生物技术通报 ›› 2023, Vol. 39 ›› Issue (11): 86-98.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0124
韩芳英1(), 胡昕1, 王楠楠1, 谢裕红2, 王晓艳3, 朱强1()
收稿日期:
2023-02-14
出版日期:
2023-11-26
发布日期:
2023-12-20
通讯作者:
朱强,男,教授,研究方向:林木遗传育种;E-mail: zhuqiang@fafu.edu.cn作者简介:
韩芳英,女,硕士研究生,研究方向:林木遗传育种;E-mail: hanfangy@qq.com
基金资助:
HAN Fang-ying1(), HU Xin1, WANG Nan-nan1, XIE Yu-hong2, WANG Xiao-yan3, ZHU Qiang1()
Received:
2023-02-14
Published:
2023-11-26
Online:
2023-12-20
摘要:
寒冷、干旱和高盐等非生物胁迫作为常见的不利环境条件,严重影响全球植物生长和生产力。干旱应答元件结合蛋白(dehydration responsive element binding protein, DREB)是植物重要转录因子之一,其家族成员均含有一个57-70个氨基酸残基的保守AP2结构域。DREB通过与胁迫诱导基因启动子区中的脱水反应元件/C-重复(dehydration responsive element/C-repeat, DRE/CRT)顺式作用元件相互作用,调节下游各种应激基因的表达,赋予植物应激耐受性。本文从DREB家族结构特点和分类出发,结合最新研究进展,阐述其在非生物胁迫过程中的作用机制,旨在更加深入地了解DERB类转录因子在非生物胁迫响应过程中的分子调控网络,以期为未来利用基因工程手段提高植物抗逆性方面提供参考。
韩芳英, 胡昕, 王楠楠, 谢裕红, 王晓艳, 朱强. DREBs响应植物非生物逆境胁迫研究进展[J]. 生物技术通报, 2023, 39(11): 86-98.
HAN Fang-ying, HU Xin, WANG Nan-nan, XIE Yu-hong, WANG Xiao-yan, ZHU Qiang. Research Progress in Response of DREBs to Abiotic Stress in Plant[J]. Biotechnology Bulletin, 2023, 39(11): 86-98.
植物 Plant | DREB分类DREB classification | DREB总数 Total DREB | AP2总数 Total AP2 | |||||
---|---|---|---|---|---|---|---|---|
A1 | A2 | A3 | A4 | A5 | A6 | |||
拟南芥Arabidopsis thaliana[ | 6 | 8 | 1 | 16 | 16 | 10 | 57 | 147 |
大豆 Glycine max[ | 3 | 6 | 1 | 11 | 7 | 9 | 37 | 148 |
绿豆Vigna radiata L.[ | 18 | 4 | 23 | 9 | 7 | 20 | 79 | 186 |
马铃薯Solanum tuberosum[ | 11 | 8 | 2 | 18 | 8 | 19 | 66 | / |
水稻Oryza sativa[ | 10 | 6 | 5 | 12 | 15 | 9 | 57 | 163 |
玉米Zea mays[ | 10 | 4 | 1 | 11 | 13 | 10 | 49 | 167 |
大麦 Hordeum vulgar[ | 9 | 3 | 2 | 1 | 1 | 2 | 18 | 53 |
小麦Triticum aestivum[ | 39 | 5 | 0 | 1 | 4 | 8 | 57 | 117 |
毛竹Phyllostachys edulis[ | 7 | 6 | 0 | 14 | 6 | 14 | 47 | 142 |
紫花苜蓿Medicago sativa L.[ | 56 | 39 | 3 | 61 | 13 | 0 | 172 | / |
甘蓝Brassica oleracea[ | 8 | 9 | 1 | 33 | 23 | 17 | 91 | 226 |
毛白杨Populus trichocarpa[ | 6 | 18 | 2 | 26 | 14 | 11 | 77 | 200 |
苹果Malus domestica[ | 3 | 25 | 2 | 18 | 18 | 10 | 76 | 260 |
月季Rose chinensis[ | 7 | 11 | 1 | 15 | 7 | 3 | 44 | 135 |
准噶尔无叶豆Eremosparton songoricum(Litv.)Vass.[ | 13 | 7 | 1 | 16 | 15 | 7 | 59 | 153 |
白菜Brassica rapa L.[ | 10 | 16 | 2 | 36 | 26 | 19 | 109 | 291 |
表1 不同植物DREB类转录因子分类
Table 1 Classification of DREB transcription factors in different plants
植物 Plant | DREB分类DREB classification | DREB总数 Total DREB | AP2总数 Total AP2 | |||||
---|---|---|---|---|---|---|---|---|
A1 | A2 | A3 | A4 | A5 | A6 | |||
拟南芥Arabidopsis thaliana[ | 6 | 8 | 1 | 16 | 16 | 10 | 57 | 147 |
大豆 Glycine max[ | 3 | 6 | 1 | 11 | 7 | 9 | 37 | 148 |
绿豆Vigna radiata L.[ | 18 | 4 | 23 | 9 | 7 | 20 | 79 | 186 |
马铃薯Solanum tuberosum[ | 11 | 8 | 2 | 18 | 8 | 19 | 66 | / |
水稻Oryza sativa[ | 10 | 6 | 5 | 12 | 15 | 9 | 57 | 163 |
玉米Zea mays[ | 10 | 4 | 1 | 11 | 13 | 10 | 49 | 167 |
大麦 Hordeum vulgar[ | 9 | 3 | 2 | 1 | 1 | 2 | 18 | 53 |
小麦Triticum aestivum[ | 39 | 5 | 0 | 1 | 4 | 8 | 57 | 117 |
毛竹Phyllostachys edulis[ | 7 | 6 | 0 | 14 | 6 | 14 | 47 | 142 |
紫花苜蓿Medicago sativa L.[ | 56 | 39 | 3 | 61 | 13 | 0 | 172 | / |
甘蓝Brassica oleracea[ | 8 | 9 | 1 | 33 | 23 | 17 | 91 | 226 |
毛白杨Populus trichocarpa[ | 6 | 18 | 2 | 26 | 14 | 11 | 77 | 200 |
苹果Malus domestica[ | 3 | 25 | 2 | 18 | 18 | 10 | 76 | 260 |
月季Rose chinensis[ | 7 | 11 | 1 | 15 | 7 | 3 | 44 | 135 |
准噶尔无叶豆Eremosparton songoricum(Litv.)Vass.[ | 13 | 7 | 1 | 16 | 15 | 7 | 59 | 153 |
白菜Brassica rapa L.[ | 10 | 16 | 2 | 36 | 26 | 19 | 109 | 291 |
图2 NCBI数据库中已发表DREB蛋白AP2/ERF结构域的系统进化分析 At:拟南芥;OS:水稻;Zm:玉米;Ta:小麦;Sb:高粱;Si:谷子;Hv:大麦;Fa:高羊茅;Pe:毛竹;Gm:大豆;Th:盐芥;Nt:烟草;Le:番茄
Fig. 2 Phylogenetic analysis of AP2/ERF domains of published DREB proteins in NCBI database At: Arabidopsis thaliana; OS: Oryza sativa; Zm: Zea mays; Ta: Triticum aestivum; Sb: Sorghum bicolor; Si: Setaria italica; Hv: Hordeum vulgare; Fa: Festuca arundinacea; Pe: Phyllostachys edulis; Gm: Glycine max; Th: Thellungiella halophila; Nt: Nicotiana tabacum; Le: Lycopersicum esculentum
[1] |
Nakano T, Suzuki K, Fujimura T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiol, 2006, 140(2): 411-432.
doi: 10.1104/pp.105.073783 URL |
[2] |
Sakuma Y, Liu Q, Dubouzet JG, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold- inducible gene expression[J]. Biochem Biophys Res Commun, 2002, 290(3): 998-1009.
doi: 10.1006/bbrc.2001.6299 URL |
[3] |
Li Z, Wang G, Liu XH, et al. Genome-wide identification and expression profiling of DREB genes in Saccharum spontaneum[J]. BMC Genomics, 2021, 22(1): 456.
doi: 10.1186/s12864-021-07799-5 |
[4] |
Sun S, Yu JP, Chen F, et al. TINY, a dehydration-responsive element(DRE)-binding protein-like transcription factor connecting the DRE- and ethylene-responsive element-mediated signaling pathways in Arabidopsis[J]. J Biol Chem, 2008, 283(10): 6261-6271.
doi: 10.1074/jbc.M706800200 URL |
[5] |
Okamuro JK, Caster B, Villarroel R, et al. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis[J]. Proc Natl Acad Sci USA, 1997, 94(13): 7076-7081.
doi: 10.1073/pnas.94.13.7076 pmid: 9192694 |
[6] |
Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proc Natl Acad Sci USA, 1997, 94(3): 1035-1040.
doi: 10.1073/pnas.94.3.1035 pmid: 9023378 |
[7] |
Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis[J]. Plant Cell, 1998, 10(8): 1391-1406.
doi: 10.1105/tpc.10.8.1391 pmid: 9707537 |
[8] |
Agarwal PK, Agarwal P, Reddy MK, et al. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants[J]. Plant Cell Rep, 2006, 25(12): 1263-1274.
doi: 10.1007/s00299-006-0204-8 pmid: 16858552 |
[9] |
Lata CR, Prasad M. Role of DREBs in regulation of abiotic stress responses in plants[J]. J Exp Bot, 2011, 62(14): 4731-4748.
doi: 10.1093/jxb/err210 pmid: 21737415 |
[10] | Zhou MJ, Ma JT, Pang JF, et al. Regulation of plant stress response by dehydration responsive element binding(DREB)transcription factors[J]. Afr J Biotechnol, 2010, 9(54): 9255-9269. |
[11] |
Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress[J]. Plant Cell, 1994, 6(2): 251-264.
doi: 10.1105/tpc.6.2.251 pmid: 8148648 |
[12] |
Cong L, Chai TY, Zhang YX. Characterization of the novel gene BjDREB1B encoding a DRE-binding transcription factor from Brassica juncea L.[J]. Biochem Biophys Res Commun, 2008, 371(4): 702-706.
doi: 10.1016/j.bbrc.2008.04.126 URL |
[13] |
Cao ZF, Li J, Chen F, et al. Effect of two conserved amino acid residues on DREB1A function[J]. Biochem Mosc, 2001, 66(6): 623-627.
doi: 10.1023/A:1010251129429 URL |
[14] |
Dubouzet JG, Sakuma Y, Ito Y, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression[J]. Plant J, 2003, 33(4): 751-763.
doi: 10.1046/j.1365-313x.2003.01661.x pmid: 12609047 |
[15] |
Agarwal G, Garg V, Kudapa H, et al. Genome-wide dissection of AP2/ERF and HSP90 gene families in five legumes and expression profiles in chickpea and pigeonpea[J]. Plant Biotechnol J, 2016, 14(7): 1563-1577.
doi: 10.1111/pbi.12520 pmid: 26800652 |
[16] |
Chen HL, Hu LL, Wang LX, et al. Genome-wide identification and expression profiles of AP2/ERF transcription factor family in mung bean(Vigna radiata L.)[J]. J Appl Genetics, 2022, 63(2): 223-236.
doi: 10.1007/s13353-021-00675-8 |
[17] |
Mushtaq N, Munir F, Gul A, et al. Genome-wide analysis, identification, evolution and genomic organization of dehydration responsive element-binding(DREB)gene family in Solanum tuberosum[J]. PeerJ, 2021, 9: e11647.
doi: 10.7717/peerj.11647 URL |
[18] |
Sharoni AM, Nuruzzaman M, Satoh K, et al. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice[J]. Plant and Cell Physiol, 2011, 52(2): 344-360.
doi: 10.1093/pcp/pcq196 URL |
[19] |
Zhang J, Liao JY, Ling QQ, et al. Genome-wide identification and expression profiling analysis of maize AP2/ERF superfamily genes reveal essential roles in abiotic stress tolerance[J]. BMC Genomics, 2022, 23(1): 125.
doi: 10.1186/s12864-022-08345-7 pmid: 35151253 |
[20] |
Zhuang J, Anyia A, Vidmar J, et al. Discovery and expression assessment of the AP2-like genes in Hordeum vulgare[J]. Acta Physiol Plant, 2011, 33(5): 1639-1649.
doi: 10.1007/s11738-010-0700-x URL |
[21] |
Zhuang J, Chen JM, Yao QH, et al. Discovery and expression profile analysis of AP2/ERF family genes from Triticum aestivum[J]. Mol Biol Rep, 2011, 38(2): 745-753.
doi: 10.1007/s11033-010-0162-7 pmid: 20407836 |
[22] |
Wu HL, Lv H, Li L, et al. Genome-wide analysis of the AP2/ERF transcription factors family and the expression patterns of DREB genes in moso bamboo(Phyllostachys edulis)[J]. PLoS One, 2015, 10(5): e0126657.
doi: 10.1371/journal.pone.0126657 URL |
[23] | Sheng S, Guo XY, Wu CZ, et al. Genome-wide identification and expression analysis of DREB genes in alfalfa(Medicago sativa)in response to cold stress[J]. Plant Signal Behav, 2022, 17(1): 208-212. |
[24] | Thamilarasan SK, Park JI, Jung HJ, et al. Genome-wide analysis of the distribution of AP2/ERF transcription factors reveals duplication and CBFs genes elucidate their potential function in Brassica oleracea[J]. BMC Genomics, 2014, 3(15): 422. |
[25] |
Zhang J, Shi SZ, Jiang YN, et al. Genome-wide investigation of the AP2/ERF superfamily and their expression under salt stress in Chinese willow(Salix matsudana)[J]. PeerJ, 2021, 9: e11076.
doi: 10.7717/peerj.11076 URL |
[26] |
Zhang HN, Pan XL, Liu SH, et al. Genome-wide analysis of AP2/ERF transcription factors in pineapple reveals functional divergence during flowering induction mediated by ethylene and floral organ development[J]. Genomics, 2021, 113(2): 474-489.
doi: 10.1016/j.ygeno.2020.10.040 pmid: 33359830 |
[27] |
Zhao MQ, Haxim Y, Liang YQ, et al. Genome-wide investigation of AP2/ERF gene family in the desert legume Eremosparton songoricum: Identification, classification, evolution, and expression profiling under drought stress[J]. Front Plant Sci, 2022, 13: 885694.
doi: 10.3389/fpls.2022.885694 URL |
[28] | Xie ZM, Yang CY, Liu SY, et al. Identification of AP2/ERF transcription factors in Tetrastigma hemsleyanum revealed the specific roles of ERF46 under cold stress[J]. Front Plant Sci, 2022, 13(9): 366-372. |
[29] |
Wu Y, Zhang LT, Nie LB, et al. Genome-wide analysis of the DREB family genes and functional identification of the involvement of Br-DREB2B in abiotic stress in Wucai(Brassica campestris L.)[J]. BMC Genomics, 2022, 23(1): 598.
doi: 10.1186/s12864-022-08812-1 |
[30] |
Kerchev PI, Pellny TK, Vivancos PD, et al. The transcription factor ABI4 is required for the ascorbic acid-dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis[J]. Plant Cell, 2011, 23(9): 3319-3334.
doi: 10.1105/tpc.111.090100 URL |
[31] |
Xie ZL, Nolan T, Jiang H, et al. The AP2/ERF transcription factor TINY modulates Brassinost-eroid regulated plant growth and drought responses in Arabidopsis[J]. Plant Cell, 2019, 31(8): 1788-1806.
doi: 10.1105/tpc.18.00918 URL |
[32] |
Karaba A, Dixit S, Greco R, et al. Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene[J]. Proc Natl Acad Sci USA, 2007, 104(39): 15270-15275.
doi: 10.1073/pnas.0707294104 URL |
[33] |
Dong CJ, Liu JY. The Arabidopsis EAR-motif-containing protein RAP2.1 functions as an active transcriptional repressor to keep stress responses under tight control[J]. BMC Plant Biol, 2010, 10: 47.
doi: 10.1186/1471-2229-10-47 URL |
[34] |
刘坤, 李国婧, 杨杞. 参与植物非生物逆境响应的DREB/CBF转录因子研究进展[J]. 生物技术通报, 2022, 38(5): 201-214.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1219 |
Liu K, Li GJ, Yang Q. Research progress in DREB/CBF transcription factor involved in responses in plant to abiotic stress[J]. Biotechnol Bull, 2022, 38(5): 201-214
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1219 |
|
[35] |
Lin RC, Park HJ, Wang HY. Role of Arabidopsis RAP2.4 in regulating light- and ethylene-mediated developmental processes and drought stress tolerance[J]. Mol Plant, 2008, 1(1): 42-57.
doi: 10.1093/mp/ssm004 URL |
[36] |
Matsukura S, Mizoi J, Yoshida T, et al. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes[J]. Mol Genet Genomics, 2010, 283(2):185-196.
doi: 10.1007/s00438-009-0506-y pmid: 20049613 |
[37] |
Niu X, Luo TL, Zhao HY, et al. Identification of wheat DREB genes and functional characterization of TaDREB3 in response to abiotic stresses[J]. Gene, 2020, 740: 144514.
doi: 10.1016/j.gene.2020.144514 URL |
[38] |
Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress responses[J]. Biochim Biophys Acta, 2012, 1819(2): 86-96.
doi: 10.1016/j.bbagrm.2011.08.004 pmid: 21867785 |
[39] |
Nakashima K, Shinwari ZK, Sakuma Y, et al. Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression[J]. Plant Mol Biol, 2000, 42(4): 657-665.
doi: 10.1023/a:1006321900483 pmid: 10809011 |
[40] |
Novillo F, Medina J, Salinas J. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon[J]. Proc Natl Acad Sci USA, 2007, 104(52): 21002-21007.
doi: 10.1073/pnas.0705639105 URL |
[41] |
Novillo F, Alonso JM, Ecker JR, et al. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis[J]. Proc Natl Acad Sci USA, 2004, 101(11): 3985-3990.
doi: 10.1073/pnas.0303029101 URL |
[42] |
Shi Y, Ding Y, Yang S. Cold signal transduction and its interplay with phytohormones during cold acclimation[J]. Plant Cell Physiol, 2015, 56(1): 7-15.
doi: 10.1093/pcp/pcu115 pmid: 25189343 |
[43] |
Fursova OV, Pogorelko GV, Tarasov VA. Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana[J]. Gene, 2009, 429(1/2): 98-103.
doi: 10.1016/j.gene.2008.10.016 URL |
[44] |
Chinnusamy V, Ohta M, Kanrar S, et al. ICE1: A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Genes Dev, 2003, 17(8): 1043-1054.
doi: 10.1101/gad.1077503 URL |
[45] |
Doherty CJ, Van Buskirk HA, Myers SJ, et al. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance[J]. Plant Cell, 2009, 21(3): 972-984.
doi: 10.1105/tpc.108.063958 URL |
[46] |
Shi YT, Ding YL, Yang SH. Cold signal transduction and its interplay with phytohormones during cold acclimation[J]. Plant Cell Physiol, 2015, 56(1): 7-15.
doi: 10.1093/pcp/pcu115 pmid: 25189343 |
[47] |
Agarwal M, Hao YJ, Kapoor A, et al. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance[J]. J Biol Chem, 2006, 281(49): 37636-37645.
doi: 10.1074/jbc.M605895200 pmid: 17015446 |
[48] |
Shi YT, Tian SW, Hou LY, et al. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-a ARR genes in Arabidopsis[J]. Plant Cell, 2012, 24(6): 2578-2595.
doi: 10.1105/tpc.112.098640 URL |
[49] |
Potuschak T, Lechner E, Parmentier Y, et al. EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins[J]. Cell, 2003, 115(6): 679-689.
doi: 10.1016/s0092-8674(03)00968-1 pmid: 14675533 |
[50] |
Dong CH, Agarwal M, Zhang YY, et al. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1[J]. Proc Natl Acad Sci USA, 2006, 103(21): 8281-8826.
doi: 10.1073/pnas.0602874103 URL |
[51] |
Lee H, Xiong L, Gong Z, et al. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning[J]. Genes Dev, 2001, 15(7): 912-924.
doi: 10.1101/gad.866801 URL |
[52] |
Miura K, Jin JB, Lee J, et al. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis[J]. Plant Cell, 2007, 19(4): 1403-1414.
doi: 10.1105/tpc.106.048397 URL |
[53] |
Yang TB, Shad Ali G, Yang LH, et al. Calcium/calmodulin regulated receptor like kinase CRLK1 interacts with MEKK1 in plants[J]. Plant Signal Behav, 2010, 5(8): 991-994.
doi: 10.4161/psb.5.8.12225 URL |
[54] |
Yang TB, Chaudhuri S, Yang LH, et al. A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants[J]. J Biol Chem, 2010, 285(10): 7119-7126.
doi: 10.1074/jbc.M109.035659 pmid: 20026608 |
[55] |
Kumar S, Muthuvel J, Sadhukhan A, et al. Enhanced osmotic adjustment, antioxidant defense, and photosynthesis efficiency under drought and heat stress of transgenic cowpea overexpressing an engineered DREB transcription factor[J]. Plant Physiol Biochem, 2022, 193: 1-13.
doi: 10.1016/j.plaphy.2022.09.028 URL |
[56] |
Mao LZ, Deng MH, Jiang SR, et al. Characterization of the DREBA4-type transcription factor(SlDREBA4), which contributes to heat tolerance in tomatoes[J]. Front Plant Sci, 2020, 11: 554520.
doi: 10.3389/fpls.2020.554520 URL |
[57] |
Singh S, Chopperla R, Shingote P, et al. Overexpression of EcDREB2A transcription factor from finger millet in tobacco enhances tolerance to heat stress through ROS scavenging[J]. J Biotechnol, 2021, 336: 10-24.
doi: 10.1016/j.jbiotec.2021.06.013 URL |
[58] |
Figueroa-Yañez L, Pereira-Santana A, Arroyo-Herrera A, et al. RAP2.4a is transported through the phloem to regulate cold and heat tolerance in papaya tree(Carica papaya cv. maradol): Implications for protection against abiotic stress[J]. PLoS One, 2016, 11(10): e0165030.
doi: 10.1371/journal.pone.0165030 URL |
[59] |
Qin F, Sakuma Y, Tran LS, et al. Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression[J]. Plant Cell, 2008, 20(6): 1693-1707.
doi: 10.1105/tpc.107.057380 URL |
[60] |
Sakuma Y, Maruyama K, Osakabe Y, et al. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression[J]. Plant Cell, 2006, 18(5): 1292-1309.
doi: 10.1105/tpc.105.035881 pmid: 16617101 |
[61] |
Sakuma Y, Maruyama K, Qin F, et al. Dual function of an Arabidopsis transcription factor DREB2A in water stress responsive and heat stress responsive gene expression[J]. Proc Natl Acad Sci USA, 2006, 103(49): 18822-18827.
doi: 10.1073/pnas.0605639103 pmid: 17030801 |
[62] |
Reis RR, Andrade Dias Brito da Cunha B, Martins PK, et al. Induced over-expression of AtDREB2A CA improves drought tolerance in sugarcane[J]. Plant Sci, 2014, 221/222: 59-68.
doi: 10.1016/j.plantsci.2014.02.003 URL |
[63] | Morimoto K, Ohama N, Kidokoro S, et al. BPM-CUL3 E3 ligase modulates thermotolerance by facilitating negative regulatory domain-mediated degradation of DREB2A in Arabidopsis[J]. Proc Natl Acad Sci USA, 2017, 114(40): E8528-E8536. |
[64] |
Xu ZS, Ni ZY, Li ZY, et al. Isolation and functional characterization of HvDREB1 a gene encoding a dehydration responsive element binding protein in Hordeum vulgare[J]. J Plant Res, 2009, 122(1): 121-130.
doi: 10.1007/s10265-008-0195-3 URL |
[65] |
Yang W, Liu XD, Chi XJ, et al. Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways[J]. Planta, 2011, 233(2): 219-229..
doi: 10.1007/s00425-010-1279-6 pmid: 20967459 |
[66] |
Zhang XX, Tang YJ, Ma QB, et al. OsDREB2A, a rice transcription factor, significantly affects salt tolerance in transgenic soybean[J]. PLoS One, 2013, 8(12): e83011.
doi: 10.1371/journal.pone.0083011 URL |
[67] |
Meena RP, Ghosh G, Vishwakarma H, et al. Expression of a Pennisetum glaucum gene DREB2A confers enhanced heat, drought and salinity tolerance in transgenic Arabidopsis[J]. Mol Biol Rep, 2022, 49(8): 7347-7358.
doi: 10.1007/s11033-022-07527-6 |
[68] |
Gutha LR, Reddy AR. Rice DREB1B promoter shows distinct stress-specific responses, and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance[J]. Plant Mol Biol, 2008, 68(6): 533-555.
doi: 10.1007/s11103-008-9391-8 pmid: 18754079 |
[69] |
Liu XQ, Liu CY, Guo Q, et al. Mulberry transcription factor MnDREB4A confers tolerance to multiple abiotic stresses in transgenic tobacco[J]. PLoS One, 2015, 10(12): e0145619.
doi: 10.1371/journal.pone.0145619 URL |
[70] |
Chen M, Wang QY, Cheng XG, et al. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants[J]. Biochem Biophys Res Commun, 2007, 353(2): 299-305.
doi: 10.1016/j.bbrc.2006.12.027 URL |
[71] |
Liang YQ, Li XS, Zhang DY, et al. ScDREB8, a novel A-5 type of DREB gene in the desert moss Syntrichia caninervis, confers salt tolerance to Arabidopsis[J]. Plant Physiol Biochem, 2017, 120: 242-521.
doi: 10.1016/j.plaphy.2017.09.014 URL |
[72] |
Li XS, Liang YQ, Gao B, et al. ScDREB10, an A-5c type of DREB gene of the desert moss Syntrichia caninervis, confers osmotic and salt tolerances to Arabidopsis[J]. Genes, 2019, 10(2): 146.
doi: 10.3390/genes10020146 URL |
[73] |
Zhu DL, Wu Z, Cao GY, et al. TRANSLUCENT GREEN, an ERF family transcription factor, controls water balance in Arabidopsis by activating the expression of aquaporin genes[J]. Mol Plant, 2014, 7(4): 601-615.
doi: 10.1093/mp/sst152 URL |
[74] |
Ban QY, Liu GF, Wang YC. A DREB gene from Limonium bicolor mediates molecular and physiological responses to copper stress in transgenic tobacco[J]. J Plant Physiol, 2011, 168(5): 449-458.
doi: 10.1016/j.jplph.2010.08.013 URL |
[75] | Ling Y, Zhao Y, Cheng BZ, et al. Seed priming with chitosan improves germination characteristics associated with alterations in antioxidant defense and dehydration responsive pathway in white clover under water stress[J]. Plants(Basel), 2022, 11(15): 2015. |
[76] | 张梅, 刘炜, 毕玉平. 植物中DREBs类转录因子及其在非生物胁迫中的作用[J]. 遗传, 2009, 31(3): 236-244. |
Zhang M, Liu W, Bi YP. Dehydration-responsive element-binding(DREB)transcription factor in plants and its role during abiotic stresses[J]. Hereditas, 2009, 31(3): 236-244. |
[1] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[2] | 韩浩章, 张丽华, 李素华, 赵荣, 王芳, 王晓立. 盐碱胁迫诱导的猴樟酵母cDNA文库构建及CbP5CS上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 236-245. |
[3] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[4] | 徐靖, 朱红林, 林延慧, 唐力琼, 唐清杰, 王效宁. 甘薯IbHQT1启动子的克隆及上游调控因子的鉴定[J]. 生物技术通报, 2023, 39(8): 213-219. |
[5] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[6] | 陈晓, 于茗兰, 吴隆坤, 郑晓明, 逄洪波. 植物lncRNA及其对低温胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(7): 1-12. |
[7] | 郭怡婷, 赵文菊, 任延靖, 赵孟良. 菊芋NAC转录因子家族基因的鉴定及分析[J]. 生物技术通报, 2023, 39(6): 217-232. |
[8] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[9] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[10] | 张新博, 崔浩亮, 史佩华, 高锦春, 赵顺然, 陶晨雨. 低起始量的免疫共沉淀技术研究进展[J]. 生物技术通报, 2023, 39(4): 227-235. |
[11] | 葛颜锐, 赵冉, 徐静, 李若凡, 胡云涛, 李瑞丽. 植物维管形成层发育及其调控的研究进展[J]. 生物技术通报, 2023, 39(3): 13-25. |
[12] | 刘铖霞, 孙宗艳, 罗云波, 朱鸿亮, 曲桂芹. bHLH转录因子的磷酸化调控植物生理功能的研究进展[J]. 生物技术通报, 2023, 39(3): 26-34. |
[13] | 赵孟良, 郭怡婷, 任延靖. 菊芋WRKY转录因子家族基因的鉴定及分析[J]. 生物技术通报, 2023, 39(2): 116-125. |
[14] | 陈楚怡, 杨小梅, 陈胜艳, 陈斌, 岳莉然. ABA和干旱胁迫下菊花脑ZF-HD基因家族的表达分析[J]. 生物技术通报, 2023, 39(11): 270-282. |
[15] | 冯策婷, 江律, 刘鑫颖, 罗乐, 潘会堂, 张启翔, 于超. 单叶蔷薇NAC基因家族鉴定及干旱胁迫响应分析[J]. 生物技术通报, 2023, 39(11): 283-296. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||