生物技术通报 ›› 2023, Vol. 39 ›› Issue (11): 150-167.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0616

• 综述与专论 • 上一篇    下一篇

微生物硫代谢与抗逆性

晏雄鹰(), 王振, 王霞(), 杨世辉()   

  1. 湖北大学生命科学学院 省部共建生物催化与酶工程国家重点实验室,武汉 430062
  • 收稿日期:2023-06-28 出版日期:2023-11-26 发布日期:2023-12-20
  • 通讯作者: 杨世辉,男,博士,教授,研究方向:微生物绿色制造与合成生物学;E-mail: Shihui.Yang@hubu.edu.cn
    王霞,女,博士,讲师,研究方向:合成生物学与微生物代谢工程;E-mail: xxwang@hubu.edu.cn
  • 作者简介:晏雄鹰,男,博士研究生,研究方向:微生物代谢工程;E-mail: xiongying.Yan@stu.hubu.edu.cn
  • 基金资助:
    国家自然科学基金项目(22108064);国家自然科学基金项目(21978071);国家重点研发计划项目(2022YFA0911800);国家重点研发计划项目(2018YFA0900300);湖北省科技厅重大科技创新计划(2021BAD001)

Microbial Sulfur Metabolism and Stress Resistance

YAN Xiong-ying(), WANG Zhen, WANG Xia(), YANG Shi-hui()   

  1. State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062
  • Received:2023-06-28 Published:2023-11-26 Online:2023-12-20

摘要:

硫代谢是微生物重要的生命代谢活动。微生物对外源硫酸盐的转运、同化、代谢调控以及重要含硫化合物的生物合成,不但与微生物生长代谢相关,而且影响微生物在胁迫环境下的抗逆性和鲁棒性。目前,大部分研究都聚焦在微生物硫酸盐同化过程和H2S产生,对于微生物硫代谢与抗逆性相关的研究较少。本文总结了近年来微生物硫代谢过程中的硫酸盐转运、同化路径以及调控方式;并结合微生物在不同胁迫条件下的氧化应激反应,探讨了含硫化合物如硫化氢、谷胱甘肽和半胱氨酸等提高微生物抗逆性的机制。硫代谢与微生物抗逆性相关机制的解析不仅为理解微生物硫代谢与抗逆性提供理论基础,也为设计与构建抗逆性强的高产稳产工业菌株提供分子靶点。

关键词: 硫代谢, 氧化还原反应, 胁迫耐受性, 硫同化, H2S

Abstract:

Sulfur metabolism is an important life metabolism in microbes. Sulfur transportation, assimilation, metabolic regulation and biosynthesis of important sulfur-containing compounds by microorganisms not only affect the growth and metabolism of microorganisms, but also influence the stress resistance and robustness of microorganisms in inhibitory environments. Most of current researches are focusing on the microbial sulfate assimilatory reduction process and H2S production with few studies on microbial sulfur metabolism and stress resistance. This review summarized sulfate transport, assimilatory reduction pathway, and regulatory networks in the process of sulfur metabolism. Combined with the oxidative stress responses of microorganisms under different stress conditions, the review discussed mechanism by which sulfur-containing compounds such as hydrogen sulfide, glutathione and cysteine improve the stress resistance of microorganisms. The revelation of molecular mechanism between sulfur metabolism and microbial stress resistance will not only help understand microbial sulfur metabolism further, but also provide candidate molecular targets for the design and construction of efficient and robust industrial strains.

Key words: sulfur metabolism, oxidative stress responses, stress resistance, sulfate assimilation, H2S