生物技术通报 ›› 2023, Vol. 39 ›› Issue (8): 43-51.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0504
王天依(), 王荣焕, 王夏青, 张如养, 徐瑞斌, 焦炎炎, 孙轩, 王继东, 宋伟(), 赵久然()
收稿日期:
2023-05-26
出版日期:
2023-08-26
发布日期:
2023-09-05
通讯作者:
赵久然,男,博士,研究员,研究方向:玉米遗传育种;E-mail: maizezhao@126.com;作者简介:
王天依,女,博士,助理研究员,研究方向:玉米分子育种;E-mail: wangtianyi0709@163.com
基金资助:
WANG Tian-yi(), WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei(), ZHAO Jiu-ran()
Received:
2023-05-26
Published:
2023-08-26
Online:
2023-09-05
摘要:
株高是影响玉米株型和种植密度的重要农艺性状,培育耐密植的矮秆/半矮秆新品种可为增产做贡献。但目前多数矮秆突变体单株产量损失较大,难以在育种中应用。因此,探究玉米株高的调控机制、挖掘株高基因的优良等位变异,从而改善玉米株型结构、提高群体光能利用率、增强群体对水肥的耐性,对提高玉米产量尤为重要。本文综述了目前挖掘到的株高数量性状位点,阐述了株高相关基因主要受植物激素、微管结合蛋白以及成花因子调节;概述了Brachytic2(Br2)基因在玉米矮秆育种研究中的应用及其局限性;最后展望了矮秆有利等位基因及其分子标记和现代生物技术在矮秆种质资源创制中的重要价值。本文将为玉米株高的遗传机制解析以及矮秆玉米分子育种奠定基础。
王天依, 王荣焕, 王夏青, 张如养, 徐瑞斌, 焦炎炎, 孙轩, 王继东, 宋伟, 赵久然. 玉米矮秆基因与矮秆育种研究[J]. 生物技术通报, 2023, 39(8): 43-51.
WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding[J]. Biotechnology Bulletin, 2023, 39(8): 43-51.
基因Gene | 全称Full name | 分子机制Molecular mechanism |
---|---|---|
An1[ | Anther ear1 | 赤霉素生物合成 Gibberellin biosynthesis |
An2[ | Anther ear2 | 赤霉素生物合成 Gibberellin biosynthesis |
Br2[ | Brachytic2 | 生长素极性运输 Polar auxin transport |
Brd1[ | Brassinosteroid-deficient dwarf1 | 油菜素内酯合成 Brassinosteroid biosynthesis |
BRI1a[ | Brassinosteroid insensitive1a | 油菜素内酯信号转导 Brassinosteroid signaling |
Bv1[ | Brevis plant1 | 生长素信号转导 Auxin transport |
Cr4[ | Crinkly4 | 激素信号转导 Hormone signaling |
Ct2[ | Compact plant2 | 赤霉素生物合成 Gibberellin biosynthesis |
D1[ D2[ D3[ D5[ D8[ D8-1023[ D9[ | Dwarf plant1 Dwarf plant 2 Dwarf plant 3 Dwarf plant 5 Dwarf plant 8 Dwarf8-1023 Dwarf plant9 | 赤霉素合成最后一步 The final step of bioactive GA synthesis 赤霉素早期合成 Early step in GA biosynthesis 赤霉素早期合成 Early step in GA biosynthesis 赤霉素早期合成 Early step in GA biosynthesis 赤霉素信号转导 Gibberellin signaling 赤霉素生物合成 Gibberellin biosynthesis 赤霉素信号转导 Gibberellin signaling |
D11[ | Dwarf11 | 赤霉素生物合成 Gibberellin biosynthesis |
D2003[ | Dwarf2003 | 调控分生组织发育Regulate meristem development |
Dil1[ | Dwarf & irregular leaf1 | 转录因子调控,影响激素通路基因表达Regulation of transori ptin factyr, affect the expression of genes related to hormonal pathways |
GID1[ | Gibberellin-insensitive dwarf1 | 赤霉素信号转导Gibberellin signaling |
Kn1[ | Knotted1 | 调控赤霉素分解代谢 Regulate of gibberellin catabolism |
Lil1[ | Lilliputian1 | 油菜素内酯合成 Brassinosteroid biosynthesis |
Na1[ | Nana plant1 | 油菜素内酯早期生物合成 Early step in brassinosteroid biosynthesis |
Na2[ | Nana plant2 | 油菜素内酯早期生物合成 Early step in brassinosteroid biosynthesis |
Rd2 Sdw3[ | Reduced plant2 Semidwarf3 | 赤霉素信号响应 Responds to gibberellin 乙烯生物合成 Ethylene biosynthesis |
Tan1[ | Tangled1 | 调控细胞骨架排布Regulates cytoskeleton arrangement |
Td1[ Te1[ | Thick tassel dwarf1 Terminal ear1 | CLV-WUS途径 CLV-WUS pathway 生长素运输途径 Auxin transport pathway |
Vt2[ | Vanishing tassel2 | 生长素合成途径 Auxin biosynthesis pathway |
ZmCCD8[ | Carotenoid cleavage dioxygenase8 | 独脚金内酯合成途径 Strigolactone biosynthesis pathway |
ZmGLR[ | Glutamic acid and lysine-rich | 油菜素内酯和生长素共同调控 Both brassinosteroid and auxin regulate |
ZmGRF10[ | Growth-regulating factors10 | 转录因子,影响多种生物学途径 Transcription factor, affect multiple biological pathways |
ZmPIN1a[ | PIN-formed1a | 生长素极性运输 Polar auxin transport |
ZmPHYC[ ZmRPH1[ | Phytochrome C Reducing plant height1 | 响应光周期 Response photoperiod 微管细胞骨架排布 Microtubule cytoskeleton arrangement |
表1 已克隆的玉米矮秆基因
Table1 Cloned genes related to dwarf maize
基因Gene | 全称Full name | 分子机制Molecular mechanism |
---|---|---|
An1[ | Anther ear1 | 赤霉素生物合成 Gibberellin biosynthesis |
An2[ | Anther ear2 | 赤霉素生物合成 Gibberellin biosynthesis |
Br2[ | Brachytic2 | 生长素极性运输 Polar auxin transport |
Brd1[ | Brassinosteroid-deficient dwarf1 | 油菜素内酯合成 Brassinosteroid biosynthesis |
BRI1a[ | Brassinosteroid insensitive1a | 油菜素内酯信号转导 Brassinosteroid signaling |
Bv1[ | Brevis plant1 | 生长素信号转导 Auxin transport |
Cr4[ | Crinkly4 | 激素信号转导 Hormone signaling |
Ct2[ | Compact plant2 | 赤霉素生物合成 Gibberellin biosynthesis |
D1[ D2[ D3[ D5[ D8[ D8-1023[ D9[ | Dwarf plant1 Dwarf plant 2 Dwarf plant 3 Dwarf plant 5 Dwarf plant 8 Dwarf8-1023 Dwarf plant9 | 赤霉素合成最后一步 The final step of bioactive GA synthesis 赤霉素早期合成 Early step in GA biosynthesis 赤霉素早期合成 Early step in GA biosynthesis 赤霉素早期合成 Early step in GA biosynthesis 赤霉素信号转导 Gibberellin signaling 赤霉素生物合成 Gibberellin biosynthesis 赤霉素信号转导 Gibberellin signaling |
D11[ | Dwarf11 | 赤霉素生物合成 Gibberellin biosynthesis |
D2003[ | Dwarf2003 | 调控分生组织发育Regulate meristem development |
Dil1[ | Dwarf & irregular leaf1 | 转录因子调控,影响激素通路基因表达Regulation of transori ptin factyr, affect the expression of genes related to hormonal pathways |
GID1[ | Gibberellin-insensitive dwarf1 | 赤霉素信号转导Gibberellin signaling |
Kn1[ | Knotted1 | 调控赤霉素分解代谢 Regulate of gibberellin catabolism |
Lil1[ | Lilliputian1 | 油菜素内酯合成 Brassinosteroid biosynthesis |
Na1[ | Nana plant1 | 油菜素内酯早期生物合成 Early step in brassinosteroid biosynthesis |
Na2[ | Nana plant2 | 油菜素内酯早期生物合成 Early step in brassinosteroid biosynthesis |
Rd2 Sdw3[ | Reduced plant2 Semidwarf3 | 赤霉素信号响应 Responds to gibberellin 乙烯生物合成 Ethylene biosynthesis |
Tan1[ | Tangled1 | 调控细胞骨架排布Regulates cytoskeleton arrangement |
Td1[ Te1[ | Thick tassel dwarf1 Terminal ear1 | CLV-WUS途径 CLV-WUS pathway 生长素运输途径 Auxin transport pathway |
Vt2[ | Vanishing tassel2 | 生长素合成途径 Auxin biosynthesis pathway |
ZmCCD8[ | Carotenoid cleavage dioxygenase8 | 独脚金内酯合成途径 Strigolactone biosynthesis pathway |
ZmGLR[ | Glutamic acid and lysine-rich | 油菜素内酯和生长素共同调控 Both brassinosteroid and auxin regulate |
ZmGRF10[ | Growth-regulating factors10 | 转录因子,影响多种生物学途径 Transcription factor, affect multiple biological pathways |
ZmPIN1a[ | PIN-formed1a | 生长素极性运输 Polar auxin transport |
ZmPHYC[ ZmRPH1[ | Phytochrome C Reducing plant height1 | 响应光周期 Response photoperiod 微管细胞骨架排布 Microtubule cytoskeleton arrangement |
[1] |
Ranum P, Peña-Rosas JP, Garcia-Casal MN. Global maize production, utilization, and consumption[J]. Ann N Y Acad Sci, 2014, 1312: 105-112.
doi: 10.1111/nyas.2014.1312.issue-1 URL |
[2] | 赵久然, 王荣焕. 美国玉米持续增产的因素及其对我国的启示[J]. 玉米科学, 2009, 17(5): 156-159, 163. |
Zhao JR, Wang RH. Factors promoting the steady increase of American maize production and their enlightenments for China[J]. J Maize Sci, 2009, 17(5): 156-159, 163. | |
[3] |
王文秀, 王磊. 玉米矮杆基因研究进展[J]. 生物技术通报, 2018, 34(11): 22-26.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0444 |
Wang WX, Wang L. Research progress on maize dwarf genes[J]. Biotechnol Bull, 2018, 34(11): 22-26. | |
[4] |
Sher A, Khan A, Ashraf U, et al. Characterization of the effect of increased plant density on canopy morphology and stalk lodging risk[J]. Front Plant Sci, 2018, 9: 1047.
doi: 10.3389/fpls.2018.01047 pmid: 30254649 |
[5] | Duvick DN, Smith JSC, Cooper M. Long-term selection in a commercial hybrid maize breeding program[M]//Plant Breeding Reviews. Oxford, UK: John Wiley & Sons, Inc., 2010: 109-151. |
[6] |
Zhao Y, Huang YX, Gao YJ, et al. An EMS-induced allele of the brachytic2 gene can reduce plant height in maize[J]. Plant Cell Rep, 2023, 42(4): 749-761.
doi: 10.1007/s00299-023-02990-2 pmid: 36754893 |
[7] |
Peiffer JA, Romay MC, Gore MA, et al. The genetic architecture of maize height[J]. Genetics, 2014, 196(4): 1337-1356.
doi: 10.1534/genetics.113.159152 pmid: 24514905 |
[8] | 阎淑琴. 矮生玉米的遗传与育种[J]. 玉米科学, 2000, 8(2): 36-37, 45. |
Yan SQ. Inheritance and breeding of dwarf maize[J]. Maize Sci, 2000, 8(2): 36-37, 45. | |
[9] | 石云素, 于永涛, 宋燕春, 等. 一个新矮生玉米种质资源的发现与遗传鉴定[J]. 植物遗传资源学报, 2008, 9(4): 521-524. |
Shi YS, Yu YT, Song YC, et al. Discovery and genetic identification of a new dwarf germplasm in maize[J]. J Plant Genet Resour, 2008, 9(4): 521-524. | |
[10] |
Multani DS, Briggs SP, Chamberlin MA, et al. Loss of an MDR transporter in compact stalks of maize Br2 and sorghum dw3 mutants[J]. Science, 2003, 302(5642): 81-84.
doi: 10.1126/science.1086072 pmid: 14526073 |
[11] |
Bensen RJ, Johal GS, Crane VC, et al. Cloning and characterization of the maize An1 gene[J]. Plant Cell, 1995, 7(1): 75-84.
doi: 10.1105/tpc.7.1.75 pmid: 7696880 |
[12] |
Harris LJ, Saparno A, Johnston A, et al. The maize An2 gene is induced by Fusarium attack and encodes an ent-copalyl diphosphate synthase[J]. Plant Mol Biol, 2005, 59(6): 881-894.
doi: 10.1007/s11103-005-1674-8 pmid: 16307364 |
[13] |
Makarevitch I, Thompson A, Muehlbauer GJ, et al. Brd1 gene in maize encodes a brassinosteroid C-6 oxidase[J]. PLoS One, 2012, 7(1): e30798.
doi: 10.1371/journal.pone.0030798 URL |
[14] |
Kir G, Ye HX, Nelissen H, et al. RNA interference knockdown of BRASSINOSTEROID INSENSITIVE1 in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture[J]. Plant Physiol, 2015, 169(1): 826-839.
doi: 10.1104/pp.15.00367 pmid: 26162429 |
[15] |
Avila LM, Cerrudo D, Swanton C, et al. Brevis plant1, a putative inositol polyphosphate 5-phosphatase, is required for internode elongation in maize[J]. J Exp Bot, 2016, 67(5): 1577-1588.
doi: 10.1093/jxb/erv554 pmid: 26767748 |
[16] |
Becraft PW, Stinard PS, McCarty DR. CRINKLY4: a TNFR-like receptor kinase involved in maize epidermal differentiation[J]. Science, 1996, 273(5280): 1406-1409.
doi: 10.1126/science.273.5280.1406 pmid: 8703079 |
[17] |
Bommert P, Je BI, Goldshmidt A, et al. The maize Gα gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size[J]. Nature, 2013, 502(7472): 555-558.
doi: 10.1038/nature12583 |
[18] |
Chen Y, Hou MM, Liu LJ, et al. The maize DWARF1 encodes a gibberellin 3-oxidase and is dual localized to the nucleus and cytosol[J]. Plant Physiol, 2014, 166(4): 2028-2039.
doi: 10.1104/pp.114.247486 pmid: 25341533 |
[19] |
Fujioka S, Yamane H, Spray CR, et al. Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings of Zea mays L[J]. Plant Physiol, 1988, 88(4): 1367-1372.
doi: 10.1104/pp.88.4.1367 pmid: 16666468 |
[20] |
Winkler RG, Helentjaris T. The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis[J]. Plant Cell, 1995, 7(8): 1307-1317.
doi: 10.1105/tpc.7.8.1307 pmid: 7549486 |
[21] |
Lawit SJ, Wych HM, Xu DP, et al. Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development[J]. Plant Cell Physiol, 2010, 51(11): 1854-1868.
doi: 10.1093/pcp/pcq153 pmid: 20937610 |
[22] |
Cassani E, Bertolini E, Badone FC, et al. Characterization of the first dominant dwarf maize mutant carrying a single amino acid insertion in the VHYNP domain of the dwarf8 gene[J]. Mol Breeding, 2009, 24(4): 375-385.
doi: 10.1007/s11032-009-9298-3 URL |
[23] | Wang YJ, Deng DX, Ding HD, et al. Gibberellin biosynthetic deficiency is responsible for maize dominant Dwarf11(D11)mutant phenotype: physiological and transcriptomic evidence[J]. PLoS One, 2013, 8(6): e66466. |
[24] |
Lyu HK, Zheng J, Wang TY, et al. The maize d2003, a novel allele of VP8, is required for maize internode elongation[J]. Plant Mol Biol, 2014, 84(3): 243-257.
doi: 10.1007/s11103-013-0129-x pmid: 24214124 |
[25] |
Jiang FK, Guo M, Yang F, et al. Mutations in an AP2 transcription factor-like gene affect internode length and leaf shape in maize[J]. PLoS One, 2012, 7(5): e37040.
doi: 10.1371/journal.pone.0037040 URL |
[26] |
Yamaguchi I, Nakajima M, Park SH. Trails to the gibberellin receptor, GIBBERELLIN INSENSITIVE DWARF1[J]. Biosci Biotechnol Biochem, 2016, 80(6): 1029-1036.
doi: 10.1080/09168451.2016.1148575 URL |
[27] |
Bolduc N, Hake S. The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1[J]. Plant Cell, 2009, 21(6): 1647-1658.
doi: 10.1105/tpc.109.068221 URL |
[28] |
Castorina G, Persico M, Zilio M, et al. The maize Lilliputian1(lil1)gene, encoding a brassinosteroid cytochrome P450 C-6 oxidase, is involved in plant growth and drought response[J]. Ann Bot, 2018, 122(2): 227-238.
doi: 10.1093/aob/mcy047 URL |
[29] |
Hartwig T, Chuck GS, Fujioka S, et al. Brassinosteroid control of sex determination in maize[J]. Proc Natl Acad Sci USA, 2011, 108(49): 19814-19819.
doi: 10.1073/pnas.1108359108 pmid: 22106275 |
[30] |
Best NB, Hartwig T, Budka J, et al. Nana plant2 encodes a maize ortholog of the Arabidopsis brassinosteroid biosynthesis gene DWARF1, identifying developmental interactions between brassinosteroids and gibberellins[J]. Plant Physiol, 2016, 171(4): 2633-2647.
doi: 10.1104/pp.16.00399 URL |
[31] |
Li HC, Wang LJ, Liu MS, et al. Maize plant architecture is regulated by the ethylene biosynthetic gene ZmACS7[J]. Plant Physiol, 2020, 183(3): 1184-1199.
doi: 10.1104/pp.19.01421 URL |
[32] |
Cleary AL, Smith LG. The Tangled1 gene is required for spatial control of cytoskeletal arrays associated with cell division during maize leaf development[J]. Plant Cell, 1998, 10(11): 1875-1888.
pmid: 9811795 |
[33] |
Bommert P, Lunde, Nardmann J, et al. Thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase[J]. Development, 2005, 132(6): 1235-1245.
doi: 10.1242/dev.01671 pmid: 15716347 |
[34] |
Wang FX, Yu ZP, Zhang ML, et al. ZmTE1 promotes plant height by regulating intercalary meristem formation and internode cell elongation in maize[J]. Plant Biotechnol J, 2022, 20(3): 526-537.
doi: 10.1111/pbi.v20.3 URL |
[35] |
Phillips KA, Skirpan AL, Liu X, et al. Vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize[J]. Plant Cell, 2011, 23(2): 550-566.
doi: 10.1105/tpc.110.075267 URL |
[36] |
Guan JC, Koch KE, Suzuki M, et al. Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork[J]. Plant Physiol, 2012, 160(3): 1303-1317.
doi: 10.1104/pp.112.204503 pmid: 22961131 |
[37] |
Wang CC, Zhang H, Xia Q, et al. ZmGLR, a cell membrane localized microtubule-associated protein, mediated leaf morphogenesis in maize[J]. Plant Sci, 2019, 289: 110248.
doi: 10.1016/j.plantsci.2019.110248 URL |
[38] |
Wu L, Zhang DF, Xue M, et al. Overexpression of the maize GRF10, an endogenous truncated growth-regulating factor protein, leads to reduction in leaf size and plant height[J]. J Integr Plant Biol, 2014, 56(11): 1053-1063.
doi: 10.1111/jipb.12220 URL |
[39] |
Li ZX, Zhang XR, Zhao YJ, et al. Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height[J]. Plant Biotechnol J, 2018, 16(1): 86-99.
doi: 10.1111/pbi.12751 pmid: 28499064 |
[40] |
Li QQ, Wu GX, Zhao YP, et al. CRISPR/Cas9-mediated knockout and overexpression studies reveal a role of maize phytochrome C in regulating flowering time and plant height[J]. Plant Biotechnol J, 2020, 18(12): 2520-2532.
doi: 10.1111/pbi.v18.12 URL |
[41] |
Li W, Ge FH, Qiang ZQ, et al. Maize ZmRPH1 encodes a microtubule-associated protein that controls plant and ear height[J]. Plant Biotechnol J, 2020, 18(6): 1345-1347.
doi: 10.1111/pbi.13292 pmid: 31696605 |
[42] |
Ku LX, Zhang LK, Tian ZQ, et al. Dissection of the genetic architecture underlying the plant density response by mapping plant height-related traits in maize(Zea mays L.)[J]. Mol Genet Genomics, 2015, 290(4): 1223-1233.
doi: 10.1007/s00438-014-0987-1 URL |
[43] |
Salas Fernandez MG, Becraft PW, Yin YH, et al. From dwarves to giants? Plant height manipulation for biomass yield[J]. Trends Plant Sci, 2009, 14(8): 454-461.
doi: 10.1016/j.tplants.2009.06.005 pmid: 19616467 |
[44] |
Yin XF, Bi YQ, Jiang FY, et al. Fine mapping of candidate quantitative trait loci for plant and ear height in a maize nested-association mapping population[J]. Front Plant Sci, 2022, 13: 963985.
doi: 10.3389/fpls.2022.963985 URL |
[45] |
Sa KJ, Choi IY, Park JY, et al. Mapping of QTL for agronomic traits using high-density SNPs with an RIL population in maize[J]. Genes Genomics, 2021, 43(12): 1403-1411.
doi: 10.1007/s13258-021-01169-x |
[46] |
Zhang HW, Wang X, Pan QC, et al. QTG-seq accelerates QTL fine mapping through QTL partitioning and whole-genome sequencing of bulked segregant samples[J]. Mol Plant, 2019, 12(3): 426-437.
doi: S1674-2052(18)30385-X pmid: 30597214 |
[47] |
Wang XQ, Zhang RY, Song W, et al. Dynamic plant height QTL revealed in maize through remote sensing phenotyping using a high-throughput unmanned aerial vehicle(UAV)[J]. Sci Rep, 2019, 9(1): 3458.
doi: 10.1038/s41598-019-39448-z |
[48] |
Adak A, Conrad C, Chen YY, et al. Validation of functional polymorphisms affecting maize plant height by unoccupied aerial systems discovers novel temporal phenotypes[J]. G3, 2021, 11(6): jkab075.
doi: 10.1093/g3journal/jkab075 URL |
[49] |
Li YH, Han S, Qi YH. Advances in structure and function of auxin response factor in plants[J]. J Integr Plant Biol, 2023, 65(3): 617-632.
doi: 10.1111/jipb.13392 |
[50] |
Knöller AS, Blakeslee JJ, Richards EL, et al. Brachytic2/ZmABCB1 functions in IAA export from intercalary meristems[J]. J Exp Bot, 2010, 61(13): 3689-3696.
doi: 10.1093/jxb/erq180 pmid: 20581123 |
[51] |
王夏青, 宋伟, 张如养, 等. 玉米茎秆抗倒伏遗传的研究进展[J]. 中国农业科学, 2021, 54(11): 2261-2272.
doi: 10.3864/j.issn.0578-1752.2021.11.002 |
Wang XQ, Song W, Zhang RY, et al. Genetic research advances on maize stalk lodging resistance[J]. Sci Agric Sin, 2021, 54(11): 2261-2272.
doi: 10.3864/j.issn.0578-1752.2021.11.002 |
|
[52] |
Davière JM, Achard P. Gibberellin signaling in plants[J]. Development, 2013, 140(6): 1147-1151.
doi: 10.1242/dev.087650 URL |
[53] |
Wang YL, Wang X, Deng DX, et al. Maize transcriptomic repertoires respond to gibberellin stimulation[J]. Mol Biol Rep, 2019, 46(4): 4409-4421.
doi: 10.1007/s11033-019-04896-3 pmid: 31144186 |
[54] |
Wu K, Xu H, Gao XH, et al. New insights into gibberellin signaling in regulating plant growth-metabolic coordination[J]. Curr Opin Plant Biol, 2021, 63: 102074.
doi: 10.1016/j.pbi.2021.102074 URL |
[55] |
Teng F, Zhai LH, Liu RX, et al. ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize[J]. Plant J, 2013, 73(3): 405-416.
doi: 10.1111/tpj.12038 URL |
[56] |
Zhang JJ, Zhang XF, Chen RR, et al. Generation of transgene-free semidwarf maize plants by gene editing of Gibberellin-Oxidase20-3 using CRISPR/Cas9[J]. Front Plant Sci, 2020, 11: 1048.
doi: 10.3389/fpls.2020.01048 URL |
[57] |
Zhao BL, Li J. Regulation of brassinosteroid biosynthesis and inactivation[J]. J Integr Plant Biol, 2012, 54(10): 746-759.
doi: 10.1111/j.1744-7909.2012.01168.x |
[58] |
Planas-Riverola A, Gupta A, Betegón-Putze I, et al. Brassinosteroid signaling in plant development and adaptation to stress[J]. Development, 2019, 146(5): dev151894.
doi: 10.1242/dev.151894 URL |
[59] |
Umehara M, Hanada A, Yoshida S, et al. Inhibition of shoot branching by new terpenoid plant hormones[J]. Nature, 2008, 455(7210): 195-200.
doi: 10.1038/nature07272 |
[60] | 田齐建, 乔治军, 董存吉, 等. 玉米矮化育种研究进展及发展前景[J]. 山西农业科学, 2003, 31(2): 23-26. |
Tian QJ, Qiao ZJ, Dong CJ, et al. Review on research of maize breeding for dwarfness and its development prospect[J]. J Shanxi Agric Sci, 2003, 31(2): 23-26. | |
[61] | Duvick D. Genetic progress in yield of United States maize(Zea mays L.)[J]. Maydica, 2005, 50(3):193-202. |
[62] | 崔绍平. 玉米br-2矮生基因型杂交种矮单268的选育[J]. 中国种业, 2014(12): 68-69. |
Cui SP. Breeding of maize Br-2 dwarf genotype hybrid Aidan 268[J]. China Seed Ind, 2014(12): 68-69. | |
[63] |
Wei L, Zhang X, Zhang ZH, et al. A new allele of the Brachytic2 gene in maize can efficiently modify plant architecture[J]. Heredity, 2018, 121(1): 75-86.
doi: 10.1038/s41437-018-0056-3 |
[64] |
Li C, Tang J, Hu ZY, et al. A novel maize dwarf mutant generated by Ty1-copia LTR-retrotransposon insertion in Brachytic2 after spaceflight[J]. Plant Cell Rep, 2020, 39(3): 393-408.
doi: 10.1007/s00299-019-02498-8 pmid: 31834482 |
[65] | 姜惟廉, 郭日跻, 刘元芝, 等. 玉米优异核心种质资源多基因矮生系5003及其姊妹系5005创制[J]. 玉米科学, 2013, 21(5): 1-5, 12. |
Jiang WL, Guo RJ, Liu YZ, et al. Innovation and application of elite maize line 5003 with dwarf character controlled by multigenic genes[J]. J Maize Sci, 2013, 21(5): 1-5, 12. | |
[66] |
Liu SL, Zhang M, Feng F, et al. Toward a “green revolution” for soybean[J]. Mol Plant, 2020, 13(5): 688-697.
doi: 10.1016/j.molp.2020.03.002 URL |
[67] |
Hedden P. The genes of the green revolution[J]. Trends Genet, 2003, 19(1): 5-9.
doi: 10.1016/s0168-9525(02)00009-4 pmid: 12493241 |
[68] |
Sasaki A, Ashikari M, Ueguchi-Tanaka M, et al. A mutant gibberellin-synthesis gene in rice[J]. Nature, 2002, 416(6882): 701-702.
doi: 10.1038/416701a |
[69] |
Davies WP. An historical perspective from the Green Revolution to the gene revolution[J]. Nutr Rev, 2003, 61(6 Pt 2):S124-S134.
doi: 10.1301/nr.2003.jun.S124-S134 pmid: 12908744 |
[70] |
Rodríguez-Leal D, Lemmon ZH, Man J, et al. Engineering quantitative trait variation for crop improvement by genome editing[J]. Cell, 2017, 171(2): 470-480.e8.
doi: S0092-8674(17)30988-1 pmid: 28919077 |
[1] | 展艳, 周利斌, 金文杰, 杜艳, 余丽霞, 曲颖, 马永贵, 刘瑞媛. 辐射诱导植物叶色突变的研究进展[J]. 生物技术通报, 2023, 39(8): 106-113. |
[2] | 王宝宝, 王海洋. 理想株型塑造之于玉米耐密改良[J]. 生物技术通报, 2023, 39(8): 11-30. |
[3] | 张道磊, 甘雨军, 乐亮, 普莉. 玉米产量性状的表观遗传调控机制和育种应用[J]. 生物技术通报, 2023, 39(8): 31-42. |
[4] | 冷燕, 马晓薇, 陈光, 任鹤, 李翔. 玉米高产竞赛助力中国玉米种业振兴[J]. 生物技术通报, 2023, 39(8): 4-10. |
[5] | 刘月娥, 徐田军, 蔡万涛, 吕天放, 张勇, 薛洪贺, 王荣焕, 赵久然. 我国玉米超高产研究现状与展望[J]. 生物技术通报, 2023, 39(8): 52-61. |
[6] | 张勇, 徐田军, 吕天放, 邢锦丰, 刘宏伟, 蔡万涛, 刘月娥, 赵久然, 王荣焕. 种植密度对夏播玉米茎秆质量和根系表型性状的影响[J]. 生物技术通报, 2023, 39(8): 70-79. |
[7] | 张蓓, 任福森, 赵洋, 郭志伟, 孙强, 刘贺娟, 甄俊琦, 王童童, 程相杰. 辣椒响应热胁迫机制的研究进展[J]. 生物技术通报, 2023, 39(7): 37-47. |
[8] | 李玉岭, 毛欣, 张元帅, 董元夫, 刘翠兰, 段春华, 毛秀红. 辐射诱变技术在木本植物育种中的应用及展望[J]. 生物技术通报, 2023, 39(6): 12-30. |
[9] | 朱少喜, 金肇阳, 葛建镕, 王蕊, 王凤格, 路运才. 基于KASP平台的转基因玉米高通量特异性检测方法[J]. 生物技术通报, 2023, 39(6): 133-140. |
[10] | 张和臣, 袁欣, 高杰, 王校晨, 王慧娟, 李艳敏, 王利民, 符真珠, 李保印. 植物花瓣呈色机理及花色分子育种[J]. 生物技术通报, 2023, 39(5): 23-31. |
[11] | 雷彩荣, 郭晓鹏, 柴冉, 张苗苗, 任军乐, 陆栋. 组学技术在重离子辐射微生物诱变育种中的应用[J]. 生物技术通报, 2023, 39(5): 54-62. |
[12] | 薛皦, 朱庆锋, 冯彦钊, 陈沛, 刘文华, 张爱霞, 刘勤坚, 张琪, 于洋. 植物基因上游开放阅读框的研究进展[J]. 生物技术通报, 2023, 39(4): 157-165. |
[13] | 陈楠楠, 王春来, 蒋振忠, 焦鹏, 关淑艳, 马义勇. 玉米ZmDHN15基因在烟草中的遗传转化及抗冷性分析[J]. 生物技术通报, 2023, 39(4): 259-267. |
[14] | 杨茂, 林宇丰, 戴阳朔, 潘素君, 彭伟业, 严明雄, 李魏, 王冰, 戴良英. OsDIS1通过抗氧化途径负调控水稻耐旱性[J]. 生物技术通报, 2023, 39(2): 88-95. |
[15] | 齐方婷, 黄河. 观赏植物花斑形成调控机制的研究进展[J]. 生物技术通报, 2023, 39(10): 17-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||