生物技术通报 ›› 2023, Vol. 39 ›› Issue (8): 31-42.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0378
收稿日期:
2023-04-20
出版日期:
2023-08-26
发布日期:
2023-09-05
通讯作者:
普莉,女,博士,研究员,研究方向:玉米产量和环境适应性的表观遗传基础和设计育种;E-mail: puli@caas.cn作者简介:
张道磊,男,博士研究生,研究方向:玉米产量和耐逆的表观遗传调控机制;E-mail: 117854265141@163.com基金资助:
ZHANG Dao-lei1,2(), GAN Yu-jun1, LE Liang1, PU Li1()
Received:
2023-04-20
Published:
2023-08-26
Online:
2023-09-05
摘要:
作物表型的多样性受到多方面因素的影响,其中表观遗传变异可以通过表观修饰调控基因表达来控制作物性状及胁迫响应,进而影响农作物产量。影响玉米产量的主要农艺性状包括株高、叶夹角、根系等株型因素。此外,生物胁迫和非生物胁迫、种质资源也是影响玉米产量的关键因素。作物中主要的表观调控方式包括组蛋白修饰、DNA修饰、RNA修饰、非编码RNA及染色质重构。本综述重点总结了表观遗传修饰对玉米主要产量性状的调控机制及表观遗传变化在作物品种改良中的重要性,并结合表观遗传编辑技术提出了提高玉米产量的表观育种新途径。
张道磊, 甘雨军, 乐亮, 普莉. 玉米产量性状的表观遗传调控机制和育种应用[J]. 生物技术通报, 2023, 39(8): 31-42.
ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding[J]. Biotechnology Bulletin, 2023, 39(8): 31-42.
类型Type | 修饰相关酶Modification related enzymes | 修饰Modification | 参考文献Reference |
---|---|---|---|
甲基化酶Writer | HIZ1/2(Arabidopsis thaliana) | m6A | [ |
MTA/B(Arabidopsis thaliana) | |||
FIP37(Arabidopsis thaliana) | |||
VIR(Arabidopsis thaliana) | |||
TRM4A/4B(Arabidopsis thaliana) | m5C | [ | |
OsNSUN1/2(Rice) | |||
PhTRMT61A(Petunia) | m1A | [ | |
去甲基化酶Eraser | ALKBH9B(Arabidopsis thaliana) | m6A | [ |
ALKBH10B(Arabidopsis thaliana) | |||
识别蛋白Reader | ECT2/ECT3/ECT4(Arabidopsis thaliana) | m6A | [ |
CPSF30L(Arabidopsis thaliana) |
表1 植物中RNA修饰相关酶
Table 1 RNA modification related enzymes in plants
类型Type | 修饰相关酶Modification related enzymes | 修饰Modification | 参考文献Reference |
---|---|---|---|
甲基化酶Writer | HIZ1/2(Arabidopsis thaliana) | m6A | [ |
MTA/B(Arabidopsis thaliana) | |||
FIP37(Arabidopsis thaliana) | |||
VIR(Arabidopsis thaliana) | |||
TRM4A/4B(Arabidopsis thaliana) | m5C | [ | |
OsNSUN1/2(Rice) | |||
PhTRMT61A(Petunia) | m1A | [ | |
去甲基化酶Eraser | ALKBH9B(Arabidopsis thaliana) | m6A | [ |
ALKBH10B(Arabidopsis thaliana) | |||
识别蛋白Reader | ECT2/ECT3/ECT4(Arabidopsis thaliana) | m6A | [ |
CPSF30L(Arabidopsis thaliana) |
[1] |
Bailey-Serres J, Parker JE, Ainsworth EA, et al. Genetic strategies for improving crop yields[J]. Nature, 2019, 575(7781): 109-118.
doi: 10.1038/s41586-019-1679-0 |
[2] |
Wang HZ, Ren H, Zhang LH, et al. A sustainable approach to narrowing the summer maize yield gap experienced by smallholders in the North China Plain[J]. Agric Syst, 2023, 204: 103541.
doi: 10.1016/j.agsy.2022.103541 URL |
[3] |
Lieberman-Lazarovich M, Kaiserli E, Bucher E, et al. Natural and induced epigenetic variation for crop improvement[J]. Curr Opin Plant Biol, 2022, 70: 102297.
doi: 10.1016/j.pbi.2022.102297 URL |
[4] |
Fang X, Bo C, Wang MJ, et al. Overexpression of the maize WRKY114 gene in transgenic rice reduce plant height by regulating the biosynthesis of GA[J]. Plant Signal Behav, 2021, 16(11): 1967635.
doi: 10.1080/15592324.2021.1967635 URL |
[5] |
Du XB, Wang Z, Lei WX, et al. Increased planting density combined with reduced nitrogen rate to achieve high yield in maize[J]. Sci Rep, 2021, 11(1): 358.
doi: 10.1038/s41598-020-79633-z pmid: 33432054 |
[6] |
Wang CL, Gao B, Chen NN, et al. A novel senescence-specific gene(ZmSAG39)negatively regulates darkness and drought responses in maize[J]. Int J Mol Sci, 2022, 23(24): 15984.
doi: 10.3390/ijms232415984 URL |
[7] |
Li W, Ge FH, Qiang ZQ, et al. Maize ZmRPH1 encodes a microtubule-associated protein that controls plant and ear height[J]. Plant Biotechnol J, 2020, 18(6): 1345-1347.
doi: 10.1111/pbi.v18.6 URL |
[8] |
Wang FX, Yu ZP, Zhang ML, et al. ZmTE1 promotes plant height by regulating intercalary meristem formation and internode cell elongation in maize[J]. Plant Biotechnol J, 2022, 20(3): 526-537.
doi: 10.1111/pbi.v20.3 URL |
[9] |
Teng F, Zhai LH, Liu RX, et al. ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize[J]. Plant J, 2013, 73(3): 405-416.
doi: 10.1111/tpj.12038 URL |
[10] |
Cao YY, Zeng HX, Ku LX, et al. ZmIBH1-1 regulates plant architecture in maize[J]. J Exp Bot, 2020, 71(10): 2943-2955.
doi: 10.1093/jxb/eraa052 pmid: 31990030 |
[11] |
Gao HJ, Cui JJ, Liu SX, et al. Natural variations of ZmSRO1d modulate the trade-off between drought resistance and yield by affecting ZmRBOHC-mediated stomatal ROS production in maize[J]. Mol Plant, 2022, 15(10): 1558-1574.
doi: 10.1016/j.molp.2022.08.009 URL |
[12] |
Cao YY, Dou DD, Zhang DL, et al. ZmDWF1 regulates leaf angle in maize[J]. Plant Sci, 2022, 325: 111459.
doi: 10.1016/j.plantsci.2022.111459 URL |
[13] |
Zhang J, Ku LX, Han ZP, et al. 1 QTL controls leaf angle in maize(Zea mays L.)[J]. J Exp Bot, 2014, 65(17): 5063-5076.
doi: 10.1093/jxb/eru271 pmid: 24987012 |
[14] |
Mei XP, Nan J, Zhao ZK, et al. Maize transcription factor ZmNF-YC13 regulates plant architecture[J]. J Exp Bot, 2021, 72(13): 4757-4772.
doi: 10.1093/jxb/erab157 URL |
[15] |
Ji XZ, Gao QH, Chen FQ, et al. Mutant lpa1 analysis of ZmLPA1 gene regulates maize leaf-angle development through the auxin pathway[J]. Int J Mol Sci, 2022, 23(9): 4886.
doi: 10.3390/ijms23094886 URL |
[16] |
Lynch JP. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems[J]. Ann Bot, 2013, 112(2): 347-357.
doi: 10.1093/aob/mcs293 URL |
[17] |
Meister R, Rajani MS, Ruzicka D, et al. Challenges of modifying root traits in crops for agriculture[J]. Trends Plant Sci, 2014, 19(12): 779-788.
doi: 10.1016/j.tplants.2014.08.005 pmid: 25239776 |
[18] |
Liu SX, Liu XH, Zhang XM, et al. Co-expression of ZmVPP1 with ZmNAC111 confers robust drought resistance in maize[J]. Genes, 2022, 14(1): 8.
doi: 10.3390/genes14010008 URL |
[19] |
Antoni R, Gonzalez-Guzman M, Rodriguez L, et al. PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root[J]. Plant Physiol, 2013, 161(2): 931-941.
doi: 10.1104/pp.112.208678 pmid: 23370718 |
[20] |
Ma HZ, Liu C, Li ZX, et al. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development[J]. Plant Physiol, 2018, 178(2): 753-770.
doi: 10.1104/pp.18.00436 pmid: 30126870 |
[21] |
Foyer CH, Rasool B, Davey JW, et al. Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation[J]. J Exp Bot, 2016, 67(7): 2025-2037.
doi: 10.1093/jxb/erw079 pmid: 26936830 |
[22] |
Cohen SP, Leach JE. Abiotic and biotic stresses induce a core transcriptome response in rice[J]. Sci Rep, 2019, 9(1): 6273.
doi: 10.1038/s41598-019-42731-8 pmid: 31000746 |
[23] |
Dowd PF, Johnson ET. Maize peroxidase Px5 has a highly conserved sequence in inbreds resistant to mycotoxin producing fungi which enhances fungal and insect resistance[J]. J Plant Res, 2016, 129(1): 13-20.
doi: 10.1007/s10265-015-0770-3 pmid: 26659597 |
[24] |
Bai H, Si HL, Zang JP, et al. Comparative proteomic analysis of the defense response to Gibberella stalk rot in maize and reveals that ZmWRKY83 is involved in plant disease resistance[J]. Front Plant Sci, 2021, 12: 694973.
doi: 10.3389/fpls.2021.694973 URL |
[25] |
Hang TL, Ling XZ, He C, et al. Isolation of the ZmERS4 gene from maize and its functional analysis in transgenic plants[J]. Front Microbiol, 2021, 12: 632908.
doi: 10.3389/fmicb.2021.632908 URL |
[26] |
Qin QQ, Zhao YJ, Zhang JJ, et al. A maize heat shock factor ZmHsf11 negatively regulates heat stress tolerance in transgenic plants[J]. BMC Plant Biol, 2022, 22(1): 406.
doi: 10.1186/s12870-022-03789-1 pmid: 35986244 |
[27] |
van Heerwaarden J, Hufford MB, Ross-Ibarra J. Historical genomics of North American maize[J]. Proc Natl Acad Sci USA, 2012, 109(31): 12420-12425.
doi: 10.1073/pnas.1209275109 pmid: 22802642 |
[28] |
Shi JR, Habben JE, Archibald RL, et al. Overexpression of ARGOS genes modifies plant sensitivity to ethylene, leading to improved drought tolerance in both Arabidopsis and maize[J]. Plant Physiol, 2015, 169(1): 266-282.
doi: 10.1104/pp.15.00780 URL |
[29] |
Song YF, Li CX, Zhu Y, et al. Overexpression of ZmIPT2 gene delays leaf senescence and improves grain yield in maize[J]. Front Plant Sci, 2022, 13: 963873.
doi: 10.3389/fpls.2022.963873 URL |
[30] |
Berr A, Shafiq S, Shen WH. Histone modifications in transcriptional activation during plant development[J]. Biochim Biophys Acta, 2011, 1809(10): 567-576.
doi: 10.1016/j.bbagrm.2011.07.001 pmid: 21777708 |
[31] |
Shen WH, Xu L. Chromatin remodeling in stem cell maintenance in Arabidopsis thaliana[J]. Mol Plant, 2009, 2(4): 600-609.
doi: 10.1093/mp/ssp022 URL |
[32] |
Alvarez ME, Nota F, Cambiagno DA. Epigenetic control of plant immunity[J]. Mol Plant Pathol, 2010, 11(4): 563-576.
doi: 10.1111/j.1364-3703.2010.00621.x pmid: 20618712 |
[33] |
Yu J, Xu F, Wei ZW, et al. Epigenomic landscape and epigenetic regulation in maize[J]. Theor Appl Genet, 2020, 133(5): 1467-1489.
doi: 10.1007/s00122-020-03549-5 pmid: 31965233 |
[34] |
Jenuwein T, Allis CD. Translating the histone code[J]. Science, 2001, 293(5532): 1074-1080.
doi: 10.1126/science.1063127 pmid: 11498575 |
[35] |
Zhou DX. Regulatory mechanism of histone epigenetic modifications in plants[J]. Epigenetics, 2009, 4(1): 15-18.
doi: 10.4161/epi.4.1.7371 URL |
[36] |
Zhao Y, Zhou DX. Epigenomic modification and epigenetic regulation in rice[J]. J Genet Genomics, 2012, 39(7): 307-315.
doi: 10.1016/j.jgg.2012.02.009 pmid: 22835977 |
[37] |
Xu F, Kuo T, Rosli Y, et al. Trithorax group proteins act together with a polycomb group protein to maintain chromatin integrity for epigenetic silencing during seed germination in Arabidopsis[J]. Mol Plant, 2018, 11(5): 659-677.
doi: 10.1016/j.molp.2018.01.010 URL |
[38] | Zhang DL, Guo WJ, Wang T, et al. RNA 5-methylcytosine modification regulates vegetative development associated with H3K27 trimethylation in Arabidopsis[J]. Adv Sci, 2022, 10(1): e2204885. |
[39] |
Varotto S, Locatelli S, Canova S, et al. Expression profile and cellular localization of maize Rpd3-type histone deacetylases during plant development[J]. Plant Physiol, 2003, 133(2): 606-617.
pmid: 12972660 |
[40] |
Forestan C, Farinati S, Rouster J, et al. Control of maize vegetative and reproductive development, fertility, and rRNAs silencing by HISTONE DEACETYLASE 108[J]. Genetics, 2018, 208(4): 1443-1466.
doi: 10.1534/genetics.117.300625 URL |
[41] |
Zhang H, Yue MX, Zheng XK, et al. The role of promoter-associated histone acetylation of Haem oxygenase-1(HO-1)and Giberellic acid-stimulated like-1(GSL-1)genes in heat-induced lateral root primordium inhibition in maize[J]. Front Plant Sci, 2018, 9: 1520.
doi: 10.3389/fpls.2018.01520 pmid: 30459784 |
[42] |
Wang XF, Elling AA, Li XY, et al. Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize[J]. Plant Cell, 2009, 21(4): 1053-1069.
doi: 10.1105/tpc.109.065714 pmid: 19376930 |
[43] |
Kermicle JL. Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission[J]. Genetics, 1970, 66(1): 69-85.
doi: 10.1093/genetics/66.1.69 pmid: 17248508 |
[44] |
Zhang M, Xie SJ, Dong XM, et al. Genome-wide high resolution parental-specific DNA and histone methylation maps uncover patterns of imprinting regulation in maize[J]. Genome Res, 2014, 24(1): 167-176.
doi: 10.1101/gr.155879.113 pmid: 24131563 |
[45] |
Li H, Yan SH, Zhao L, et al. Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling[J]. BMC Plant Biol, 2014, 14: 105.
doi: 10.1186/1471-2229-14-105 pmid: 24758373 |
[46] |
Zhao L, Wang P, Yan SH, et al. Promoter-associated histone acetylation is involved in the osmotic stress-induced transcriptional regulation of the maize ZmDREB2A gene[J]. Physiol Plant, 2014, 151(4): 459-467.
doi: 10.1111/ppl.12136 pmid: 24299295 |
[47] |
Wang C, Yang Q, Wang WX, et al. A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize[J]. New Phytol, 2017, 215(4): 1503-1515.
doi: 10.1111/nph.2017.215.issue-4 URL |
[48] |
Shi Z, Zhou MY, Song W, et al. Trash to treasure: lactate and protein lactylation in maize root impacts response to drought[J]. Sci China Life Sci, 2023. DOI: 10.1007/s11427-023-2361-1.
doi: 10.1007/s11427-023-2361-1 |
[49] |
Vanyushin BF, Tkacheva SG, Belozersky AN. Rare bases in animal DNA[J]. Nature, 1970, 225(5236): 948-949.
doi: 10.1038/225948a0 |
[50] |
Zhang Q, Liang Z, Cui XA, et al. N6-methyladenine DNA methylation in Japonica and indica rice genomes and its association with gene expression, plant development, and stress responses[J]. Mol Plant, 2018, 11(12): 1492-1508.
doi: S1674-2052(18)30341-1 pmid: 30448535 |
[51] |
Feng SH, Cokus SJ, Zhang XY, et al. Conservation and divergence of methylation patterning in plants and animals[J]. Proc Natl Acad Sci USA, 2010, 107(19): 8689-8694.
doi: 10.1073/pnas.1002720107 pmid: 20395551 |
[52] |
Deniz Ö, Frost JM, Branco MR. Regulation of transposable elements by DNA modifications[J]. Nat Rev Genet, 2019, 20(7): 417-431.
doi: 10.1038/s41576-019-0106-6 pmid: 30867571 |
[53] |
Niederhuth CE, Schmitz RJ. Putting DNA methylation in context: from genomes to gene expression in plants[J]. Biochim Biophys Acta Gene Regul Mech, 2017, 1860(1): 149-156.
doi: 10.1016/j.bbagrm.2016.08.009 URL |
[54] |
Lu YL, Rong TZ, Cao MJ. Analysis of DNA methylation in different maize tissues[J]. J Genet Genomics, 2008, 35(1): 41-48.
doi: 10.1016/S1673-8527(08)60006-5 pmid: 18222408 |
[55] |
Eichten SR, Briskine R, Song J, et al. Epigenetic and genetic influences on DNA methylation variation in maize populations[J]. Plant Cell, 2013, 25(8): 2783-2797.
doi: 10.1105/tpc.113.114793 URL |
[56] |
Castelletti S, Tuberosa R, Pindo M, et al. A MITE transposon insertion is associated with differential methylation at the maize flowering time QTL Vgt1[J]. G3, 2014, 4(5): 805-812.
doi: 10.1534/g3.114.010686 URL |
[57] |
Mao HD, Wang HW, Liu SX, et al. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings[J]. Nat Commun, 2015, 6: 8326.
doi: 10.1038/ncomms9326 |
[58] |
Candaele J, Demuynck K, Mosoti D, et al. Differential methylation during maize leaf growth targets developmentally regulated genes[J]. Plant Physiol, 2014, 164(3): 1350-1364.
doi: 10.1104/pp.113.233312 pmid: 24488968 |
[59] |
Long JC, Xia AA, Liu JH, et al. Decrease in DNA methylation 1(DDM1)is required for the formation of m CHH islands in maize[J]. J Integr Plant Biol, 2019, 61(6): 749-764.
doi: 10.1111/jipb.v61.6 URL |
[60] |
Li Q, Eichten SR, Hermanson PJ, et al. Genetic perturbation of the maize methylome[J]. Plant Cell, 2014, 26(12): 4602-4616.
doi: 10.1105/tpc.114.133140 URL |
[61] |
Dunn DB, Smith JD. Occurrence of a new base in the deoxyribonucleic acid of a strain of bacterium coli[J]. Nature, 1955, 175(4451): 336-337.
doi: 10.1038/175336a0 |
[62] |
Low DA, Weyand NJ, Mahan MJ. Roles of DNA adenine methylation in regulating bacterial gene expression and virulence[J]. Infect Immun, 2001, 69(12): 7197-7204.
doi: 10.1128/IAI.69.12.7197-7204.2001 pmid: 11705888 |
[63] |
Liang Z, Shen LS, Cui XA, et al. DNA N6-adenine methylation in Arabidopsis thaliana[J]. Dev Cell, 2018, 45(3): 406-416.e3.
doi: S1534-5807(18)30232-6 pmid: 29656930 |
[64] |
Erdmann RM, Souza AL, Clish CB, et al. 5-hydroxymethylcytosine is not present in appreciable quantities in Arabidopsis DNA[J]. G3, 2014, 5(1): 1-8.
doi: 10.1534/g3.114.014670 URL |
[65] |
Wang S, Xie HR, Mao F, et al. N4-acetyldeoxycytosine DNA modification marks euchromatin regions in Arabidopsis thaliana[J]. Genome Biol, 2022, 23(1): 5.
doi: 10.1186/s13059-021-02578-7 |
[66] |
Zhao LY, Song JH, Liu YB, et al. Mapping the epigenetic modifications of DNA and RNA[J]. Protein Cell, 2020, 11(11): 792-808.
doi: 10.1007/s13238-020-00733-7 |
[67] |
Gilbert WV, Bell TA, Schaening C. Messenger RNA modifications: form, distribution, and function[J]. Science, 2016, 352(6292): 1408-1412.
doi: 10.1126/science.aad8711 pmid: 27313037 |
[68] |
Liang Z, Riaz A, Chachar S, et al. Epigenetic modifications of mRNA and DNA in plants[J]. Mol Plant, 2020, 13(1): 14-30.
doi: S1674-2052(19)30404-6 pmid: 31863849 |
[69] |
Zhong SL, Li HY, Bodi Z, et al. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor[J]. Plant Cell, 2008, 20(5): 1278-1288.
doi: 10.1105/tpc.108.058883 URL |
[70] |
Shen LS, Liang Z, Gu XF, et al. N6-methyladenosine RNA modification regulates shoot stem cell fate in Arabidopsis[J]. Dev Cell, 2016, 38(2): 186-200.
doi: 10.1016/j.devcel.2016.06.008 URL |
[71] |
Duan HC, Wei LH, Zhang C, et al. ALKBH10B is an RNA N6-methyladenosine demethylase affecting Arabidopsis floral transition[J]. Plant Cell, 2017, 29(12): 2995-3011.
doi: 10.1105/tpc.16.00912 URL |
[72] |
Zhang F, Zhang YC, Liao JY, et al. The subunit of RNA N6-methyladenosine methyltransferase OsFIP regulates early degeneration of microspores in rice[J]. PLoS Genet, 2019, 15(5): e1008120.
doi: 10.1371/journal.pgen.1008120 URL |
[73] |
Zhou LL, Tian SP, Qin GZ. RNA methylomes reveal the m6A-mediated regulation of DNA demethylase gene SlDML2 in tomato fruit ripening[J]. Genome Biol, 2019, 20(1): 156.
doi: 10.1186/s13059-019-1771-7 |
[74] |
Arribas-Hernández L, Bressendorff S, Hansen MH, et al. An m6A-YTH module controls developmental timing and morphogenesis in Arabidopsis[J]. Plant Cell, 2018, 30(5): 952-967.
doi: 10.1105/tpc.17.00833 URL |
[75] |
Miao ZY, Zhang T, Qi YH, et al. Evolution of the RNA N6-methyladenosine methylome mediated by genomic duplication[J]. Plant Physiol, 2020, 182(1): 345-360.
doi: 10.1104/pp.19.00323 URL |
[76] |
Wang S, Wang HY, Xu ZH, et al. m6A mRNA modification promotes chilling tolerance and modulates gene translation efficiency in Arabidopsis[J]. Plant Physiol, 2023, 192(2): 1466-1482.
doi: 10.1093/plphys/kiad112 URL |
[77] |
Luo JH, Wang Y, Wang M, et al. Natural variation in RNA m6A methylation and its relationship with translational status[J]. Plant Physiol, 2020, 182(1): 332-344.
doi: 10.1104/pp.19.00987 URL |
[78] |
Cui XA, Liang Z, Shen LS, et al. 5-methylcytosine RNA methylation in Arabidopsis thaliana[J]. Mol Plant, 2017, 10(11): 1387-1399.
doi: 10.1016/j.molp.2017.09.013 URL |
[79] |
David R, Burgess A, Parker B, et al. Transcriptome-wide mapping of RNA 5-methylcytosine in Arabidopsis mRNAs and noncoding RNAs[J]. Plant Cell, 2017, 29(3): 445-460.
doi: 10.1105/tpc.16.00751 URL |
[80] |
Tang YY, Gao CC, Gao Y, et al. OsNSUN2-mediated 5-methylcytosine mRNA modification enhances rice adaptation to high temperature[J]. Dev Cell, 2020, 53(3): 272-286.e7.
doi: S1534-5807(20)30193-3 pmid: 32275888 |
[81] |
Yu Q, Liu S, Yu L, et al. RNA demethylation increases the yield and biomass of rice and potato plants in field trials[J]. Nat Biotechnol, 2021, 39(12): 1581-1588.
doi: 10.1038/s41587-021-00982-9 pmid: 34294912 |
[82] |
Zhang M, Bodi Z, MacKinnon K, et al. Two zinc finger proteins with functions in m6A writing interact with HAKAI[J]. Nat Commun, 2022, 13(1): 1127.
doi: 10.1038/s41467-022-28753-3 pmid: 35236848 |
[83] |
Yang WY, Meng J, Liu JX, et al. The N1-methyladenosine methylome of Petunia mRNA[J]. Plant Physiol, 2020, 183(4): 1710-1724.
doi: 10.1104/pp.20.00382 URL |
[84] |
Tang J, Yang JB, Lu Q, et al. The RNA N6-methyladenosine demethylase ALKBH9B modulates ABA responses in Arabidop-sis[J]. J Integr Plant Biol, 2022, 64(12): 2361-2373.
doi: 10.1111/jipb.v64.12 URL |
[85] |
Centore RC, Sandoval GJ, Soares LMM, et al. Mammalian SWI/SNF chromatin remodeling complexes: emerging mechanisms and therapeutic strategies[J]. Trends Genet, 2020, 36(12): 936-950.
doi: 10.1016/j.tig.2020.07.011 pmid: 32873422 |
[86] |
Shang JY, He XJ. Chromatin-remodeling complexes: conserved and plant-specific subunits in Arabidopsis[J]. J Integr Plant Biol, 2022, 64(2): 499-515.
doi: 10.1111/jipb.v64.2 URL |
[87] |
Meng XC, Yu XM, Wu YF, et al. Chromatin remodeling protein ZmCHB101 regulates nitrate-responsive gene expression in maize[J]. Front Plant Sci, 2020, 11: 52.
doi: 10.3389/fpls.2020.00052 pmid: 32117389 |
[88] |
Sang Y, Silva-Ortega CO, Wu S, et al. Mutations in two non-canonical Arabidopsis SWI2/SNF2 chromatin remodeling ATPases cause embryogenesis and stem cell maintenance defects[J]. Plant J, 2012, 72(6): 1000-1014.
doi: 10.1111/tpj.2012.72.issue-6 URL |
[89] |
Kang HJ, Fan TY, Wu JB, et al. Histone modification and chromatin remodeling in plant response to pathogens[J]. Front Plant Sci, 2022, 13: 986940.
doi: 10.3389/fpls.2022.986940 URL |
[90] |
Zhu M, Zhang M, Xing LJ, et al. Transcriptomic analysis of long non-coding RNAs and coding genes uncovers a complex regulatory network that is involved in maize seed development[J]. Genes, 2017, 8(10): 274.
doi: 10.3390/genes8100274 URL |
[91] |
Zhang W, Han ZX, Guo QL, et al. Identification of maize long non-coding RNAs responsive to drought stress[J]. PLoS One, 2014, 9(6): e98958.
doi: 10.1371/journal.pone.0098958 URL |
[92] |
Du QG, Wang K, Zou C, et al. The PILNCR1-miR399 regulatory module is important for low phosphate tolerance in maize[J]. Plant Physiol, 2018, 177(4): 1743-1753.
doi: 10.1104/pp.18.00034 URL |
[93] |
Zhang BH, Wang QL, Pan XP. microRNAs and their regulatory roles in animals and plants[J]. J Cell Physiol, 2007, 210(2): 279-289.
doi: 10.1002/jcp.20869 pmid: 17096367 |
[94] |
Zheng LJ, Zhang XG, Zhang HJ, et al. The miR164-dependent regulatory pathway in developing maize seed[J]. Mol Genet Genomics, 2019, 294(2): 501-517.
doi: 10.1007/s00438-018-1524-4 pmid: 30607602 |
[95] |
Zhang MB, An PP, Li HP, et al. The miRNA-mediated post-transcriptional regulation of maize in response to high temperature[J]. Int J Mol Sci, 2019, 20(7): 1754.
doi: 10.3390/ijms20071754 URL |
[96] |
Xia ZH, Zhao ZX, Jiao ZY, et al. Virus-derived small interfering RNAs affect the accumulations of viral and host transcripts in maize[J]. Viruses, 2018, 10(12): 664.
doi: 10.3390/v10120664 URL |
[97] |
Luo Z, Han LQ, Qian J, et al. Circular RNAs exhibit extensive intraspecific variation in maize[J]. Planta, 2019, 250(1): 69-78.
doi: 10.1007/s00425-019-03145-y pmid: 30904942 |
[98] |
Bonasio R, Tu SJ, Reinberg D. Molecular signals of epigenetic states[J]. Science, 2010, 330(6004): 612-616.
doi: 10.1126/science.1191078 pmid: 21030644 |
[99] |
Nuñez JK, Chen J, Pommier GC, et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing[J]. Cell, 2021, 184(9): 2503-2519.e17.
doi: 10.1016/j.cell.2021.03.025 pmid: 33838111 |
[100] |
Moussa HF, Angstman JF, Khalil AS. Here to stay: writing lasting epigenetic memories[J]. Cell, 2021, 184(9): 2281-2283.
doi: 10.1016/j.cell.2021.04.007 pmid: 33930295 |
[101] |
Dhakate P, Sehgal D, Vaishnavi S, et al. Comprehending the evolution of gene editing platforms for crop trait improvement[J]. Front Genet, 2022, 13: 876987.
doi: 10.3389/fgene.2022.876987 URL |
[102] |
Gallego-Bartolomé J, Liu WL, Kuo PH, et al. Co-targeting RNA polymerases IV and V promotes efficient de novo DNA methylation in Arabidopsis[J]. Cell, 2019, 176(5): 1068-1082.e19.
doi: S0092-8674(19)30092-3 pmid: 30739798 |
[103] |
Papikian A, Liu WL, Gallego-Bartolomé J, et al. Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems[J]. Nat Commun, 2019, 10(1): 729.
doi: 10.1038/s41467-019-08736-7 pmid: 30760722 |
[104] |
Liu SS, Sretenovic S, Fan TT, et al. Hypercompact CRISPR-Cas12j2(CasΦ)enables genome editing, gene activation, and epigenome editing in plants[J]. Plant Commun, 2022, 3(6): 100453.
doi: 10.1016/j.xplc.2022.100453 URL |
[105] |
de Melo BP, Lourenço-Tessutti IT, Paixão JFR, et al. Transcriptional modulation of AREB-1 by CRISPRa improves plant physiological performance under severe water deficit[J]. Sci Rep, 2020, 10(1): 16231.
doi: 10.1038/s41598-020-72464-y pmid: 33004844 |
[106] |
Yang LW, Zhang PX, Wang YF, et al. Plant synthetic epigenomic engineering for crop improvement[J]. Sci China Life Sci, 2022, 65(11): 2191-2204.
doi: 10.1007/s11427-021-2131-6 pmid: 35851940 |
[107] |
Zhang PX, Wang YF, Chachar S, et al. eRice: a refined epigenomic platform for japonica and indica rice[J]. Plant Biotechnol J, 2020, 18(8): 1642-1644.
doi: 10.1111/pbi.13329 pmid: 31916375 |
[108] |
Guo WJ, Liu HQ, Wang YF, et al. SMOC: a smart model for open chromatin region prediction in rice genomes[J]. J Genet Genomics, 2022, 49(5): 514-517.
doi: 10.1016/j.jgg.2022.02.012 pmid: 35240305 |
[109] |
Wang YF, Zhang PX, Guo WJ, et al. A deep learning approach to automate whole-genome prediction of diverse epigenomic modifications in plants[J]. New Phytol, 2021, 232(2): 880-897.
doi: 10.1111/nph.17630 pmid: 34287908 |
[110] |
Hawkins E, Fricker TE, Challinor AJ, et al. Increasing influence of heat stress on French maize yields from the 1960s to the 2030s[J]. Glob Chang Biol, 2013, 19(3): 937-947.
doi: 10.1111/gcb.2013.19.issue-3 URL |
[111] |
Luo Y, Zhang ML, Liu Y, et al. Genetic variation in YIGE1 contributes to ear length and grain yield in maize[J]. New Phytol, 2022, 234(2): 513-526.
doi: 10.1111/nph.v234.2 URL |
[112] |
Sun Q, Hu AQ, Mu LY, et al. Identification of a candidate gene underlying qHKW3, a QTL for hundred-kernel weight in maize[J]. Theor Appl Genet, 2022, 135(5): 1579-1589.
doi: 10.1007/s00122-022-04055-6 |
[113] |
Zhang J, Fengler KA, Van Hemert JL, et al. Identification and characterization of a novel stay-green QTL that increases yield in maize[J]. Plant Biotechnol J, 2019, 17(12): 2272-2285.
doi: 10.1111/pbi.13139 pmid: 31033139 |
[114] |
Dou DD, Han SB, Cao LR, et al. CLA4 regulates leaf angle through multiple hormone signaling pathways in maize[J]. J Exp Bot, 2021, 72(5): 1782-1794.
doi: 10.1093/jxb/eraa565 pmid: 33270106 |
[115] |
Wang GY, Zhao YM, Mao WB, et al. QTL analysis and fine mapping of a major QTL conferring kernel size in maize(Zea mays)[J]. Front Genet, 2020, 11: 603920.
doi: 10.3389/fgene.2020.603920 URL |
[116] |
Guo W, Wang DF, Lisch D. RNA-directed DNA methylation prevents rapid and heritable reversal of transposon silencing under heat stress in Zea mays[J]. PLoS Genet, 2021, 17(6): e1009326.
doi: 10.1371/journal.pgen.1009326 URL |
[117] |
Hou HL, Zhao L, Zheng XK, et al. Dynamic changes in histone modification are associated with upregulation of Hsf and rRNA genes during heat stress in maize seedlings[J]. Protoplasma, 2019, 256(5): 1245-1256.
doi: 10.1007/s00709-019-01364-4 pmid: 31030267 |
[118] |
Wang Q, Xu J, Pu XM, et al. Maize DNA methylation in response to drought stress is involved in target gene expression and alternative splicing[J]. Int J Mol Sci, 2021, 22(15): 8285.
doi: 10.3390/ijms22158285 URL |
[119] |
Liang ZK, Anderson SN, Noshay JM, et al. Genetic and epigenetic variation in transposable element expression responses to abiotic stress in maize[J]. Plant Physiol, 2021, 186(1): 420-433.
doi: 10.1093/plphys/kiab073 pmid: 33591319 |
[120] |
Silveira AB, Trontin C, Cortijo S, et al. Extensive natural epigenetic variation at a de novo originated gene[J]. PLoS Genet, 2013, 9(4): e1003437.
doi: 10.1371/journal.pgen.1003437 URL |
[121] |
Schmitz RJ, He YP, Valdés-López O, et al. Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population[J]. Genome Res, 2013, 23(10): 1663-1674.
doi: 10.1101/gr.152538.112 pmid: 23739894 |
[1] | 王贵芳, 姚元涛, 许海峰, 相昆, 梁家慧, 张淑辉, 王文茹, 张明娟, 张美勇, 陈新. 核桃JrSnRK1α1.1调控种子油脂合成与积累[J]. 生物技术通报, 2023, 39(9): 183-191. |
[2] | 展艳, 周利斌, 金文杰, 杜艳, 余丽霞, 曲颖, 马永贵, 刘瑞媛. 辐射诱导植物叶色突变的研究进展[J]. 生物技术通报, 2023, 39(8): 106-113. |
[3] | 王宝宝, 王海洋. 理想株型塑造之于玉米耐密改良[J]. 生物技术通报, 2023, 39(8): 11-30. |
[4] | 冷燕, 马晓薇, 陈光, 任鹤, 李翔. 玉米高产竞赛助力中国玉米种业振兴[J]. 生物技术通报, 2023, 39(8): 4-10. |
[5] | 王天依, 王荣焕, 王夏青, 张如养, 徐瑞斌, 焦炎炎, 孙轩, 王继东, 宋伟, 赵久然. 玉米矮秆基因与矮秆育种研究[J]. 生物技术通报, 2023, 39(8): 43-51. |
[6] | 刘月娥, 徐田军, 蔡万涛, 吕天放, 张勇, 薛洪贺, 王荣焕, 赵久然. 我国玉米超高产研究现状与展望[J]. 生物技术通报, 2023, 39(8): 52-61. |
[7] | 张勇, 徐田军, 吕天放, 邢锦丰, 刘宏伟, 蔡万涛, 刘月娥, 赵久然, 王荣焕. 种植密度对夏播玉米茎秆质量和根系表型性状的影响[J]. 生物技术通报, 2023, 39(8): 70-79. |
[8] | 李玉岭, 毛欣, 张元帅, 董元夫, 刘翠兰, 段春华, 毛秀红. 辐射诱变技术在木本植物育种中的应用及展望[J]. 生物技术通报, 2023, 39(6): 12-30. |
[9] | 朱少喜, 金肇阳, 葛建镕, 王蕊, 王凤格, 路运才. 基于KASP平台的转基因玉米高通量特异性检测方法[J]. 生物技术通报, 2023, 39(6): 133-140. |
[10] | 雷彩荣, 郭晓鹏, 柴冉, 张苗苗, 任军乐, 陆栋. 组学技术在重离子辐射微生物诱变育种中的应用[J]. 生物技术通报, 2023, 39(5): 54-62. |
[11] | 薛皦, 朱庆锋, 冯彦钊, 陈沛, 刘文华, 张爱霞, 刘勤坚, 张琪, 于洋. 植物基因上游开放阅读框的研究进展[J]. 生物技术通报, 2023, 39(4): 157-165. |
[12] | 陈楠楠, 王春来, 蒋振忠, 焦鹏, 关淑艳, 马义勇. 玉米ZmDHN15基因在烟草中的遗传转化及抗冷性分析[J]. 生物技术通报, 2023, 39(4): 259-267. |
[13] | 李旺宁, 张豪杰, 李亚男, 梁梦静, 季春丽, 张春辉, 李润植, 崔玉琳, 秦松, 崔红利. 莱茵衣藻蓝光受体植物类型隐花色素CRY突变体的表型鉴定[J]. 生物技术通报, 2023, 39(2): 243-253. |
[14] | 杨茂, 林宇丰, 戴阳朔, 潘素君, 彭伟业, 严明雄, 李魏, 王冰, 戴良英. OsDIS1通过抗氧化途径负调控水稻耐旱性[J]. 生物技术通报, 2023, 39(2): 88-95. |
[15] | 李双喜, 华进联. 抗猪繁殖与呼吸障碍综合征基因编辑猪研究进展[J]. 生物技术通报, 2023, 39(10): 50-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||