional significance[J]. Antioxid Redox Signal, 2012, 17(8): 1124-1160.
doi: 10.1089/ars.2011.4327 URL |
[89] |
An D, Yang J, Zhang P. Transcriptome profiling of low temperature-treated cassava apical shoots showed dynamic responses of tropical plant to cold stress[J]. BMC Genomics, 2012, 13: 64.
doi: 10.1186/1471-2164-13-64 pmid: 22321773 |
[90] |
Lassaletta L, Billen G, Grizzetti B, et al. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland[J]. Environ Res Lett, 2014, 9(10): 105011.
doi: 10.1088/1748-9326/9/10/105011 URL |
[91] |
Li H, Hu B, Chu CC. Nitrogen use efficiency in crops: lessons from Arabidopsis and rice[J]. J Exp Bot, 2017, 68(10): 2477-2488.
doi: 10.1093/jxb/erx101 pmid: 28419301 |
[92] |
Kyriacou MC, Leskovar DI, Colla G, et al. Watermelon and melon fruit quality: the genotypic and agro-environmental factors implicated[J]. Sci Hortic-amsterdam, 2018, 234: 393-408.
doi: 10.1016/j.scienta.2018.01.032 URL |
[93] |
Gong ZZ, Xiong LM, Shi HZ, et al. Plant abiotic stress response and nutrient use efficiency[J]. Sci China Life Sci, 2020, 63(5): 635-674.
doi: 10.1007/s11427-020-1683-x pmid: 32246404 |
[94] |
Jenrich R, Trompetter I, Bak S, et al. Evolution of heteromeric nitrilase complexes in Poaceae with new functions in nitrile metabolism[J]. Proc Natl Acad Sci USA, 2007, 104(47): 18848-18853.
doi: 10.1073/pnas.0709315104 pmid: 18003897 |
[95] |
Wang Q, Nian JQ, Xie XZ, et al. Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice[J]. Nat Commun, 2018, 9: 735.
doi: 10.1038/s41467-017-02781-w |
[96] |
Liu KH, Liu MH, Lin ZW, et al. NIN-like protein 7 transcription factor is a plant nitrate sensor[J]. Science, 2022, 377(6613): 1419-1425.
doi: 10.1126/science.add1104 URL |
[97] |
Liu YQ, Wang HR, Jiang ZM, et al. Genomic basis of geographical adaptation to soil nitrogen in rice[J]. Nature, 2021, 590: 600-605.
doi: 10.1038/s41586-020-03091-w |
[98] |
McCallum EJ, Anjanappa RB, Gruissem W. Tackling agriculturally relevant diseases in the staple crop cassava(Manihot esculenta)[J]. Curr Opin Plant Biol, 2017, 38: 50-58.
doi: S1369-5266(17)30033-X pmid: 28477536 |
[99] |
Abarshi MM, Mohammed IU, Jeremiah SC, et al. Multiplex RT-PCR assays for the simultaneous detection of both RNA and DNA viruses infecting cassava and the common occurrence of mixed infections by two cassava brown streak viruses in East Africa[J]. J Virol Methods, 2012, 179(1): 176-84.
doi: 10.1016/j.jviromet.2011.10.020 pmid: 22080852 |
[100] |
Legg JP, Jeremiah SC, Obiero HM, et al. Comparing the regional epidemiology of the cassava mosaic and cassava brown streak virus pandemics in Africa[J]. Virus Res, 2011, 159(2): 161-70.
doi: 10.1016/j.virusres.2011.04.018 pmid: 21549776 |
[101] |
Rwegasira GM, Momanyi G, Rey ME, et al. Widespread occurrence and diversity of cassava brown streak virus(Potyviridae: Ipomovirus)in Tanzania[J]. Phytopathology, 2011, 101(10): 1159-67.
doi: 10.1094/PHYTO-11-10-0297 pmid: 21916624 |
[102] | Mware B, Narla R, Amata R, et al. Efficiency of cassava brown streak virus transmission by two whitefly species in coastal Kenya[J]. J Gen Mol Virol, 2009, 1(4): 040-045. |
[103] |
Patil BL, Legg JP, Kanju E, et al. Cassava brown streak disease: A threat to food security in Africa[J]. J Gen Virol, 2015, 96(Pt_5): 956-968.
doi: 10.1099/jgv.0.000014 URL |
[104] |
Tize I, Fotso AK, Nukenine EN, et al. New cassava germplasm for food and nutritional security in Central Africa[J]. Sci Rep, 2021, 11(1): 1-12.
doi: 10.1038/s41598-020-79139-8 |
[105] |
Akano AO, Dixon AGO, Mba C, et al. Genetic mapping of a dominant gene conferring resistance to cassava mosaic disease[J]. Theor Appl Genet, 2002, 105(4): 521-525.
doi: 10.1007/s00122-002-0891-7 pmid: 12582500 |
[106] |
Okogbenin E, Porto M, Eges C. Marker-assisted introgression of resistance to cassava mosaic disease into Latin American germplasm for the genetic improvement of cassava in Africa[J]. Crop Sci, 2007, 47(5): 1895-1904.
doi: 10.2135/cropsci2006.10.0688 URL |
[107] | Mohan C, Shanmugasundaram P, Maheswaran M, et al. Mapping new genetic markers associated with CMD resistance in cassava(Manihot esculenta Crantz)using simple sequence repeat markers[J]. J Agr Sci, 2013, 5(5): 57-65. |
[108] |
Rabbi IY, Hamblin MT, Gedil M, et al. Genetic mapping using genotyping-by-sequencing in the clonally propagated cassava[J]. Crop Sci, 2014, 54(4): 1384-1396.
doi: 10.2135/cropsci2013.07.0482 URL |
[109] |
Rabbi IY, Hamblin MT, Kumar PL, et al. High-resolution mapping of resistance to cassava mosaic geminiviruses in cassava using genotyping-by-sequencing and its implications for breeding[J]. Virus Res, 2014, 186: 87-96.
doi: 10.1016/j.virusres.2013.12.028 pmid: 24389096 |
[110] |
Wolfe MD, Rabbi IY, Egesi C, et al. Genome-wide association and prediction reveals genetic architecture of cassava mosaic disease resistance and prospects for rapid genetic improvement[J]. Plant Genome, 2016, 9(2). DOI: 10.3835/plantgenome2015.11.0118.
doi: 10.3835/plantgenome2015.11.0118 |
[111] | Thuy CTL, Lopez-Laballe LAB, Vu NA, et al. Identifying new resistance to cassava mosaic disease and validating markers for the CMD2 locus[J]. Agric, 2021, 11(9): 829. |
[112] | Beyene G, Chauhan RD, Wagaba H, et al. Loss of CMD2-mediated resistance to cassava mosaic disease in plants regenerated through somatic embryogenesis[J]. Mol plantpathol, 2016, 17(7): 1095-1110. |
[113] |
Okogbenin E, Egesi CN, Olasanmi B, et al. Molecular marker analysis and validation of resistance to cassava mosaic disease in elite cassava genotypes in Nigeria[J]. Crop Sci, 2012, 52(6): 2576-2586.
doi: 10.2135/cropsci2011.11.0586 URL |
[114] |
Graziosi I, Minato N, Alvarez E, et al. Emerging pests and diseases of South-east Asian cassava: a comprehensive evaluation of geographic priorities, management options and research needs[J]. Pest Manag Sci, 2016, 72: 1071-1089.
doi: 10.1002/ps.4250 pmid: 26853194 |
[115] |
Alleyne AT, Gilkes JM, Briggs G. Early detection of super-elongation disease in Manihot esculenta Crantz(cassava)using molecular markers for gibberellic acid biosynthesis[J]. Eur J Plant Pathol, 2015, 141: 27-34.
doi: 10.1007/s10658-014-0517-3 URL |
[116] |
Bandyopadhyay R, Mwangi M, Aigbe SO, et al. Fusarium species from the cassava root rot complex in West Africa[J]. Phytopathol, 2006, 96(6): 673-676.
doi: 10.1094/PHYTO-96-0673 URL |
[117] |
Barros JA, Medeiros EV, Notaro KA, et al. Different cover promote sandy soil suppressive-ness to root rot disease of cassava caused by Fusarium solani[J]. Afr J Microbiol Res, 2014, 8(10): 967-973.
doi: 10.5897/AJMR URL |
[118] |
Brito AC, Oliveira SAS, Oliveira EJ. Genome-wide association study for resistance to cassava root rot[J]. J Agr Sci, 2017, 155(9): 1424-1441.
doi: 10.1017/S0021859617000612 URL |
[119] |
Chen Q, Liang X, Wu CL, et al. Density threshold-based acaricide application for the two-spotted spider mite Tetranychus urticae on cassava: from laboratory to the field[J]. Pest Manag Sci, 2019, 75(10): 2634-2641.
doi: 10.1002/ps.5366 pmid: 30706630 |
[120] | Yaninek S, Hanna R. Cassava green mite in Africa: A unique example of successful classical biological control of a mite pest on a continental scale[M]// Neuenschwander P, et al. Biological control in IPM systems in Africa. CABI, Wallingford, UK: CABI Publishing, 2003: 61-76. |
[121] |
Ceballos H, Sánchez T, Denyer K, et al. Induction and identification of a small-granule, high-amylose mutant in cassava(Manihot esculenta Crantz)[J]. J Agric Food Chem, 2008, 56(16): 7215-7222.
doi: 10.1021/jf800603p URL |
[122] |
Ceballos H, Sánchez T, Morante M, et al. Discovery of an amylose-free starch mutant in cassava(Manihot esculenta Crantz)[J]. J Agr Food Chem, 2007, 55(18): 7469-7476.
pmid: 17696358 |
[123] |
Rojas MC, Pérez JC, Ceballos H, et al. Analysis of inbreeding depression in eight S1 cassava families[J]. Crop Sci, 2009, 49(2): 543-548.
doi: 10.2135/cropsci2008.07.0419 URL |
[124] | Kawuki RS, Nuwamanya E, Labuschagne MT, et al. Segregation of selected agronomic traits in six S1 cassava families[J]. J Plant Breed Crop Sci, 2011, 3(8): 154-160. |
[125] |
Freitas J, Santos V, Oliveira. Inbreeding depression in cassava for productive traits[J]. Euphytica, 2016, 209: 137-145.
doi: 10.1007/s10681-016-1649-7 URL |
[126] | Tadeo K, Vincent K, Yona B, et al. Inbreeding enhances field resistance to cassava brown streak viruses[J]. J Plant Breed Crop Sci, 2016, 88(8): 138-149. |
[127] | 尚小红, 谢向誉, 曹升, 等. 木薯‘新选048’自交系群体表型鉴定评价及遗传多样性分析[J]. 植物生理学报, 2019, 55(9): 1277-1290. |
Shang XH, Xie XY, Cao S, et al. Phenotypic identification and genetic diversity of cassava cultivar ‘Xinxuan 048’ inbred lines[J]. Plant Physiol J, 2019, 55(9): 1277-1290. | |
[128] |
Zhang CZ, Wang P, Tang D, et al. The genetic basis of inbreeding depression in potato[J]. Nat Genet, 2019, 51(3): 374-378.
doi: 10.1038/s41588-018-0319-1 pmid: 30643248 |
[129] |
Zhang CZ, Yang ZM, Tang D, et al. Genome design of hybrid potato[J]. Cell, 2021, 184(15): 3873-3883.
doi: 10.1016/j.cell.2021.06.006 pmid: 34171306 |
[1] | 姚晓文, 梁晓, 陈青, 伍春玲, 刘迎, 刘小强, 税军, 乔阳, 毛奕茗, 陈银华, 张银东. 二斑叶螨抗性木薯木质素合成途径基因表达特性研究[J]. 生物技术通报, 2023, 39(2): 161-171. |
[2] | 于晓玲, 李文彬, 李智博, 阮孟斌. 木薯MeMYC2.2基因耐低温功能研究[J]. 生物技术通报, 2023, 39(1): 224-231. |
[3] | 辛建攀, 李燕, 赵楚, 田如男. 镉胁迫下梭鱼草叶片转录组测序及苯丙烷代谢途径相关基因挖掘[J]. 生物技术通报, 2022, 38(6): 198-210. |
[4] | 韩志玲, 陈青, 梁晓, 伍春玲, 刘迎, 伍牧锋, 徐雪莲. 二斑叶螨取食抗、感螨木薯品种对茉莉酸信号途径基因表达的影响[J]. 生物技术通报, 2022, 38(6): 211-220. |
[5] | 杨亚杰, 李昱樱, 申状状, 陈天, 荣二花, 吴玉香. 草棉同源多倍体后代筛选及性状鉴定[J]. 生物技术通报, 2022, 38(5): 64-73. |
[6] | 邹良平, 郭鑫, 起登凤, 翟敏, 李壮, 赵平娟, 彭明, 牛兴奎. 低氮胁迫诱导木薯幼苗花青素积累及其基因表达[J]. 生物技术通报, 2022, 38(2): 75-82. |
[7] | 孔德真, 聂迎彬, 徐红军, 崔凤娟, 穆培源, 田笑明. 三系杂交小麦混播制种对杂交种产量、纯度及F1产量优势的影响[J]. 生物技术通报, 2022, 38(10): 132-139. |
[8] | 曹修凯, 王珊, 葛玲, 张卫博, 孙伟. 染色体外环形DNA研究进展及其在畜禽育种中的应用[J]. 生物技术通报, 2022, 38(1): 247-257. |
[9] | 田李, 李俊娇, 戴小枫, 张丹丹, 陈捷胤. 从功能基因到生物学性状:大丽轮枝菌致病性形成的分子基础[J]. 生物技术通报, 2022, 38(1): 51-69. |
[10] | 高鹏飞, 席飞虎, 张泽宇, 胡凯强, 陈凯, 魏文桃, 丁家治, 顾连峰. 植物VIGS技术及其在林业科学中的研究进展[J]. 生物技术通报, 2021, 37(5): 141-153. |
[11] | 孙平勇, 张武汉, 舒服, 何强, 张莉, 彭志荣, 邓华凤. 香稻品种OsBADH2突变位点分析及其功能标记的开发[J]. 生物技术通报, 2021, 37(4): 1-7. |
[12] | 王衍莉, 杨义明, 范书田, 赵滢, 许培磊, 路文鹏, 李昌禹. 基于SSR分子标记的73份山葡萄及杂交后代的遗传多样性分析[J]. 生物技术通报, 2021, 37(1): 189-197. |
[13] | 陈一丹, 张昱, 杨洁, 张勤, 姜力. 基于转录组测序的奶牛产奶性状重要功能基因挖掘[J]. 生物技术通报, 2020, 36(9): 244-252. |
[14] | 张海淼, 李洋, 刘海峰, 孔令广, 丁新华. 水稻重要农艺性状调控基因及其育种利用研究进展[J]. 生物技术通报, 2020, 36(12): 155-169. |
[15] | 赵国龙, 林春晶, 金东淳, 张春宝. 主要农作物细胞质雄性不育系育性恢复基因研究进展[J]. 生物技术通报, 2020, 36(1): 116-125. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||