生物技术通报 ›› 2023, Vol. 39 ›› Issue (7): 91-104.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1265
收稿日期:
2022-10-12
出版日期:
2023-07-26
发布日期:
2023-08-17
通讯作者:
邓辅财,男,博士,副教授,研究方向:天然产物化学;E-mail: dfcrndfcrn@163.com作者简介:
游子娟,女,硕士,实验师,研究方向:天然产物化学;E-mail: youzijuan@163.com
基金资助:
YOU Zi-juan1(), CHEN Han-lin2, DENG Fu-cai2()
Received:
2022-10-12
Published:
2023-07-26
Online:
2023-08-17
摘要:
对水产加工过程中的鱼皮废弃物进行深加工处理,对其高附加值利用可以变废为宝,减少环境污染;鱼皮来源生物活性肽具有抗氧化、抗高血压、抗菌等功效。对鱼皮废弃物中生物活性肽的提取、分离鉴定方法及其功能活性进行深入探讨,可为食品、保健品、化妆品、医药品和化工产品等相关产品的开发提供理论基础。本文综述了酶法、化学法及发酵法提取鱼皮来源生物活性肽的优缺点,酶法相对于化学法应用广泛,获得的生物活性肽活性高,发酵法成本低,适用于批量生产。归纳总结了超滤、纳滤、凝胶过滤、离子交换和高效液相色谱及质谱联用等鱼皮生物活性肽的分离纯化和鉴定方法,多种分离、鉴定方法相结合来获取具有特定功能活性的鱼皮生物活性肽是首选,但获得高纯度及高活性的目标产物仍是当前亟待突破的难点。此外,分析了鱼皮生物活性肽在抗氧化性、血管紧张素转换酶(angiotensin converting enzyme, ACE)抑制活性、抗菌性及其他生物活性的研究现状,归纳了功能活性与肽的分子量大小、肽序列结构及位置的构效关系。最后展望了生物活性肽在功能活性研发方面的不足之处及进一步研究的方向,以期可为鱼类加工业打造高值化利用功能性产品提供参考。
游子娟, 陈汉林, 邓辅财. 鱼皮生物活性肽的提取及功能活性研究进展[J]. 生物技术通报, 2023, 39(7): 91-104.
YOU Zi-juan, CHEN Han-lin, DENG Fu-cai. Research Progress in the Extraction and Functional Activities of Bioactive Peptides from Fish Skin[J]. Biotechnology Bulletin, 2023, 39(7): 91-104.
常规提取方 Conventional extraction method | 优点 Advantages | 缺点 Disadvantages | 文献来源 Reference |
---|---|---|---|
酶法 Enzymatic method | 水解条件温和、反应安全可控,产物结构稳定,不破坏氨基酸,功能活性高,利于人体吸收 The hydrolysis conditions are mild, reactions are safe and controllable, the structure of the product is stable and it does not destroy amino acids, functional activity is high, and the hydrolysates are conducive to human absorption | 酶活性较弱,反应速度慢,水解不彻底,价格昂贵、生产成本高 The activity of enzyme is weak, reaction speed is slow, the hydrolysis is not complete, the price of enzyme is expensive, and has high production cost | [ |
化学法 Chemical method | 操作简便、成本低 Easy control, and low cost | 引入有毒物质,安全性低,部分氨基酸被破坏,水解产物成分复杂,应用受限 It introduces toxic substances, safety is low, partial amino acids are destroyed, the hydrolysate composition is complex, and the application scope is limited | [ |
发酵法 Fermentation | 增加产物风味、去腥,操作简便,可批量生产,成本低 Increase product flavor, reduce fishy, easy to operate, and can be mass production at low cost | 产率低,纯化困难,部分产酶菌有毒 Low yield, difficult to be purified, and some bacteria of producing enzyme is toxic | [ |
表1 鱼皮生物活性肽提取方法比较
Table 1 Comparison of different extraction methods of bioactive peptides from fish skin
常规提取方 Conventional extraction method | 优点 Advantages | 缺点 Disadvantages | 文献来源 Reference |
---|---|---|---|
酶法 Enzymatic method | 水解条件温和、反应安全可控,产物结构稳定,不破坏氨基酸,功能活性高,利于人体吸收 The hydrolysis conditions are mild, reactions are safe and controllable, the structure of the product is stable and it does not destroy amino acids, functional activity is high, and the hydrolysates are conducive to human absorption | 酶活性较弱,反应速度慢,水解不彻底,价格昂贵、生产成本高 The activity of enzyme is weak, reaction speed is slow, the hydrolysis is not complete, the price of enzyme is expensive, and has high production cost | [ |
化学法 Chemical method | 操作简便、成本低 Easy control, and low cost | 引入有毒物质,安全性低,部分氨基酸被破坏,水解产物成分复杂,应用受限 It introduces toxic substances, safety is low, partial amino acids are destroyed, the hydrolysate composition is complex, and the application scope is limited | [ |
发酵法 Fermentation | 增加产物风味、去腥,操作简便,可批量生产,成本低 Increase product flavor, reduce fishy, easy to operate, and can be mass production at low cost | 产率低,纯化困难,部分产酶菌有毒 Low yield, difficult to be purified, and some bacteria of producing enzyme is toxic | [ |
来源 Species | 提取方法 Extraction method | 分离、鉴定方法 Separation and identification methods | 水解度Degree of hydrolysis, DH/% | 产率 Yield/% | 自由基清除率 Free radical scavenging rate | 氨基酸序列 Amino acid sequences | 文献来源Reference | ||
---|---|---|---|---|---|---|---|---|---|
1,1-二苯基-2-三硝基苯肼自由基1,1-diphenyl-2-picrylhydrazyl, DPPH·(IC50) | 羟自由基 Hydroxyl free radical, ·OH(IC50) | 2'-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐自由基 ABTS | |||||||
巴沙鱼皮 Pangasius bocourti skin | 碱性蛋白酶水解 Alcalase hydrolysis | 超滤膜过滤、SDS-PAGE Ultrafiltration membrane filtration, SDS-PAGE | 48.06±1.97 | — | — | — | (45.98±0.04)μmol TE/g | — | [ |
黄鳍金枪鱼皮 Yellowfin Tuna(Thunnus albacares)skin | 碱性蛋白酶水解 Alcalase hydrolysis | 超滤膜过滤、SDS-PAGE Ultrafiltration membrane filtration, SDS-PAGE | — | 52.7 | — | — | — | — | [ |
石斑鱼皮 Seabass(Lates calcarifer)skin | 碱性蛋白酶水解 Alcalase hydrolysis | 交联葡聚糖G-25和超高效液相色谱-电喷雾离子质量-质谱/质谱 Sephadex G-25 column, UPLC-ESI-MS/MS | — | 59.7 | — | — | (2.59 ±0.04)mmol TE/μmol | Val-Leu-Gly-Pro-Phe(532.313 0 Da) | [ |
— | — | (81.41±0.34)mmol TE/μmol | Gly-Leu-Phe-Gly-Pro-Arg(646.367 1 Da) | ||||||
— | — | (10.47±0.35)mmol TE/μmol | Gly-Ala-Thr-Gly-Pro-Gln-Gly-Pro-Leu-Gly-Pro-Arg(1 107.590 5 Da) | ||||||
— | — | (0.5±0.02)mmol TE/μmol | Gln-Leu-Gly-Pro-Leu-Gly-Pro-Val(780.461 4 Da) | ||||||
罗非鱼皮 Tilapia(Oreochromis niloticus)skin | 蛋白酶E、中性蛋白酶 Protease E and multifect neutral | 超滤、葡聚糖凝胶柱层析G-25、反向高效液相色谱、Q-TOF MS/ESI Ultrafiltration, Sephadex G-25 gel filtration column, RP-HPLC and Q-TOF MS/ESI | 22.11 ± 0.19 | — | — | 4.61 μg/mL | — | Glu-Gly-Leu(317.33 Da) | [ |
— | 6.45 μg/mL | — | Tyr-Gly-Asp-Glu-Tyr(645.21 Da) | ||||||
马面鱼皮 Navodon Septentrio nalis(Thamnaco nus septentrionallis)skin | 酸性蛋白酶 和Protease A ‘Amano’2G Acid Protease and Protease A ‘Amano’2G | 超滤和凝胶柱层析法,超高效液相色谱-质谱Ultrafiltration, gel filtration chromatography, and UPLC-MS | — | — | 1.80 mg/mL | — | — | Asn-Glu-Gly-Ala-Cys-Gly/ Gly-Glu-Gly-Ala-Cys-Asn | [ |
表2 鱼皮生物活性肽抗氧化性
Table 2 Anti-oxidative activities of bio-active peptides from fish skin
来源 Species | 提取方法 Extraction method | 分离、鉴定方法 Separation and identification methods | 水解度Degree of hydrolysis, DH/% | 产率 Yield/% | 自由基清除率 Free radical scavenging rate | 氨基酸序列 Amino acid sequences | 文献来源Reference | ||
---|---|---|---|---|---|---|---|---|---|
1,1-二苯基-2-三硝基苯肼自由基1,1-diphenyl-2-picrylhydrazyl, DPPH·(IC50) | 羟自由基 Hydroxyl free radical, ·OH(IC50) | 2'-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐自由基 ABTS | |||||||
巴沙鱼皮 Pangasius bocourti skin | 碱性蛋白酶水解 Alcalase hydrolysis | 超滤膜过滤、SDS-PAGE Ultrafiltration membrane filtration, SDS-PAGE | 48.06±1.97 | — | — | — | (45.98±0.04)μmol TE/g | — | [ |
黄鳍金枪鱼皮 Yellowfin Tuna(Thunnus albacares)skin | 碱性蛋白酶水解 Alcalase hydrolysis | 超滤膜过滤、SDS-PAGE Ultrafiltration membrane filtration, SDS-PAGE | — | 52.7 | — | — | — | — | [ |
石斑鱼皮 Seabass(Lates calcarifer)skin | 碱性蛋白酶水解 Alcalase hydrolysis | 交联葡聚糖G-25和超高效液相色谱-电喷雾离子质量-质谱/质谱 Sephadex G-25 column, UPLC-ESI-MS/MS | — | 59.7 | — | — | (2.59 ±0.04)mmol TE/μmol | Val-Leu-Gly-Pro-Phe(532.313 0 Da) | [ |
— | — | (81.41±0.34)mmol TE/μmol | Gly-Leu-Phe-Gly-Pro-Arg(646.367 1 Da) | ||||||
— | — | (10.47±0.35)mmol TE/μmol | Gly-Ala-Thr-Gly-Pro-Gln-Gly-Pro-Leu-Gly-Pro-Arg(1 107.590 5 Da) | ||||||
— | — | (0.5±0.02)mmol TE/μmol | Gln-Leu-Gly-Pro-Leu-Gly-Pro-Val(780.461 4 Da) | ||||||
罗非鱼皮 Tilapia(Oreochromis niloticus)skin | 蛋白酶E、中性蛋白酶 Protease E and multifect neutral | 超滤、葡聚糖凝胶柱层析G-25、反向高效液相色谱、Q-TOF MS/ESI Ultrafiltration, Sephadex G-25 gel filtration column, RP-HPLC and Q-TOF MS/ESI | 22.11 ± 0.19 | — | — | 4.61 μg/mL | — | Glu-Gly-Leu(317.33 Da) | [ |
— | 6.45 μg/mL | — | Tyr-Gly-Asp-Glu-Tyr(645.21 Da) | ||||||
马面鱼皮 Navodon Septentrio nalis(Thamnaco nus septentrionallis)skin | 酸性蛋白酶 和Protease A ‘Amano’2G Acid Protease and Protease A ‘Amano’2G | 超滤和凝胶柱层析法,超高效液相色谱-质谱Ultrafiltration, gel filtration chromatography, and UPLC-MS | — | — | 1.80 mg/mL | — | — | Asn-Glu-Gly-Ala-Cys-Gly/ Gly-Glu-Gly-Ala-Cys-Asn | [ |
来源 Species | 提取方法 Extraction method | 分离、鉴定方法 Separation and identification methods | 水解度 Degree of hydrolysis,DH/% | 产率 Yield/% | 半抑制浓度IC50/(μmol·L-1) | 氨基酸序列Amino acid sequences | 文献来源Reference |
---|---|---|---|---|---|---|---|
太平洋鳕鱼皮 Pacific cord fish(Gadus macrocephalus)skin | 酶法 Enzyme method | 超滤、阴离子交换层析、反向高效液相色谱、质谱Ultrafiltration, anion exchange chromatography, RP-HPLC and MS | — | — | 6.9 | GASSGMPG(662 Da) | [ |
14.5 | LAYA(436 Da) | ||||||
阿拉斯加鳕鱼皮 Alaska pollack skins | 酶法 Enzyme method | Sephadex G-25凝胶柱层析、反向高效液相色谱和高效液相色谱-四极杆飞行时间质谱 Sephadex G-25 gel filtration chromatography, RP-HPLC and HPLC-Q-TOF-MS | 108.5 | GPLGVP(538.31 Da) | [ | ||
鳐鱼皮 Skate (Rajiformes)skin | 酶法Enzyme method | Sephadex G-25凝胶柱层析、反向高效液相色谱、Q-TOF MS/ESI Sephadex G-25 gel filtration chromatography, RP-HPLC and Q-TOF MS/ESI | — | — | 95 | PGPLGLTGP(975.38 Da) | [ |
148 | QLGFLGPR(874.45 Da) | ||||||
鳐科鱼皮 Okamejei kenojei skin | 碱性蛋白酶水解 Alcalase hydrolysis | 超滤膜过滤、SuperdexTM Peptide 10/300 GL凝胶柱层析 Ultrafiltration, SuperdexTM Peptide 10/300 GL gel filtration chromatography | — | — | 4.22 | LGPLGHQ(720 Da) | [ |
3.09 | MVGSAPGVL(829 Da) |
表3 鱼皮生物活性肽ACE抑制性
Table 3 ACE inhibitory activities of bioactive peptides from fish skin
来源 Species | 提取方法 Extraction method | 分离、鉴定方法 Separation and identification methods | 水解度 Degree of hydrolysis,DH/% | 产率 Yield/% | 半抑制浓度IC50/(μmol·L-1) | 氨基酸序列Amino acid sequences | 文献来源Reference |
---|---|---|---|---|---|---|---|
太平洋鳕鱼皮 Pacific cord fish(Gadus macrocephalus)skin | 酶法 Enzyme method | 超滤、阴离子交换层析、反向高效液相色谱、质谱Ultrafiltration, anion exchange chromatography, RP-HPLC and MS | — | — | 6.9 | GASSGMPG(662 Da) | [ |
14.5 | LAYA(436 Da) | ||||||
阿拉斯加鳕鱼皮 Alaska pollack skins | 酶法 Enzyme method | Sephadex G-25凝胶柱层析、反向高效液相色谱和高效液相色谱-四极杆飞行时间质谱 Sephadex G-25 gel filtration chromatography, RP-HPLC and HPLC-Q-TOF-MS | 108.5 | GPLGVP(538.31 Da) | [ | ||
鳐鱼皮 Skate (Rajiformes)skin | 酶法Enzyme method | Sephadex G-25凝胶柱层析、反向高效液相色谱、Q-TOF MS/ESI Sephadex G-25 gel filtration chromatography, RP-HPLC and Q-TOF MS/ESI | — | — | 95 | PGPLGLTGP(975.38 Da) | [ |
148 | QLGFLGPR(874.45 Da) | ||||||
鳐科鱼皮 Okamejei kenojei skin | 碱性蛋白酶水解 Alcalase hydrolysis | 超滤膜过滤、SuperdexTM Peptide 10/300 GL凝胶柱层析 Ultrafiltration, SuperdexTM Peptide 10/300 GL gel filtration chromatography | — | — | 4.22 | LGPLGHQ(720 Da) | [ |
3.09 | MVGSAPGVL(829 Da) |
来源 Species | 提取方法Extraction method | 分离、鉴定方法 Separation and identification methods | 水解度Degree of hydrolysis, DH/% | 产率 Yield/% | MECs/ (μg·mL-1) | MIC/ (μg·mL-1) | 微生物 Microorganism | 氨基酸序列 Amino acid sequences | 文献来源 Reference |
---|---|---|---|---|---|---|---|---|---|
黄鳍金枪鱼 Yellowfin tuna(Thunnus albacares)skin | 酶法 Enzyme method | 反向高效液相色谱、激光去电离飞行时间质谱法 RP-HPLC, MALDI-TOF | — | — | 1.2 | — | 枯草芽孢杆菌 B. subtilis | YFGAP | [ |
— | — | 白念珠菌 C. albicans | |||||||
3 | — | 大肠杆菌 E. coli | |||||||
鲣鱼鱼皮 Skipjack tuna(Katsuwonus pelamis)skin | 酶法 Enzyme method | 反向高效液相色谱、激光去电离飞行时间质谱分 RP-HPLC, MALDI-TOF | — | — | 3 | — | 枯草芽孢杆菌 B. subtilis | SJGAP | [ |
16 | — | 白念珠菌 C. albicans | |||||||
2.7 | — | 大肠杆菌 E. coli | |||||||
冬季比目鱼 Winter flounder(Pleuronectes americanus)skin | 酸法 Acid-extraction method | G-50分子排阻色谱、高效液相色谱 G-50 gel filtration chromatography and HPLC | — | — | — | 1.1-2.2* | 枯草芽孢杆菌 B. subtilis | GWGSFFKKAAH VGKHVGKAALTHY | [ |
— | — | 白念珠菌 C. albicans | |||||||
— | 2.2-3.3* | 大肠杆菌 E. coli |
表4 鱼皮生物活性肽抗菌性
Table 4 Antimicrobial activities of bioactive peptides from fish skin
来源 Species | 提取方法Extraction method | 分离、鉴定方法 Separation and identification methods | 水解度Degree of hydrolysis, DH/% | 产率 Yield/% | MECs/ (μg·mL-1) | MIC/ (μg·mL-1) | 微生物 Microorganism | 氨基酸序列 Amino acid sequences | 文献来源 Reference |
---|---|---|---|---|---|---|---|---|---|
黄鳍金枪鱼 Yellowfin tuna(Thunnus albacares)skin | 酶法 Enzyme method | 反向高效液相色谱、激光去电离飞行时间质谱法 RP-HPLC, MALDI-TOF | — | — | 1.2 | — | 枯草芽孢杆菌 B. subtilis | YFGAP | [ |
— | — | 白念珠菌 C. albicans | |||||||
3 | — | 大肠杆菌 E. coli | |||||||
鲣鱼鱼皮 Skipjack tuna(Katsuwonus pelamis)skin | 酶法 Enzyme method | 反向高效液相色谱、激光去电离飞行时间质谱分 RP-HPLC, MALDI-TOF | — | — | 3 | — | 枯草芽孢杆菌 B. subtilis | SJGAP | [ |
16 | — | 白念珠菌 C. albicans | |||||||
2.7 | — | 大肠杆菌 E. coli | |||||||
冬季比目鱼 Winter flounder(Pleuronectes americanus)skin | 酸法 Acid-extraction method | G-50分子排阻色谱、高效液相色谱 G-50 gel filtration chromatography and HPLC | — | — | — | 1.1-2.2* | 枯草芽孢杆菌 B. subtilis | GWGSFFKKAAH VGKHVGKAALTHY | [ |
— | — | 白念珠菌 C. albicans | |||||||
— | 2.2-3.3* | 大肠杆菌 E. coli |
功能活性 Functional activity | 来源 Species | 提取方法 Extraction method | 分离、鉴定方法 Separation and identification methods | 水解度Degree of hydrolysis, DH/% | 产率 Yield/% | 氨基酸序列 Amino acid sequences | 文献来源 Reference |
---|---|---|---|---|---|---|---|
神经保护 活性Neuroprotective activity | 鲑鱼皮 Chum Salmon(Oncorhynchus keta)skin | 酶法 Enzyme method | — | — | — | — | [ |
抗高血糖 Antihyperglycemic | 鲟鱼皮等 Sturgeon(Acipenser sinensis)skin, etc | 酶法 Enzyme method | 交联葡聚糖G-25、反向高效液相色谱 Gel filtration chromatography G-25, RP-HPLC | — | 11.9 | Gly-X-Y(X、Y为可选的氨基酸残基) Gly-X-Y(X、Y is an optional amino acid residue) | [ |
免疫调节性 Immunomodulation activity | 石斑鱼皮 Seabass(Lates calcarifer)skin | 酶法 Enzyme method | — | — | — | — | [ |
基质金属蛋白酶抑制活性 Matrix metalloproteinases, MMP-1 inhibitory activity | 鳕鱼皮 Pacific cod(Gadus Macrocephalus)skin | 酶法 Enzyme method | 阴离子交换层析、反向高效液相色谱、高效液相色谱-电喷雾串联质谱法 Anion exchange chromatography, RP-HPLC、HPLC-LC-ESI-MS/MS | — | — | EIGPSGGRGKPGKDGDAGPK, GFSGLDGAKGD | [ |
表5 鱼皮生物活性肽的其他活性
Table 5 Other activities of peptides from fish skin
功能活性 Functional activity | 来源 Species | 提取方法 Extraction method | 分离、鉴定方法 Separation and identification methods | 水解度Degree of hydrolysis, DH/% | 产率 Yield/% | 氨基酸序列 Amino acid sequences | 文献来源 Reference |
---|---|---|---|---|---|---|---|
神经保护 活性Neuroprotective activity | 鲑鱼皮 Chum Salmon(Oncorhynchus keta)skin | 酶法 Enzyme method | — | — | — | — | [ |
抗高血糖 Antihyperglycemic | 鲟鱼皮等 Sturgeon(Acipenser sinensis)skin, etc | 酶法 Enzyme method | 交联葡聚糖G-25、反向高效液相色谱 Gel filtration chromatography G-25, RP-HPLC | — | 11.9 | Gly-X-Y(X、Y为可选的氨基酸残基) Gly-X-Y(X、Y is an optional amino acid residue) | [ |
免疫调节性 Immunomodulation activity | 石斑鱼皮 Seabass(Lates calcarifer)skin | 酶法 Enzyme method | — | — | — | — | [ |
基质金属蛋白酶抑制活性 Matrix metalloproteinases, MMP-1 inhibitory activity | 鳕鱼皮 Pacific cod(Gadus Macrocephalus)skin | 酶法 Enzyme method | 阴离子交换层析、反向高效液相色谱、高效液相色谱-电喷雾串联质谱法 Anion exchange chromatography, RP-HPLC、HPLC-LC-ESI-MS/MS | — | — | EIGPSGGRGKPGKDGDAGPK, GFSGLDGAKGD | [ |
[1] |
Zhang YQ, Tu D, Shen Q, et al. Fish scale valorization by hydrothermal pretreatment followed by enzymatic hydrolysis for gelatin hydrolysate production[J]. Molecules, 2019, 24(16): 2998.
doi: 10.3390/molecules24162998 URL |
[2] |
杨敏, 吴兆明, 李晶晶, 等. 鱼皮胶原蛋白寡肽的生物活性及应用研究进展[J]. 食品科学, 2018, 39(5): 304-310.
doi: 10.7506/spkx1002-6630-201805045 |
Yang M, Wu ZM, Li JJ, et al. Advances in biological activity and application of fish skin collagen-derived oligopeptides[J]. Food Sci, 2018, 39(5): 304-310. | |
[3] |
Nirmal NP, Santivarangkna C, Rajput MS, et al. Valorization of fish byproducts: sources to end-product applications of bioactive protein hydrolysate[J]. Compr Rev Food Sci Food Saf, 2022, 21(2): 1803-1842.
doi: 10.1111/crf3.v21.2 URL |
[4] |
Abuine R, Rathnayake AU, Byun HG. Biological activity of peptides purified from fish skin hydrolysates[J]. Fish Aquatic Sci, 2019, 22(1): 10.
doi: 10.1186/s41240-019-0125-4 |
[5] | Razali A, Amin AM, Sarbon NM. Antioxidant activity and functional properties of fractionated cobia skin gelatin hydrolysate at different molecular weight[J]. Int Food Res J, 2015, 22: 651-660. |
[6] |
Yang GL, Qin S, Li WJ. Purification and characterization of a novel angiotensin I-converting enzyme-inhibitory peptide derived from Alaska pollack skins[J]. J Food Sci, 2021, 86(6): 2457-2467.
doi: 10.1111/jfds.v86.6 URL |
[7] |
Mahmoodani F, Ghassem M, Babji AS, et al. ACE inhibitory activity of Pangasius catfish(Pangasius sutchi)skin and bone gelatin hydrolysate[J]. J Food Sci Technol, 2014, 51(9): 1847-1856.
doi: 10.1007/s13197-012-0742-8 pmid: 25190839 |
[8] | 缪文华. 一种马面鲀鱼皮抑菌肽的制备方法: CN108315377A[P]. 2018-07-24. |
Miao WH. Preparation method of thamnaconus multiradiatus fish skin bacterium-inhibiting peptide: CN108315377A[P]. 2018-07-24. | |
[9] | 余方苗, 董晓泽, 何康, 等. 一种罗非鱼鱼皮免疫调节肽的制备方法: CN109439713B[P]. 2021-06-18. |
Yu FM, Dong XZ, He K, et al. Method for preparing tilapia mossambica skin immunomodulating peptide: CN109439713B[P]. 2021-06-18. | |
[10] | Baehaki A, Suhartono M, Sukarno, et al. Collagen peptides from fish skin with angiotensin I-converting enzyme(ACE)inhibitor and cancer antiproliferative activity[J]. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2016, 7(1): 1994-2000. |
[11] | Hajirostamloo B. Bioactive component in milk and dairy product[J]. World Acad Sci Eng Technol, 2010, 72: 162-166. |
[12] | 李敏雄, 郭斌, 刘飞, 等. 罗非鱼皮胶原蛋白肽制备的工艺优化[J]. 现代食品科技, 2018, 34(7): 205-212. |
Li MX, Guo B, Liu F, et al. Study on the preparation of collagen peptide from Tilapia skin[J]. Mod Food Sci Technol, 2018, 34(7): 205-212. | |
[13] | 吕婷. 酶法提取鱼皮胶原蛋白活性短肽的研究[D]. 大连: 大连工业大学, 2009. |
Lyu T. Study on enzymatic extraction of cod collagen for active peptide[D]. Dalian: Dalian Polytechnic University, 2009. | |
[14] | 刘培勇. 鲟鱼皮胶原蛋白肽的制备、纯化工艺及理化性质研究[D]. 武汉: 武汉工业学院, 2012. |
Liu PY. Research on process of preparation, purification and physicochemical properties for collagen peptides of sturgeon skin[D]. Wuhan: Wuhan Institute of Technology, 2012. | |
[15] | 余楠楠, 陈琛. 生物活性肽功能及制备技术研究进展[J]. 中国酿造, 2018, 37(9): 17-21. |
Yu NN, Chen C. Research progress of bioactive peptide function and preparation technology[J]. China Brew, 2018, 37(9): 17-21. | |
[16] |
Martosuyono P, Fawzya YN, Patantis G, et al. Enzymatic production of fish protein hydrolysates in A pilot plant scale[J]. Squalen Bull Marine Fisheries Postharvest Biotech, 2019, 14(2): 85-92.
doi: 10.15578/squalen.v14i2.398 URL |
[17] |
Ketnawa S, Benjakul S, Martínez-Alvarez O, et al. Fish skin gelatin hydrolysates produced by visceral peptidase and bovine trypsin: Bioactivity and stability[J]. Food Chem, 2017, 215: 383-390.
doi: 10.1016/j.foodchem.2016.07.145 pmid: 27542490 |
[18] |
Cai LY, Wu XS, Zhang YH, et al. Purification and characterization of three antioxidant peptides from protein hydrolysate of grass carp(Ctenopharyngodon idella)skin[J]. J Funct Foods, 2015, 16: 234-242.
doi: 10.1016/j.jff.2015.04.042 URL |
[19] |
Halim NRA, Yusof HM, Sarbon NM. Functional and bioactive properties of fish protein hydolysates and peptides: a comprehensive review[J]. Trends Food Sci Technol, 2016, 51: 24-33.
doi: 10.1016/j.tifs.2016.02.007 URL |
[20] | 秦倩倩, 吴琼英, 贾俊强. 酶法制备草鱼皮胶原蛋白抗氧化肽的工艺优化[J]. 江苏科技大学学报: 自然科学版, 2020, 34(1): 90-97. |
Qin QQ, Wu QY, Jia JQ. Optimization of technology for preparation of antioxidant peptides from collagen of grass carp skin by enzymatic hydrolysis[J]. J Jiangsu Univ Sci Technol Nat Sci Ed, 2020, 34(1): 90-97. | |
[21] |
Himaya SWA, Ngo DH, Ryu B, et al. An active peptide purified from gastrointestinal enzyme hydrolysate of Pacific cod skin gelatin attenuates angiotensin-1 converting enzyme(ACE)activity and cellular oxidative stress[J]. Food Chem, 2012, 132(4): 1872-1882.
doi: 10.1016/j.foodchem.2011.12.020 URL |
[22] | Roslan J. Optimization and enzymatic hydrolysis of Tilapia by-product and fractionation of protein hydrolysate using membrane ultrafiltration[D]. Malaysia: Universiti Putra Malaysia, 2016. |
[23] | 靳书杰. 日本黄姑鱼皮胶原蛋白理化特性及其胶原蛋白肽活性研究[D]. 舟山: 浙江海洋大学, 2019. |
Jin SJ. Study on the physicochemical properties of collagen and biological activity of collagen peptides from giant croaker(Nibea japonica)[D]. Zhoushan: Zhejiang Ocean University, 2019. | |
[24] |
Jongjareonrak A, Benjakul S, Visessanguan W, et al. Isolation and characterisation of acid and pepsin-solubilised collagens from the skin of Brownstripe red snapper(Lutjanus vitta)[J]. Food Chem, 2005, 93(3): 475-484.
doi: 10.1016/j.foodchem.2004.10.026 URL |
[25] | 张琦. 生物活性肽制备的研究[J]. 畜牧兽医杂志, 2003, 22(3): 20-21. |
Zhang Q. Study on preparation of bioactive peptides[J]. J Animal Sci Vet Med, 2003, 22(3): 20-21. | |
[26] |
Cole AM, Weis P, Diamond G. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder[J]. J Biol Chem, 1997, 272(18): 12008-12013.
doi: 10.1074/jbc.272.18.12008 pmid: 9115266 |
[27] |
Tavano OL. Protein hydrolysis using proteases: an important tool for food biotechnology[J]. J Mol Catal B Enzym, 2013, 90: 1-11.
doi: 10.1016/j.molcatb.2013.01.011 URL |
[28] |
Chai KF, Voo AYH, Chen WN. Bioactive peptides from food fermentation: a comprehensive review of their sources, bioactivities, applications, and future development[J]. Compr Rev Food Sci Food Saf, 2020, 19(6): 3825-3885.
doi: 10.1111/crf3.v19.6 URL |
[29] | 范吉釴, 柯义强, 刘红海, 等. 发酵法制备生物活性肽的研究进展[J]. 安徽农学通报, 2020, 26(23): 19-23. |
Fan JY, Ke YQ, Liu HH, et al. Research progress in the preparation of bioactive peptides by fermentation[J]. Anhui Agric Sci Bull, 2020, 26(23): 19-23. | |
[30] |
Jemil I, Jridi M, Nasri R, et al. Functional, antioxidant and antibacterial properties of protein hydrolysates prepared from fish meat fermented by Bacillus subtilis A26[J]. Process Biochem, 2014, 49(6): 963-972.
doi: 10.1016/j.procbio.2014.03.004 URL |
[31] | 吴海滨. 利用米曲霉(Aspergillus oryzae)发酵鳕鱼皮制备生物活性肽的研究[D]. 青岛: 中国海洋大学, 2011. |
Wu HB. Studies on the production of active peptides from cod fish skin fermentation by Aspergillus oryzae[D]. Qingdao: Ocean University of China, 2011. | |
[32] | 邢瀚文, 韩玮, 施文正, 等. 固态发酵法制备罗非鱼皮胶原蛋白肽及其抗氧化活性研究[J]. 食品与发酵工业, 2020, 46(19): 104-110. |
Xing HW, Han W, Shi WZ, et al. Tilapia skin collagen peptides prepared by solid-state fermentation and its antioxidant activity[J]. Food Ferment Ind, 2020, 46(19): 104-110. | |
[33] | 谢博, 傅红, 杨方. 生物活性肽的制备、分离纯化、鉴定以及构效关系研究进展[J]. 食品工业科技, 2021, 42(5): 383-391. |
Xie B, Fu H, Yang F. Research progress on preparation, purification, identification and structure-activity relationship of bioactive peptides[J]. Sci Technol Food Ind, 2021, 42(5): 383-391. | |
[34] |
Blanco M, Vázquez JA, Pérez-Martín RI, et al. Hydrolysates of fish skin collagen: an opportunity for valorizing fish industry byproducts[J]. Mar Drugs, 2017, 15(5): 131.
doi: 10.3390/md15050131 URL |
[35] |
Sabeena Farvin KH, Andersen LL, Otte J, et al. Antioxidant activity of cod(Gadus morhua)protein hydrolysates: Fractionation and characterisation of peptide fractions[J]. Food Chem, 2016, 204: 409-419.
doi: S0308-8146(16)30322-3 pmid: 26988519 |
[36] |
Lee JK, Jeon JK, Byun HG. Effect of angiotensin I converting enzyme inhibitory peptide purified from skate skin hydrolysate[J]. Food Chem, 2011, 125(2): 495-499.
doi: 10.1016/j.foodchem.2010.09.039 URL |
[37] |
Sampath Kumar NS, Nazeer RA, Jaiganesh R. Purification and identification of antioxidant peptides from the skin protein hydrolysate of two marine fishes, horse mackerel(Magalaspis cordyla)and croaker(Otolithes ruber)[J]. Amino Acids, 2012, 42(5): 1641-1649.
doi: 10.1007/s00726-011-0858-6 pmid: 21384132 |
[38] |
Muyonga JH, Cole CGB, Duodu KG. Characterisation of acid soluble collagen from skins of young and adult Nile perch(Lates niloticus)[J]. Food Chem, 2004, 85(1): 81-89.
doi: 10.1016/j.foodchem.2003.06.006 URL |
[39] |
Bai CJ, Wei QF, Ren XL. Selective extraction of collagen peptides with high purity from cod skins by deep eutectic solvents[J]. ACS Sustainable Chem Eng, 2017, 5(8): 7220-7227.
doi: 10.1021/acssuschemeng.7b01439 URL |
[40] | 李璇, 杜梦霞, 王富龙, 等. 生物活性肽的制备及分离纯化方法研究进展[J]. 食品工业科技, 2017, 38(20): 336-340, 346. |
Li X, Du MX, Wang FL, et al. Research progress in preparation and purification of bioactive peptides[J]. Sci Technol Food Ind, 2017, 38(20): 336-340, 346. | |
[41] |
Azizah N, Ochiai Y, Nurilmala M. Collagen peptides from Pangasius fish skin as antioxidants[J]. IOP Conf Ser: Earth Environ Sci, 2020, 404(1): 012055.
doi: 10.1088/1755-1315/404/1/012055 |
[42] | 牛瑞, 于建生. 鳕鱼多肽的抗氧化活性及其分离纯化[J]. 食品与生物技术学报, 2010, 29(4): 562-566. |
Niu R, Yu JS. Antioxidant activity and purification of pollock peptides[J]. J Food Sci Biotechnol, 2010, 29(4): 562-566. | |
[43] |
Senphan T, Benjakul S. Antioxidative activities of hydrolysates from seabass skin prepared using protease from hepatopancreas of Pacific white shrimp[J]. J Funct Foods, 2014, 6: 147-156.
doi: 10.1016/j.jff.2013.10.001 URL |
[44] | 李晓杰, 李富强, 朱丽萍, 等. 生物活性肽的制备与鉴定进展[J]. 齐鲁工业大学学报, 2021, 35(1): 23-28. |
Li XJ, Li FQ, Zhu LP, et al. Progress of preparation and identification of bioactive peptides[J]. J Qilu Univ Technol, 2021, 35(1): 23-28. | |
[45] |
Elias RJ, Kellerby SS, Decker EA. Antioxidant activity of proteins and peptides[J]. Crit Rev Food Sci Nutr, 2008, 48(5): 430-441.
doi: 10.1080/10408390701425615 pmid: 18464032 |
[46] | Udenigwe CC, Aluko RE. Food protein-derived bioactive peptides: production, processing, and potential health benefits[J]. J Food Sci, 2012, 77(1): R11-R24. |
[47] | Hayes M, Flower D. Bioactive peptides from marine processing byproducts[M]// Bioactive Compounds from Marine Foods. Chichester, UK: John Wiley & Sons Ltd, 2013: 57-71. |
[48] | 郭洪辉, 张怡评, 洪专, 等. 河豚鱼皮胶原寡肽螯合锌的体内体外抗氧化活性研究[J]. 食品工业科技, 2021, 42(5): 66-71. |
Guo HH, Zhang YP, Hong Z, et al. Study on in vivo and in vitro antioxidant activity of collagen oligopeptide chelated zinc from puffer skin[J]. Sci Technol Food Ind, 2021, 42(5): 66-71. | |
[49] |
Chen XL, Peng M, Li J, et al. Preparation and functional evaluation of collagen oligopeptide-rich hydrolysate from fish skin with the serine collagenolytic protease from Pseudoalteromonas sp. SM9913[J]. Sci Rep, 2017, 7(1): 15716.
doi: 10.1038/s41598-017-15971-9 |
[50] |
Nam PV, Van Hoa N, Anh TTL, et al. Towards zero-waste recovery of bioactive compounds from catfish(Pangasius hypophthalmus)by-products using an enzymatic method[J]. Waste Biomass Valor, 2020, 11(8): 4195-4206.
doi: 10.1007/s12649-019-00758-y |
[51] |
Theodore AE, Raghavan S, Kristinsson HG. Antioxidative activity of protein hydrolysates prepared from alkaline-aided channel catfish protein isolates[J]. J Agric Food Chem, 2008, 56(16): 7459-7466.
doi: 10.1021/jf800185f URL |
[52] |
Nurilmala M, Hizbullah HH, Karnia E, et al. Characterization and antioxidant activity of collagen, gelatin, and the derived peptides from yellowfin tuna(Thunnus albacares)skin[J]. Mar Drugs, 2020, 18(2): 98.
doi: 10.3390/md18020098 URL |
[53] | Nurilmala M, Fauzi S, Mayasari D, et al. Collagen extraction from yellowfin tuna(thunnus albacares)skin and its antioxidant activity[J]. J Teknologi, 2019, 81(2): 141-149. |
[54] | Sae-Leaw T, Karnjanapratum S, O'Callaghan YC, et al. Purificationand identification of antioxidant peptides from gelatin hydrolysate of seabass skin[J]. J Food Biochem, 2017, 41(3): e12350. |
[55] |
Zhang YF, Duan X, Zhuang YL. Purification and characterization of novel antioxidant peptides from enzymatic hydrolysates of tilapia(Oreochromis niloticus)skin gelatin[J]. Peptides, 2012, 38(1): 13-21.
doi: 10.1016/j.peptides.2012.08.014 URL |
[56] |
蔡金秀, 夏姗姗, 马佳雯, 等. 马面鱼皮胶原抗氧化肽的分离制备及稳定性研究[J]. 核农学报, 2021, 35(11): 2569-2577.
doi: 10.11869/j.issn.100-8551.2021.11.2569 |
Cai JX, Xia SS, Ma JW, et al. Isolation, preparation and stability of collagen antioxidant peptides from the skin of navodon septentrionalis[J]. J Nucl Agric Sci, 2021, 35(11): 2569-2577. | |
[57] | 游子娟. 重组米曲霉中性蛋白酶(rNpI)在蛋白质水解中的应用研究[D]. 广州: 华南理工大学, 2015. |
You ZJ. Research on the application of asperigillus oryzae recombinant neutral protease(rNpI)in protein hydrolysis[D]. Guangzhou: South China University of Technology, 2015. | |
[58] |
Ghassem M, Arihara K, Babji AS, et al. Purification and identification of ACE inhibitory peptides from Haruan(Channa striatus)myofibrillar protein hydrolysate using HPLC-ESI-TOF MS/MS[J]. Food Chem, 2011, 129(4): 1770-1777.
doi: 10.1016/j.foodchem.2011.06.051 URL |
[59] |
Yuan L, Sun LP, Zhuang YL. Preparation and identification of novel inhibitory angiotensin-I-converting enzyme peptides from tilapia skin gelatin hydrolysates: inhibition kinetics and molecular docking[J]. Food Funct, 2018, 9(10): 5251-5259.
doi: 10.1039/c8fo00569a pmid: 30229250 |
[60] |
Guo LD, Harnedy PA, Zhang L, et al. In vitro assessment of the multifunctional bioactive potential of Alaska pollock skin collagen following simulated gastrointestinal digestion[J]. J Sci Food Agric, 2015, 95(7): 1514-1520.
doi: 10.1002/jsfa.2015.95.issue-7 URL |
[61] |
Ngo DH, Vo TS, Ryu B, et al. Angiotensin- I- converting enzyme(ACE)inhibitory peptides from Pacific cod skin gelatin using ultrafiltration membranes[J]. Process Biochem, 2016, 51(10): 1622-1628.
doi: 10.1016/j.procbio.2016.07.006 URL |
[62] |
Ngo DH, Kang KH, Ryu B, et al. Angiotensin-I converting enzyme inhibitory peptides from antihypertensive skate(Okamejei kenojei)skin gelatin hydrolysate in spontaneously hypertensive rats[J]. Food Chem, 2015, 174: 37-43.
doi: 10.1016/j.foodchem.2014.11.013 URL |
[63] | Rydlo T, Miltz J, Mor A. Eukaryotic antimicrobial peptides: promises and premises in food safety[J]. J Food Sci, 2006, 71(9): R125-R135. |
[64] | Ahmed TAE, Hammami R. Recent insights into structure-function relationships of antimicrobial peptides[J]. J Food Biochem, 2019, 43(1): e12546. |
[65] |
Seo JK, Lee MJ, Go HJ, et al. Purification and characterization of YFGAP, a GAPDH-related novel antimicrobial peptide, from the skin of yellowfin tuna, Thunnus albacares[J]. Fish Shellfish Immunol, 2012, 33(4): 743-752.
doi: 10.1016/j.fsi.2012.06.023 URL |
[66] |
Seo JK, Lee MJ, Go HJ, et al. Antimicrobial function of the GAPDH-related antimicrobial peptide in the skin of skipjack tuna, Katsuwonus pelamis[J]. Fish Shellfish Immunol, 2014, 36(2): 571-581.
doi: 10.1016/j.fsi.2014.01.003 URL |
[67] |
Ennaas N, Hammami R, Beaulieu L, et al. Purification and characterization of four antibacterial peptides from protamex hydrolysate of Atlantic mackerel(Scomber scombrus)by-products[J]. Biochem Biophys Res Commun, 2015, 462(3): 195-200.
doi: 10.1016/j.bbrc.2015.04.091 URL |
[68] |
Ennaas N, Hammami R, Gomaa A, et al. Collagencin, an antibacterial peptide from fish collagen: activity, structure and interaction dynamics with membrane[J]. Biochem Biophys Res Commun, 2016, 473(2): 642-647.
doi: 10.1016/j.bbrc.2016.03.121 URL |
[69] |
Alemán A, Pérez-Santín E, Bordenave-Juchereau S, et al. Squid gelatin hydrolysates with antihypertensive, anticancer and antioxidant activity[J]. Food Res Int, 2011, 44(4): 1044-1051.
doi: 10.1016/j.foodres.2011.03.010 URL |
[70] |
Wang TY, Hsieh CH, Hung CC, et al. Fish skin gelatin hydrolysates as dipeptidyl peptidase IV inhibitors and glucagon-like peptide-1 stimulators improve glycaemic control in diabetic rats: a comparison between warm- and cold-water fish[J]. J Funct Foods, 2015, 19: 330-340.
doi: 10.1016/j.jff.2015.09.037 URL |
[71] |
Duarte J, Vinderola G, Ritz B, et al. Immunomodulating capacity of commercial fish protein hydrolysate for diet supplementation[J]. Immunobiology, 2006, 211(5): 341-350.
pmid: 16716803 |
[72] |
Pei XR, Yang RY, Zhang ZF, et al. Marine collagen peptide isolated from Chum Salmon(Oncorhynchus keta)skin facilitates learning and memory in aged C57BL/6J mice[J]. Food Chem, 2010, 118(2): 333-340.
doi: 10.1016/j.foodchem.2009.04.120 URL |
[73] |
Xu LL, Dong WH, Zhao J, et al. Effect of marine collagen peptides on physiological and neurobehavioral development of male rats with perinatal asphyxia[J]. Mar Drugs, 2015, 13(6): 3653-3671.
doi: 10.3390/md13063653 pmid: 26058015 |
[74] | Sasaoka Y, Kishimura H, Adachi S, et al. Collagen peptides derived from the triple helical region of sturgeon collagen improve glucose tolerance in normal mice[J]. J Food Biochem, 2018, 42(2): e12478. |
[75] |
Sae-leaw T, O'Callaghan YC, Benjakul S, et al. Antioxidant, immunomodulatory and antiproliferative effects of gelatin hydrolysates from seabass(Lates calcarifer)skins[J]. Int J Food Sci Technol, 2016, 51(7): 1545-1551.
doi: 10.1111/ijfs.13123 URL |
[76] |
Lu JH, Hou H, Fan Y, et al. Identification of MMP-1 inhibitory peptides from cod skin gelatin hydrolysates and the inhibition mechanism by MAPK signaling pathway[J]. J Funct Foods, 2017, 33: 251-260.
doi: 10.1016/j.jff.2017.03.049 URL |
[77] |
Nasri M. Protein hydrolysates and biopeptides: production, biological activities, and applications in foods and health benefits. A review[J]. Adv Food Nutr Res, 2017, 81: 109-159.
doi: S1043-4526(16)30057-2 pmid: 28317603 |
[1] | 饶紫环, 谢志雄. 一株Olivibacter jilunii 纤维素降解菌株的分离鉴定与降解能力分析[J]. 生物技术通报, 2023, 39(8): 283-290. |
[2] | 车永梅, 郭艳苹, 刘广超, 叶青, 李雅华, 赵方贵, 刘新. 菌株C8和B4的分离鉴定及其耐盐促生效果和机制[J]. 生物技术通报, 2023, 39(5): 276-285. |
[3] | 王凤婷, 王岩, 孙颖, 崔文婧, 乔凯彬, 潘洪玉, 刘金亮. 耐盐碱土曲霉SYAT-1的分离鉴定及抑制植物病原真菌特性研究[J]. 生物技术通报, 2023, 39(2): 203-210. |
[4] | 祖雪, 周瑚, 朱华珺, 任佐华, 刘二明. 枯草芽孢杆菌K-268的分离鉴定及对水稻稻瘟病的防病效果[J]. 生物技术通报, 2022, 38(6): 136-146. |
[5] | 申恒, 刘思慧, 李跃, 李敬涛, 梁文星. 一种用于PCR的番茄DNA快速粗提方法[J]. 生物技术通报, 2022, 38(6): 74-80. |
[6] | 王春艳, 腊贵晓, 苏秀红, 李萌, 董诚明. 地黄不同时期内生促生细菌的筛选及其促生特性分析[J]. 生物技术通报, 2022, 38(4): 242-252. |
[7] | 张雨函, 范熠, 李婷婷, 庞爽, 刘为, 白可喻, 张西美. 基于宏基因组测序的植物叶表微生物富集及DNA提取方法[J]. 生物技术通报, 2022, 38(3): 256-263. |
[8] | 张功友, 王一涵, 郭敏, 张婷婷, 王兵, 刘红美. 重楼中一株产纤维素酶内生真菌的分离及鉴定[J]. 生物技术通报, 2022, 38(2): 95-104. |
[9] | 许博楠, 冯佳, 周见庭, 蒋建兰. 无细胞蛋白合成系统中细胞提取物和模板DNA的研究进展[J]. 生物技术通报, 2022, 38(12): 100-114. |
[10] | 成温玉, 张博昕, 赵鸿远, 陈艳, 谢娟平. 天然产物抗猪流行性腹泻病毒研究进展[J]. 生物技术通报, 2022, 38(12): 127-136. |
[11] | 牛鸿宇, 舒倩, 杨海君, 颜智勇, 谭菊. 一株十二烷基硫酸钠高效降解菌的分离鉴定、降解特性及代谢途径研究[J]. 生物技术通报, 2022, 38(12): 287-299. |
[12] | 岑潇龙, 雷曦, 马诗云, 陈倩茹, 黄遵锡, 周峻沛, 张蕊. 金黄色葡萄球菌透明质酸裂解酶HylS的异源表达与特性研究[J]. 生物技术通报, 2022, 38(1): 157-167. |
[13] | 崔欣雨, 李荣荣, 蔡瑞, 王妍, 郑猛虎, 徐春城. 苜蓿青贮中乳酸降解菌的分离、鉴定及降解性能研究[J]. 生物技术通报, 2021, 37(9): 58-67. |
[14] | 王小河, 辜夕容, 祁顺菊, 李杰, 崔瑶, 李得霞, 杨莉荟. 巴山榧树枝和叶提取物的抗氧化能力、抑菌活性与挥发性成分[J]. 生物技术通报, 2021, 37(8): 152-161. |
[15] | 张谦, 薛宇, 贺凌霄, 吴疆, 程玉渊, 杨铁钊, 丁永乐, 徐世晓, 薛刚. 密度、施氮量和留叶数对渠首1号香气特性彰显的影响[J]. 生物技术通报, 2021, 37(6): 24-35. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||