生物技术通报 ›› 2023, Vol. 39 ›› Issue (11): 99-109.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0323
孙雨桐1,2(), 刘德帅1,2, 齐迅1,2, 冯美1,2, 黄栩筝1,2, 姚文孔1,2()
收稿日期:
2023-04-07
出版日期:
2023-11-26
发布日期:
2023-12-20
通讯作者:
姚文孔,男,博士,讲师,研究方向:葡萄抗逆分子机理与耐寒旱育种;E-mail: yaowenkong@163.com作者简介:
孙雨桐,女,硕士,研究方向:果树学;E-mail: syt15146063010@163.com
基金资助:
SUN Yu-tong1,2(), LIU De-shuai1,2, QI Xun1,2, FENG Mei1,2, HUANG Xu-zheng1,2, YAO Wen-kong1,2()
Received:
2023-04-07
Published:
2023-11-26
Online:
2023-12-20
摘要:
植物作为不可移动的生物,感知外界刺激通过改变自身信号转导对其做出反应。植物激素作为重要的信号分子,在植物应对不同生物和非生物胁迫反应中发挥作用,以调节植物生长发育并适应不断变化的环境。茉莉酸是植物体内的重要激素之一,目前它的合成途径、生理作用等已有大量研究,但对其感知环境变化并做出反应的信号转导途径以及与其他植物激素的相互作用方面的研究还有空白之处。本文主要阐述茉莉酸在调控植物生长发育、胁迫应答及其与其他植物激素的相互作用方面的研究进展。
孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109.
SUN Yu-tong, LIU De-shuai, QI Xun, FENG Mei, HUANG Xu-zheng, YAO Wen-kong. Advances in Jasmonic Acid Regulating Plant Growth and Development as Well as Stress[J]. Biotechnology Bulletin, 2023, 39(11): 99-109.
物种 Species | JAZ | JAZ相互作用的DNA结合转录因子 JAZ-interacting DNA-binding transcription factors | 生理功能 Physiological functions | 参考文献 Reference |
---|---|---|---|---|
拟南芥A. thaliana | JAZs | RHD6 | 根毛发育 | [ |
拟南芥A. thaliana | JAZ1/4/9 | ICE1/2 | 根伸长、防御、根毛发育 | [ |
拟南芥A. thaliana | JAZ1 | MYC2 | 花粉管伸长 | [ |
拟南芥A. thaliana | JAZ1/3/4/9 | FIL/YAB1 | 叶绿素降解,花青素积累 | [ |
拟南芥A. thaliana | JAZ1/2/5/6/8/9/10/11 | TT8/GL3/EGL3/MYB75/GL1 | 花青素的合成 | [ |
拟南芥A. thaliana | JAZ4/8 | WRKY57 | 提高抗冻性 | [ |
拟南芥A. thaliana | JAZ1/3/9 | EIN3/EIL1 | 提高耐冷性 | [ |
烟草N. tabacum | JAZs | MYC2/ EIN3/EIL1 | 提高抗病性 | [ |
水稻O. sativa | JAZ9/11 | OsRSS3/OsbHLH148 | 抗干旱,耐盐碱 | [ |
油菜B. campestris | JAZ1/3/4/9 | TOE1/2 | 抑制营养生长早期开花 | [ |
毛葡萄V. heyneana | JAZ9 | TPL15/29 | 提高抗病性 | [ |
香蕉M. acuminata | JAZs except JAZ7/12 | bHLH03/13/14/17 | 根伸长,防御,花青素合成 | [ |
茶树C. sinensis | JAZs | MYB46/105 | 提高耐冷性 | [ |
表1 与茉莉酸ZIM结构域蛋白相互作用的转录因子及其相应的茉莉酸调节的植物反应
Table 1 Transcription factors interacting with the jasmonate-ZIM domain proteins and their corresponding JA-regulated plant responses
物种 Species | JAZ | JAZ相互作用的DNA结合转录因子 JAZ-interacting DNA-binding transcription factors | 生理功能 Physiological functions | 参考文献 Reference |
---|---|---|---|---|
拟南芥A. thaliana | JAZs | RHD6 | 根毛发育 | [ |
拟南芥A. thaliana | JAZ1/4/9 | ICE1/2 | 根伸长、防御、根毛发育 | [ |
拟南芥A. thaliana | JAZ1 | MYC2 | 花粉管伸长 | [ |
拟南芥A. thaliana | JAZ1/3/4/9 | FIL/YAB1 | 叶绿素降解,花青素积累 | [ |
拟南芥A. thaliana | JAZ1/2/5/6/8/9/10/11 | TT8/GL3/EGL3/MYB75/GL1 | 花青素的合成 | [ |
拟南芥A. thaliana | JAZ4/8 | WRKY57 | 提高抗冻性 | [ |
拟南芥A. thaliana | JAZ1/3/9 | EIN3/EIL1 | 提高耐冷性 | [ |
烟草N. tabacum | JAZs | MYC2/ EIN3/EIL1 | 提高抗病性 | [ |
水稻O. sativa | JAZ9/11 | OsRSS3/OsbHLH148 | 抗干旱,耐盐碱 | [ |
油菜B. campestris | JAZ1/3/4/9 | TOE1/2 | 抑制营养生长早期开花 | [ |
毛葡萄V. heyneana | JAZ9 | TPL15/29 | 提高抗病性 | [ |
香蕉M. acuminata | JAZs except JAZ7/12 | bHLH03/13/14/17 | 根伸长,防御,花青素合成 | [ |
茶树C. sinensis | JAZs | MYB46/105 | 提高耐冷性 | [ |
图1 茉莉酸与其他植物激素间的信号传导示意图 A:茉莉酸与生长素信号传导示意图;B:茉莉酸与乙烯信号传导示意图;C:茉莉酸与水杨酸信号传导示意图;D:茉莉酸与脱落酸信号传导示意图; E:茉莉酸与油菜素内酯信号传导示意图;F:茉莉酸与赤霉素信号传导示意图
Fig. 1 Schematic diagram of signaling between jasmonic acid and other plant hormones A: JA and auxin signal transmission schematic; B: JA and ET signal transmission schematic; C: JA and SA signal transmission schematic; D: JA and ABA signal transmission schematic; E: JA and BR signal transmission schematic ; F: JA and GA signal transmission schematic
[1] | 任广悦, 金晓霞, 陈超, 等. 黄瓜独脚金内酯信号转导基因CsMAX2的克隆与表达分析[J]. 分子植物育种, 2020, 18(16): 5237-5246. |
Ren GY, Jin XX, Chen C, et al. Cloning and expression analysis of strigolactone signal transduction gene CsMAX2 in cucumber(Cucumis sativus)[J]. Mol Plant Breed, 2020, 18(16): 5237-5246. | |
[2] |
Wasternack C, Feussner I. The oxylipin pathways: biochemistry and function[J]. Annu Rev Plant Biol, 2018, 69: 363-386.
doi: 10.1146/annurev-arplant-042817-040440 pmid: 29166128 |
[3] |
Lyons R, Manners JM, Kazan K. Jasmonate biosynthesis and signaling in monocots: a comparative overview[J]. Plant Cell Rep, 2013, 32(6): 815-827.
doi: 10.1007/s00299-013-1400-y pmid: 23455708 |
[4] |
Jang G, Yoon Y, Choi YD. Crosstalk with jasmonic acid integrates multiple responses in plant development[J]. Int J Mol Sci, 2020, 21(1): 305.
doi: 10.3390/ijms21010305 URL |
[5] |
Yang J, Duan GH, Li CQ, et al. The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses[J]. Front Plant Sci, 2019, 10: 1349.
doi: 10.3389/fpls.2019.01349 pmid: 31681397 |
[6] |
Wang JJ, Wu DW, Wang YP, et al. Jasmonate action in plant defense against insects[J]. J Exp Bot, 2019, 70(13): 3391-3400.
doi: 10.1093/jxb/erz174 pmid: 30976791 |
[7] |
Ali MS, Baek KH. Jasmonic acid signaling pathway in response to abiotic stresses in plants[J]. Int J Mol Sci, 2020, 21(2): 621.
doi: 10.3390/ijms21020621 URL |
[8] |
Chini A, Monte I, Zamarreño AM, et al. An OPR3-independent pathway uses 4, 5-didehydrojasmonate for jasmonate synthesis[J]. Nat Chem Biol, 2018, 14(2): 171-178.
doi: 10.1038/nchembio.2540 URL |
[9] |
Ruan JJ, Zhou YX, Zhou ML, et al. Jasmonic acid signaling pathway in plants[J]. Int J Mol Sci, 2019, 20(10): 2479.
doi: 10.3390/ijms20102479 URL |
[10] |
Shi RX, Yu JL, Chang XR, et al. Recent advances in research into jasmonate biosynthesis and signaling pathways in agricultural crops and products[J]. Processes, 2023, 11(3): 736.
doi: 10.3390/pr11030736 URL |
[11] |
Goossens J, Fernández-Calvo P, Schweizer F, et al. Jasmonates: signal transduction components and their roles in environmental stress responses[J]. Plant Mol Biol, 2016, 91(6): 673-689.
doi: 10.1007/s11103-016-0480-9 pmid: 27086135 |
[12] |
Yan JB, Yao RF, Chen L, et al. Dynamic perception of jasmonates by the F-box protein COI1[J]. Mol Plant, 2018, 11(10): 1237-1247.
doi: S1674-2052(18)30241-7 pmid: 30092285 |
[13] |
Song SS, Liu B, Zhai JQ, et al. The intragenic suppressor mutation Leu59Phe compensates for the effect of detrimental mutations in the jasmonate receptor COI1[J]. Plant J, 2021, 108(3): 690-704.
doi: 10.1111/tpj.v108.3 URL |
[14] | 魏昕, 刘雨恒, 刘宇阳, 等. 植物JAZ蛋白家族研究进展[J]. 植物生理学报, 2021, 57(5): 1039-1046. |
Wei X, Liu YH, Liu YY, et al. Advances of JAZ family in plants[J]. Plant Physiol J, 2021, 57(5): 1039-1046. | |
[15] |
Takaoka Y, Suzuki K, Nozawa A, et al. Protein-protein interactions between jasmonate-related master regulator MYC and transcriptional mediator MED25 depend on a short binding domain[J]. J Biol Chem, 2022, 298(1): 101504.
doi: 10.1016/j.jbc.2021.101504 URL |
[16] |
Wu FM, Deng L, Zhai QZ, et al. Mediator subunit MED25 couples alternative splicing of JAZ genes with fine-tuning of jasmonate signaling[J]. Plant Cell, 2020, 32(2): 429-448.
doi: 10.1105/tpc.19.00583 URL |
[17] | Sharma M, Laxmi A. Jasmonates: emerging players in controlling temperature stress tolerance[J]. Front Plant Sci, 2016, 6: 1129. |
[18] |
Sheard LB, Tan X, Mao HB, et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor[J]. Nature, 2010, 468(7322): 400-405.
doi: 10.1038/nature09430 |
[19] |
Yao WK, Wang L, Wang J, et al. VpPUB24, a novel gene from Chinese grapevine, Vitis pseudoreticulata, targets VpICE1 to enhance cold tolerance[J]. J Exp Bot, 2017, 68(11): 2933-2949.
doi: 10.1093/jxb/erx136 URL |
[20] |
Han X, Zhang MH, Yang ML, et al. Arabidopsis JAZ proteins interact with and suppress RHD6 transcription factor to regulate jasmonate-stimulated root hair development[J]. Plant Cell, 2020, 32(4): 1049-1062.
doi: 10.1105/tpc.19.00617 URL |
[21] |
Fàbregas N, Fernie AR. The interface of central metabolism with hormone signaling in plants[J]. Curr Biol, 2021, 31(23): R1535-R1548.
doi: 10.1016/j.cub.2021.09.070 URL |
[22] |
Zhao ML, Wang JN, Shan W, et al. Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE1 in methyl jasmonate-induced chilling tolerance in banana fruit[J]. Plant Cell Environ, 2013, 36(1): 30-51.
doi: 10.1111/pce.2013.36.issue-1 URL |
[23] |
Zhu ZQ, An FY, Feng Y, et al. Derepression of ethylene-stabilized transcription factors(EIN3/EIL1)mediates jasmonate and ethylene signaling synergy in Arabidopsis[J]. Proc Natl Acad Sci USA, 2011, 108(30): 12539-12544.
doi: 10.1073/pnas.1103959108 URL |
[24] |
Liu YY, Zhou JQ, Lu MQ, et al. The core jasmonic acid-signalling module CoCOI1/CoJAZ1/CoMYC2 are involved in jas mediated growth of the pollen tube in Camellia oleifera[J]. Curr Issues Mol Biol, 2022, 44(11): 5405-5415.
doi: 10.3390/cimb44110366 URL |
[25] |
Zhang BL, Wang L, Zeng LP, et al. Arabidopsis TOE proteins convey a photoperiodic signal to antagonize CONSTANS and regulate flowering time[J]. Genes Dev, 2015, 29(9): 975-987.
doi: 10.1101/gad.251520.114 URL |
[26] |
Qi TC, Song SS, Ren QC, et al. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana[J]. Plant Cell, 2011, 23(5): 1795-1814.
doi: 10.1105/tpc.111.083261 URL |
[27] |
Boter M, Golz JF, Giménez-Ibañez S, et al. FILAMENTOUS FLOWER is a direct target of JAZ3 and modulates responses to jasmonate[J]. Plant Cell, 2015, 27(11): 3160-3174.
doi: 10.1105/tpc.15.00220 URL |
[28] | 闫筱筱. 中国野生毛葡萄转录因子JAZ和TLP基因抗病功能研究[D]. 杨凌: 西北农林科技大学, 2018. |
Yan XX. Research on disease resistance of transcription factor JAZ and TLP gene in Chinese wild grape Vitis quinquangularis[D]. Yangling: Northwest A & F University, 2018. | |
[29] |
Pieterse CMJ, Van der Does D, Zamioudis C, et al. Hormonal modulation of plant immunity[J]. Annu Rev Cell Dev Biol, 2012, 28: 489-521.
doi: 10.1146/annurev-cellbio-092910-154055 pmid: 22559264 |
[30] |
Jiang YJ, Liang G, Yang SZ, et al. Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence[J]. Plant Cell, 2014, 26(1): 230-245.
doi: 10.1105/tpc.113.117838 URL |
[31] |
Han ZL, Zhang C, Zhang H, et al. CsMYB transcription factors participate in jasmonic acid signal transduction in response to cold stress in tea plant(Camellia sinensis)[J]. Plants, 2022, 11(21): 2869.
doi: 10.3390/plants11212869 URL |
[32] |
Hu YR, Jiang LQ, Wang F, et al. Jasmonate regulates the inducer of cbf expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis[J]. Plant Cell, 2013, 25(8): 2907-2924.
doi: 10.1105/tpc.113.112631 URL |
[33] |
Toda Y, Tanaka M, Ogawa D, et al. RICE SALT SENSITIVE3 forms a ternary complex with JAZ and class-C bHLH factors and regulates jasmonate-induced gene expression and root cell elongation[J]. Plant Cell, 2013, 25(5): 1709-1725.
doi: 10.1105/tpc.113.112052 URL |
[34] |
卫昭君, 牛冰洁, 王永新, 等. 茉莉酸甲酯对盐胁迫下偏关苜蓿种子萌发和幼苗生长的影响[J]. 草地学报, 2020, 28(4): 998-1005.
doi: 10.11733/j.issn.1007-0435.2020.04.017 |
Wei ZJ, Niu BJ, Wang YX, et al. Effect of methyl jasmonate on seed germination and seedling growth of Medicago sativa ‘Pianguan’ under salt stress[J]. Acta Agrestia Sin, 2020, 28(4): 998-1005. | |
[35] |
Kim J, Chang CR, Tucker ML. To grow old: regulatory role of ethylene and jasmonic acid in senescence[J]. Front Plant Sci, 2015, 6: 20.
doi: 10.3389/fpls.2015.00020 pmid: 25688252 |
[36] |
Song YH, Ito S, Imaizumi T. Flowering time regulation: photoperiod- and temperature-sensing in leaves[J]. Trends Plant Sci, 2013, 18(10): 575-583.
doi: 10.1016/j.tplants.2013.05.003 pmid: 23790253 |
[37] |
Wang HP, Li Y, Pan JJ, et al. The bHLH transcription factors MYC2, MYC3, and MYC4 are required for jasmonate-mediated inhibition of flowering in Arabidopsis[J]. Mol Plant, 2017, 10(11): 1461-1464.
doi: 10.1016/j.molp.2017.08.007 URL |
[38] | 梁晨, 泽桑梓, 高燕珠, 等. 薇甘菊花芽分化前后内源激素及相关基因表达的研究[J]. 西北植物学报, 2023, 43(2): 229-241. |
Linag C, Ze SZ, Gao YZ, et al. Study on endogenous hormones and the expression of related genes before and after flower bud differentiation of Mikania micrantha[J]. Acta Bot Boreali Occidentalia Sin, 2023, 43(2): 229-241. | |
[39] |
Qi TC, Huang H, Song SS, et al. Regulation of jasmonate-mediated stamen development and seed production by a bHLH-MYB complex in Arabidopsis[J]. Plant Cell, 2015, 27(6): 1620-1633.
doi: 10.1105/tpc.15.00116 URL |
[40] | 徐雪珍, 郑月萍, 张夏婷, 等. 拟南芥AtFAD6基因突变体的构建[J]. 江苏农业学报, 2021, 37(5): 1125-1130. |
Xu XZ, Zheng YP, Zhang XT, et al. Construction of Arabidopsis AtFAD6 gene mutant[J]. Jiangsu J Agric Sci, 2021, 37(5): 1125-1130. | |
[41] |
Han YL, Chen C, Yan ZM, et al. The methyl jasmonate accelerates the strawberry fruits ripening process[J]. Sci Hortic, 2019, 249: 250-256.
doi: 10.1016/j.scienta.2019.01.061 URL |
[42] |
Jia HF, Zhang C, Pervaiz T, et al. Jasmonic acid involves in grape fruit ripening and resistant against Botrytis cinerea[J]. Funct Integr Genomics, 2016, 16(1): 79-94.
doi: 10.1007/s10142-015-0468-6 URL |
[43] |
Wang XQ, Cao XY, Shang Y, et al. Preharvest application of prohydrojasmon affects color development, phenolic metabolism, and pigment-related gene expression in red pear(Pyrus ussuriensis)[J]. J Sci Food Agric, 2020, 100(13): 4766-4775.
doi: 10.1002/jsfa.v100.13 URL |
[44] |
Abouelsaad I, Renault S. Enhanced oxidative stress in the jasmonic acid-deficient tomato mutant def-1 exposed to NaCl stress[J]. J Plant Physiol, 2018, 226: 136-144.
doi: 10.1016/j.jplph.2018.04.009 URL |
[45] |
Zhu F, Xi DH, Yuan S, et al. Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana[J]. Mol Plant Microbe Interact, 2014, 27(6): 567-577.
doi: 10.1094/MPMI-11-13-0349-R URL |
[46] |
Zhao QQ, Liu R, Zhou QZ, et al. Calcium-binding protein OsANN1 regulates rice blast disease resistance by inactivating jasmonic acid signaling[J]. Plant Physiol, 2023, 192(2): 1621-1637.
doi: 10.1093/plphys/kiad174 URL |
[47] | 赵显阳. 外源茉莉酸甲酯(MeJA)对梨果实抗青霉病及其保鲜作用的研究[D]. 南昌: 江西农业大学, 2020. |
Zhao XY. Effects of exogenous methyl jasmonate(MeJA)induced resistance to blue mold and storage preservation in postharvest pear fruit[D]. Nanchang: Jiangxi Agricultural University, 2020. | |
[48] | 张梦龙, 程新杰, 岳红亮, 等. 水稻抗褐飞虱基因及抗性机制研究进展[J]. 江苏农业科学, 2022, 50(10): 16-22. |
Zhang ML, Cheng XJ, Yue HL, et al. Research progress of brown planthopper resistance genes and resistance mechanism in rice[J]. Jiangsu Agric Sci, 2022, 50(10): 16-22. | |
[49] |
Zhuang YQ, Wang XJ, Llorca LC, et al. Role of jasmonate signaling in rice resistance to the leaf folder Cnaphalocrocis medinalis[J]. Plant Mol Biol, 2022, 109(4/5): 627-637.
doi: 10.1007/s11103-021-01208-x |
[50] |
van Dam NM, Hadwich K, Baldwin IT. Induced responses in Nicotiana attenuata affect behavior and growth of the specialist herbivore Manduca sexta[J]. Oecologia, 2000, 122(3): 371-379.
doi: 10.1007/s004420050043 pmid: 28308288 |
[51] |
Ling SQ, Rizvi SAH, Xiong T, et al. Volatile signals from guava plants prime defense signaling and increase jasmonate-dependent herbivore resistance in neighboring Citrus plants[J]. Front Plant Sci, 2022, 13: 833562.
doi: 10.3389/fpls.2022.833562 URL |
[52] |
Wang J, Song L, Gong X, et al. Functions of jasmonic acid in plant regulation and response to abiotic stress[J]. Int J Mol Sci, 2020, 21(4): 1446.
doi: 10.3390/ijms21041446 URL |
[53] |
Fu J, Wu H, Ma SQ, et al. OsJAZ1 attenuates drought resistance by regulating JA and ABA signaling in rice[J]. Front Plant Sci, 2017, 8: 2108.
doi: 10.3389/fpls.2017.02108 pmid: 29312378 |
[54] |
Hamidian M, Movahhedi Dehnavi M, Mirzaei G, et al. Modulating mycorrhiza—plant relationships and improving the physiological responses of barley under drought stress conditions with the application of methyl jasmonate[J]. J Plant Growth Regul, 2023, 42(4): 2585-2601.
doi: 10.1007/s00344-022-10729-8 |
[55] |
Mohamed HI, Latif HH. Improvement of drought tolerance of soybean plants by using methyl jasmonate[J]. Physiol Mol Biol Plants, 2017, 23(3): 545-556.
doi: 10.1007/s12298-017-0451-x URL |
[56] |
de Ollas C, Hernando B, et al. Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions[J]. Physiol Plant, 2013, 147(3): 296-306.
doi: 10.1111/j.1399-3054.2012.01659.x pmid: 22671923 |
[57] | 张利鹏, 刘怀锋, 辛海平. 葡萄抗寒机制研究进展[J]. 果树学报, 2023, 40(2): 350-362. |
Zhang LP, Liu HF, Xin HP. Research progress in cold tolerance mechanism of grape[J]. J Fruit Sci, 2023, 40(2): 350-362. | |
[58] |
Li SM, Yang Y, Zhang Q, et al. Differential physiological and metabolic response to low temperature in two zoysiagrass genotypes native to high and low latitude[J]. PLoS One, 2018, 13(6): e0198885.
doi: 10.1371/journal.pone.0198885 URL |
[59] |
Wang YC, Xu HF, Liu WJ, et al. Methyl jasmonate enhances apple’ cold tolerance through the JAZ-MYC2 pathway[J]. Plant Cell Tiss Organ Cult, 2019, 136(1): 75-84.
doi: 10.1007/s11240-018-1493-7 |
[60] |
Hu TZ, Zeng H, Hu ZL, et al. Overexpression of the tomato 13-lipoxygenase gene TomloxD increases generation of endogenous jasmonic acid and resistance to Cladosporium fulvum and high temperature[J]. Plant Mol Biol Rep, 2013, 31(5): 1141-1149.
doi: 10.1007/s11105-013-0581-4 URL |
[61] |
Zhu TT, Herrfurth C, Xin MM, et al. Warm temperature triggers JOX and ST2A-mediated jasmonate catabolism to promote plant growth[J]. Nat Commun, 2021, 12(1): 4804.
doi: 10.1038/s41467-021-24883-2 pmid: 34376671 |
[62] |
Chen J, Miao WQ, Fei KQ, et al. Jasmonates alleviate the harm of high-temperature stress during anthesis to stigma vitality of photothermosensitive genetic male sterile rice lines[J]. Front Plant Sci, 2021, 12: 634959.
doi: 10.3389/fpls.2021.634959 URL |
[63] | 刘菊, 金黎平, 徐建飞. 温度影响马铃薯块茎形成的研究进展[J]. 中国马铃薯, 2021, 35(1): 59-67. |
Liu J, Jin LP, Xu JF. Research progress in the effect of temperature on potato tuberization[J]. Chin Potato J, 2021, 35(1): 59-67. | |
[64] |
Ellouzi H, Hamed KB, et al. Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system[J]. Plant Signal Behav, 2013, 8(2): e23136.
doi: 10.4161/psb.23136 URL |
[65] |
Qiu ZB, Guo JL, Zhu AJ, et al. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress[J]. Ecotoxicol Environ Saf, 2014, 104: 202-208.
doi: 10.1016/j.ecoenv.2014.03.014 URL |
[66] |
Karimi R, Gavili-Kilaneh K, Khadivi A. Methyl jasmonate promotes salinity adaptation responses in two grapevine(Vitis vinifera L.) cultivars differing in salt tolerance[J]. Food Chem, 2022, 375: 131667.
doi: 10.1016/j.foodchem.2021.131667 URL |
[67] |
Zhang X, Li M, Yang HH, et al. Physiological responses of Suaeda glauca and Arabidopsis thaliana in phytoremediation of heavy metals[J]. J Environ Manage, 2018, 223: 132-139.
doi: S0301-4797(18)30667-4 pmid: 29909097 |
[68] |
Al-Othman ZA, Ali R, Al-Othman AM, et al. Assessment of toxic metals in wheat crops grown on selected soils, irrigated by different water sources[J]. Arab J Chem, 2016, 9: S1555-S1562.
doi: 10.1016/j.arabjc.2012.04.006 URL |
[69] |
Zhao SY, Ma QF, Xu X, et al. Tomato jasmonic acid-deficient mutant spr2 seedling response to cadmium stress[J]. J Plant Growth Regul, 2016, 35(3): 603-610.
doi: 10.1007/s00344-015-9563-0 URL |
[70] | 韦伟. 生长素和碳源对‘北红’、‘双优’和‘玫瑰香’葡萄组培苗根系发生的影响研究[D]. 银川: 宁夏大学, 2022. |
Wei W. Effects of auxin and carbon source on root development of‘Beihong’,‘Shuangyou’ and Muscat grape tissue culture seedlings[D]. Yinchuan: Ningxia University, 2022. | |
[71] |
Liu H, Timko MP. Jasmonic acid signaling and molecular crosstalk with other phytohormones[J]. Int J Mol Sci, 2021, 22(6): 2914.
doi: 10.3390/ijms22062914 URL |
[72] |
Zhang YZ, He P, Ma XF, et al. Auxin-mediated statolith production for root gravitropism[J]. New Phytol, 2019, 224(2): 761-774.
doi: 10.1111/nph.15932 pmid: 31111487 |
[73] |
Mazzoni-Putman SM, Brumos J, Zhao CS, et al. Auxin interactions with other hormones in plant development[J]. Cold Spring Harb Perspect Biol, 2021, 13(10): a039990.
doi: 10.1101/cshperspect.a039990 URL |
[74] |
Zhu ZQ, Lee B. Friends or foes: new insights in jasmonate and ethylene co-actions[J]. Plant Cell Physiol, 2015, 56(3): 414-420.
doi: 10.1093/pcp/pcu171 pmid: 25435545 |
[75] |
Zhang X, Zhu ZQ, An FY, et al. Jasmonate-activated MYC2 represses ETHYLENE INSENSITIVE3 activity to antagonize ethylene-promoted apical hook formation in Arabidopsis[J]. Plant Cell, 2014, 26(3): 1105-1117.
doi: 10.1105/tpc.113.122002 URL |
[76] |
Hu CY, Wei CY, Ma QM, et al. Ethylene response factors 15 and 16 trigger jasmonate biosynthesis in tomato during herbivore resistance[J]. Plant Physiol, 2021, 185(3): 1182-1197.
doi: 10.1093/plphys/kiaa089 pmid: 33793934 |
[77] |
Liu RQ, Niimi H, Ueda M, et al. Coordinately regulated transcription factors EIN3/EIL1 and MYCs in ethylene and jasmonate signaling interact with the same domain of MED25[J]. Biosci Biotechnol Biochem, 2022, 86(10): 1405-1412.
doi: 10.1093/bbb/zbac119 URL |
[78] |
Spoel SH, Koornneef A, Claessens SMC, et al. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol[J]. Plant Cell, 2003, 15(3): 760-770.
pmid: 12615947 |
[79] |
Nomoto M, Skelly MJ, Itaya T, et al. Suppression of MYC transcription activators by the immune cofactor NPR1 fine-tunes plant immune responses[J]. Cell Rep, 2021, 37(11): 110125.
doi: 10.1016/j.celrep.2021.110125 URL |
[80] |
Zheng XY, Spivey NW, Zeng WQ, et al. Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation[J]. Cell Host Microbe, 2012, 11(6): 587-596.
doi: 10.1016/j.chom.2012.04.014 URL |
[81] |
Mur LAJ, Kenton P, Atzorn R, et al. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death[J]. Plant Physiol, 2006, 140(1): 249-262.
doi: 10.1104/pp.105.072348 pmid: 16377744 |
[82] |
Mine A, Berens ML, Nobori T, et al. Pathogen exploitation of an abscisic acid- and jasmonate-inducible MAPK phosphatase and its interception by Arabidopsis immunity[J]. Proc Natl Acad Sci USA, 2017, 114(28): 7456-7461.
doi: 10.1073/pnas.1702613114 URL |
[83] |
Gimenez-Ibanez S, Boter M, Fernández-Barbero G, et al. The bacterial effector HopX1 targets JAZ transcriptional repressors to activate jasmonate signaling and promote infection in Arabidopsis[J]. PLoS Biol, 2014, 12(2): e1001792.
doi: 10.1371/journal.pbio.1001792 URL |
[84] |
Zhou ZY, Wu YJ, Yang YQ, et al. An Arabidopsis plasma membrane proton ATPase modulates JA signaling and is exploited by the Pseudomonas syringae effector protein AvrB for stomatal invasion[J]. Plant Cell, 2015, 27(7): 2032-2041.
doi: 10.1105/tpc.15.00466 URL |
[85] |
Hou SJ, Tsuda K. Salicylic acid and jasmonic acid crosstalk in plant immunity[J]. Essays Biochem, 2022, 66(5): 647-656.
doi: 10.1042/EBC20210090 pmid: 35698792 |
[86] |
Yang CQ, Bai YC, Halitschke R, et al. Exploring the metabolic basis of growth/defense trade-offs in complex environments with Nicotiana attenuata plants cosilenced in NaMYC2a/b expression[J]. New Phytol, 2023, 238(1): 349-366.
doi: 10.1111/nph.v238.1 URL |
[87] |
Per TS, Khan MIR, Anjum NA, et al. Jasmonates in plants under abiotic stresses: Crosstalk with other phytohormones matters[J]. Environ Exp Bot, 2018, 145: 104-120.
doi: 10.1016/j.envexpbot.2017.11.004 URL |
[88] |
Pauwels L, Ritter A, Goossens J, et al. The ring e3 ligase keep on going modulates jasmonate zim-domain12 stability[J]. Plant Physiol, 2015, 169(2): 1405-1417.
doi: 10.1104/pp.15.00479 pmid: 26320228 |
[89] |
Pan JJ, Hu YR, Wang HP, et al. Molecular mechanism underlying the synergetic effect of jasmonate on abscisic acid signaling during seed germination in Arabidopsis[J]. Plant Cell, 2020, 32(12): 3846-3865.
doi: 10.1105/tpc.19.00838 URL |
[90] |
Betti C, Della Rovere F, Piacentini D, et al. Jasmonates, ethylene and brassinosteroids control adventitious and lateral rooting as stress avoidance responses to heavy metals and metalloids[J]. Biomolecules, 2021, 11(1): 77.
doi: 10.3390/biom11010077 URL |
[91] |
Choudhary SP, Yu JQ, et al. Benefits of brassinosteroid crosstalk[J]. Trends Plant Sci, 2012, 17(10): 594-605.
doi: 10.1016/j.tplants.2012.05.012 pmid: 22738940 |
[92] |
He YQ, Hong GJ, Zhang HH, et al. The OsGSK2 kinase integrates brassinosteroid and jasmonic acid signaling by interacting with OsJAZ4[J]. Plant Cell, 2020, 32(9): 2806-2822.
doi: 10.1105/tpc.19.00499 URL |
[93] |
Trang Nguyen H, Thi Mai To H, Lebrun M, et al. Jasmonates-the master regulator of rice development, adaptation and defense[J]. Plants, 2019, 8(9): 339.
doi: 10.3390/plants8090339 URL |
[94] |
Panda S, Jozwiak A, Sonawane PD, et al. Steroidal alkaloids defence metabolism and plant growth are modulated by the joint action of gibberellin and jasmonate signalling[J]. New Phytol, 2022, 233(3): 1220-1237.
doi: 10.1111/nph.v233.3 URL |
[95] |
Illouz-Eliaz N, Ramon U, Shohat H, et al. Multiple gibberellin receptors contribute to phenotypic stability under changing environments[J]. Plant Cell, 2019, 31(7): 1506-1519.
doi: 10.1105/tpc.19.00235 |
[1] | 丁丽, 都婷婷, 唐琼英, 高权新, 易少奎, 杨国梁. 罗氏沼虾蜕皮周期中内分泌调控和蜕皮信号通路相关基因的表达分析[J]. 生物技术通报, 2023, 39(9): 300-310. |
[2] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[3] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[4] | 胡海琳, 徐黎, 李晓旭, 王晨璨, 梅曼, 丁文静, 赵媛媛. 小肽激素调控植物生长发育及逆境生理研究进展[J]. 生物技术通报, 2023, 39(7): 13-25. |
[5] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[6] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[7] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[8] | 薛皦, 朱庆锋, 冯彦钊, 陈沛, 刘文华, 张爱霞, 刘勤坚, 张琪, 于洋. 植物基因上游开放阅读框的研究进展[J]. 生物技术通报, 2023, 39(4): 157-165. |
[9] | 魏明, 王欣玉, 伍国强, 赵萌. NAD依赖型去乙酰化酶SRT在植物表观遗传调控中的作用[J]. 生物技术通报, 2023, 39(4): 59-70. |
[10] | 桑田, 王鹏程. 植物SUMO化修饰研究进展[J]. 生物技术通报, 2023, 39(3): 1-12. |
[11] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[12] | 于世霞, 姜雨彤, 林文慧. 胚珠原基起始的信号与分子机制研究进展[J]. 生物技术通报, 2023, 39(2): 1-9. |
[13] | 杨艳, 莫雨杏, 周祎, 陈惠明, 肖浪涛, 王若仲. 黄瓜内果皮汁液对种子萌发的影响[J]. 生物技术通报, 2023, 39(12): 158-168. |
[14] | 朱业胜, 伍国强, 魏明. 质膜Na+/H+逆向转运蛋白SOS1在植物离子稳态平衡中的作用[J]. 生物技术通报, 2023, 39(12): 16-32. |
[15] | 安昌, 陆琳, 沈梦千, 陈盛圳, 叶康卓, 秦源, 郑平. 植物bHLH基因家族研究进展及在药用植物中的应用前景[J]. 生物技术通报, 2023, 39(10): 1-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||