[1] |
Allan AC, Hellens RP, Laing WA. MYB transcription factors that colour our fruit[J]. Trends Plant Sci, 2008, 13(3):99-102.
doi: 10.1016/j.tplants.2007.11.012
URL
|
[2] |
Tian XZ, Xin HL, Paengkoum P, et al. Effects of anthocyanin-rich purple corn(Zea mays L.)stover silage on nutrient utilization, rumen fermentation, plasma antioxidant capacity, and mammary gland gene expression in dairy goats1[J]. J Animal Sci, 2019, 97(3):1384-1397.
doi: 10.1093/jas/sky477
URL
|
[3] |
Saigo T, Wang T, Watanabe M, et al. Diversity of anthocyanin and proanthocyanin biosynjournal in land plants[J]. CurrOpin Plant Biol, 2020, 55:93-99.
|
[4] |
Rubin G, Tohge T, Matsuda F, et al. Members of the LBD family of transcription factors repress anthocyanin synjournal and affect additional nitrogen responses in Arabidopsis[J]. Plant Cell, 2009, 21(11):3567-3584.
doi: 10.1105/tpc.109.067041
URL
|
[5] |
Zhou LL, Shi MZ, Xie DY. Regulation of anthocyanin biosynjournal by nitrogen in TTG1-GL3/TT8-PAP1-programmed red cells of Arabidopsis thaliana[J]. Planta, 2012, 236(3):825-837.
doi: 10.1007/s00425-012-1674-2
URL
|
[6] |
Wang J, Wang Y, Yang J, et al. Arabidopsis ROOT HAIR DEFECTIVE3 is involved in nitrogen starvation-induced anthocyanin accumulation[J]. J Integr Plant Biol, 2015, 57(8):708-721.
doi: 10.1111/jipb.v57.8
URL
|
[7] |
Yamuangmorn S, Dell B, Rerkasem B, et al. Applying nitrogen fertilizer increased anthocyanin in vegetative shoots but not in grain of purple rice genotypes[J]. J Sci Food Agric, 2018, 98(12):4527-4532.
doi: 10.1002/jsfa.2018.98.issue-12
URL
|
[8] |
Lillo C, Lea US, Ruoff P. Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway[J]. Plant Cell Environ, 2008, 31(5):587-601.
doi: 10.1111/j.1365-3040.2007.01748.x
URL
|
[9] |
Nemie-Feyissa D, Olafsdottir SM, Heidari B, et al. Nitrogen depletion and small R3-MYB transcription factors affecting anthocyanin accumulation in Arabidopsis leaves[J]. Phytochemistry, 2014, 98:34-40.
doi: 10.1016/j.phytochem.2013.12.006
pmid: 24388610
|
[10] |
Sun X, Jia X, Huo LQ, et al. MdATG18a overexpression improves tolerance to nitrogen deficiency and regulates anthocyanin accumulation through increased autophagy in transgenic apple[J]. Plant Cell Environ, 2018, 41(2):469-480.
doi: 10.1111/pce.v41.2
URL
|
[11] |
Bao Do C, Cormier F. Effects of low nitrate and high sugar concentrations on anthocyanin content and composition of grape(Vitis vinifera L.)cell suspension[J]. Plant Cell Rep, 1991, 9(9):500-504.
doi: 10.1007/BF00232105
pmid: 24213789
|
[12] |
Becker C, Urlić B, JukićŠpika M, et al. Nitrogen limited red and green leaf lettuce accumulate flavonoid glycosides, caffeic acid derivatives, and sucrose while losing chlorophylls, Β-carotene and xanthophylls[J]. PLoS One, 2015, 10(11):e0142867.
doi: 10.1371/journal.pone.0142867
URL
|
[13] |
Huang ZG, Liang MT, Peng JZ, et al. Exogenous ammonium inhibits petal pigmentation and expansion in Gerberahybrida[J]. Physiol Plant, 2008, 133(2):254-265.
doi: 10.1111/j.1399-3054.2008.01071.x
URL
|
[14] |
Ravazzolo L, Trevisan S, Forestan C, et al. Nitrate and ammonium affect the overall maize response to nitrogen availability by triggering specific and common transcriptional signatures in roots[J]. Int J Mol Sci, 2020, 21(2):686.
doi: 10.3390/ijms21020686
URL
|
[15] |
Wang XF, An JP, Liu X, et al. The nitrate-responsive protein MdBT2 regulates anthocyanin biosynjournal by interacting with the MdMYB1 transcription factor[J]. Plant Physiol, 2018, 178(2):890-906.
doi: 10.1104/pp.18.00244
URL
|
[16] |
Truong HA, Lee WJ, Jeong CY, et al. Enhanced anthocyanin accumulation confers increased growth performance in plants under low nitrate and high salt stress conditions owing to active modulation of nitrate metabolism[J]. J Plant Physiol, 2018, 231:41-48.
doi: 10.1016/j.jplph.2018.08.015
URL
|
[17] |
Drunkler NL, Leite RS, Mandarino JMG, et al. Cassava starch as a stabilizer of soy-based beverages[J]. Food Sci Technol Int, 2012, 18(5):489-499.
doi: 10.1177/1082013211433072
pmid: 23144242
|
[18] |
Li P, Zhu MJ. A consolidated bio-processing of ethanol from cassava pulp accompanied by hydrogen production[J]. BioresourTechnol, 2011, 102(22):10471-10479.
doi: 10.1016/j.biortech.2011.08.134
URL
|
[19] |
Siritunga D, Sayre R. Engineering cyanogen synjournal and turnover in cassava(Manihot esculenta)[J]. Plant Mol Biol, 2004, 56(4):661-669.
pmid: 15630626
|
[20] |
Tian QG, Konczak I, Schwartz SJ. Probing anthocyanin profiles in purple sweet potato cell line(IpomoeabatatasL. Cv. ayamurasaki)by high-performance liquid chromatography and electrospray ionization tandem mass spectrometry[J]. J Agric Food Chem, 2005, 53(16):6503-6509.
doi: 10.1021/jf050671m
URL
|
[21] |
Wang H, Yang J, Zhang M, et al. Altered phenylpropanoid metabolism in the maize lc-expressed sweet potato(Ipomoea batatas)affects storage root development[J]. Sci Rep, 2016, 6:18645.
doi: 10.1038/srep18645
URL
|
[22] |
Kiba T, Inaba J, Kudo T, et al. Repression of nitrogen starvation responses by members of the Arabidopsis GARP-type transcription factor NIGT1/HRS1 subfamily[J]. Plant Cell, 2018, 30(4):925-945.
doi: 10.1105/tpc.17.00810
URL
|
[23] |
Bouguyon E, Perrine-Walker F, Pervent M, et al. Nitrate controls root development through posttranscriptional regulation of the NRT1. 1/NPF6. 3 transporter/sensor[J]. Plant Physiol, 2016, 172(2):1237-1248.
|
[24] |
Wang W, Hu B, Yuan DY, et al. Expression of the nitrate transporter gene OsNRT1. 1A/OsNPF6. 3 confers high yield and early maturation in rice[J]. Plant Cell, 2018, 30(3):638-651.
doi: 10.1105/tpc.17.00809
URL
|
[25] |
Lin-Wang K, Micheletti D, Palmer J, et al. High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex[J]. Plant Cell Environ, 2011, 34(7):1176-1190.
doi: 10.1111/j.1365-3040.2011.02316.x
URL
|
[26] |
Xie XB, Li S, Zhang RF, et al. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples[J]. Plant Cell Environ, 2012, 35(11):1884-1897.
doi: 10.1111/j.1365-3040.2012.02523.x
URL
|
[27] |
Fan XL, Xu ZB, Wang F, et al. Identification of colored wheat genotypes with suitable quality and yield traits in response to low nitrogen input[J]. PLoS One, 2020, 15(4):e0229535.
|
[28] |
Rowan DD, Cao M, Lin-Wang K, et al. Environmental regulation of leaf colour in red 35S:PAP1 Arabidopsis thaliana[J]. New Phytol, 2009, 182(1):102-115.
doi: 10.1111/nph.2009.182.issue-1
URL
|
[29] |
Scheible WR, Morcuende R, Czechowski T, et al. Genome-wide reprogramming of primary and secondary metabolism, protein synjournal, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen[J]. Plant Physiol, 2004, 136(1):2483-2499.
doi: 10.1104/pp.104.047019
URL
|