生物技术通报 ›› 2024, Vol. 40 ›› Issue (4): 12-22.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1091
陈盈盈(), 吴丁洁, 刘源, 张航, 刘艳娇, 王晶宇, 李瑞丽()
收稿日期:
2023-11-20
出版日期:
2024-04-26
发布日期:
2024-04-30
通讯作者:
李瑞丽,女,博士,教授,研究方向:植物细胞分子生物学;E-mail: liruili@bifu.edu.cn作者简介:
陈盈盈,女,硕士研究生,研究方向:植物细胞分子生物学;E-mail: yychen@bjfu.edu.cn
基金资助:
CHEN Ying-ying(), WU Ding-jie, LIU Yuan, ZHANG Hang, LIU Yan-jiao, WANG Jing-yu, LI Rui-li()
Received:
2023-11-20
Published:
2024-04-26
Online:
2024-04-30
摘要:
14-3-3蛋白是由不同基因编码的高度同源的酸性蛋白质家族,在真核生物中广泛存在,且在结构上相对保守。14-3-3蛋白主要是通过识别靶蛋白上的磷酸化位点与靶蛋白发生相互作用,导致靶蛋白的稳定性、亚细胞定位或与其他蛋白之间的相互作用发生显著变化,进而调控靶蛋白的功能。不同物种中含有多种亚型的14-3-3蛋白,这些不同的亚型蛋白通过与其他蛋白的相互作用来影响植物的生长发育等过程。本文概述了14-3-3蛋白在植物中的种类、亚细胞定位以及在组织中的表达情况,重点总结了14-3-3蛋白在植物激素信号转导、生长发育及胁迫响应中的功能,以期为今后系统开展14-3-3蛋白的研究提供理论依据。
陈盈盈, 吴丁洁, 刘源, 张航, 刘艳娇, 王晶宇, 李瑞丽. 14-3-3蛋白及其在植物中的功能研究进展[J]. 生物技术通报, 2024, 40(4): 12-22.
CHEN Ying-ying, WU Ding-jie, LIU Yuan, ZHANG Hang, LIU Yan-jiao, WANG Jing-yu, LI Rui-li. Recent Advances in 14-3-3 Proteins and Their Functions in Plant[J]. Biotechnology Bulletin, 2024, 40(4): 12-22.
植物生长Plant growth | 物种Species | 名称Name | 功能Function | 参考文献Reference |
---|---|---|---|---|
营养生长 | 拟南芥 | 14-3- 3μ | 突变后抑制根的伸长并促进根部叶绿体积累 | [ |
拟南芥 | 14-3-3λ/κ | 正调控光形态建成 | [ | |
拟南芥 | 14-3-3λ/κ | 双突变体的叶片衰老延迟 | [ | |
拟南芥 | 14-3-3λ | 突变体在黑暗中有更长的黄化下胚轴 | [ | |
番茄 | TFT6 | 参与蓝光诱导脱黄化 | [ | |
拟南芥 | 14-3-3ε | 参与向光性生长 | [ | |
拟南芥 | 14-3-3Ω | 影响下胚轴的向光弯曲 | [ | |
生殖生长 | 水稻 | GF14c | 诱导植物成花转变 | [ |
芒果 | MiGF6A/6B | 促进开花 | [ | |
棉花 | GhGRF3/6/9/15 | 抑制开花 | [ | |
棉花 | GhGRF14 | 促进开花 | [ | |
梭梭 | HaFT-1 | 促进种子萌发 | [ | |
拟南芥 | 14-3-3λ/κ | 增加种子含油量 | [ | |
水稻 | GF14f | 负调控籽粒灌浆过程 | [ |
表1 参与植物生长的14-3-3蛋白
Table 1 14-3-3 proteins involved in plant growth
植物生长Plant growth | 物种Species | 名称Name | 功能Function | 参考文献Reference |
---|---|---|---|---|
营养生长 | 拟南芥 | 14-3- 3μ | 突变后抑制根的伸长并促进根部叶绿体积累 | [ |
拟南芥 | 14-3-3λ/κ | 正调控光形态建成 | [ | |
拟南芥 | 14-3-3λ/κ | 双突变体的叶片衰老延迟 | [ | |
拟南芥 | 14-3-3λ | 突变体在黑暗中有更长的黄化下胚轴 | [ | |
番茄 | TFT6 | 参与蓝光诱导脱黄化 | [ | |
拟南芥 | 14-3-3ε | 参与向光性生长 | [ | |
拟南芥 | 14-3-3Ω | 影响下胚轴的向光弯曲 | [ | |
生殖生长 | 水稻 | GF14c | 诱导植物成花转变 | [ |
芒果 | MiGF6A/6B | 促进开花 | [ | |
棉花 | GhGRF3/6/9/15 | 抑制开花 | [ | |
棉花 | GhGRF14 | 促进开花 | [ | |
梭梭 | HaFT-1 | 促进种子萌发 | [ | |
拟南芥 | 14-3-3λ/κ | 增加种子含油量 | [ | |
水稻 | GF14f | 负调控籽粒灌浆过程 | [ |
[1] |
Moore BW, Perez VJ, Gehring M. Assay and regional distribution of a soluble protein characteristic of the nervous system[J]. J Neurochem, 1968, 15(4): 265-272.
pmid: 4966699 |
[2] |
DeLille JM, Sehnke PC, Ferl RJ. The Arabidopsis 14-3-3 family of signaling regulators[J]. Plant Physiol, 2001, 126(1): 35-38.
doi: 10.1104/pp.126.1.35 pmid: 11351068 |
[3] |
Lu G, DeLisle AJ, de Vetten NC, et al. Brain proteins in plants: an Arabidopsis homolog to neurotransmitter pathway activators is part of a DNA binding complex[J]. Proc Natl Acad Sci USA, 1992, 89(23): 11490-11494.
pmid: 1454838 |
[4] |
Laughner B, Lawrence SD, Ferl RJ. Two tomato fruit homologs of 14-3-3 mammalian brain proteins[J]. Plant Physiol, 1994, 105(4): 1457-1458.
doi: 10.1104/pp.105.4.1457 pmid: 7972510 |
[5] |
de Vetten NC, Ferl RJ. Two genes encoding GF14(14-3-3)proteins in Zea mays. Structure, expression, and potential regulation by the G-box binding complex[J]. Plant Physiol, 1994, 106(4): 1593-1604.
pmid: 7846163 |
[6] |
Chen Z, Fu H, Liu D, et al. A NaCl-regulated plant gene encoding a brain protein homology that activates ADP ribosyltransferase and inhibits protein kinase C[J]. Plant J, 1994, 6(5): 729-740.
doi: 10.1046/j.1365-313x.1994.6050729.x pmid: 8000427 |
[7] |
Stanković B, Garić-Stanković A, Smith CM, et al. Isolation, sequencing, and analysis of a 14-3-3 brain protein homolog from pea(Pisum sativum L.)[J]. Plant Physiol, 1995, 107(4): 1481-1482.
doi: 10.1104/pp.107.4.1481 pmid: 7770545 |
[8] |
Moorhead G, Douglas P, Morrice N, et al. Phosphorylated nitrate reductase from spinach leaves is inhibited by 14-3-3 proteins and activated by fusicoccin[J]. Curr Biol, 1996, 6(9): 1104-1113.
doi: 10.1016/s0960-9822(02)70677-5 pmid: 8805370 |
[9] |
de Boer AH, Gao J. Plant 14-3-3 proteins as spiders in a web of phosphorylation[J]. Protoplasma, 2013, 250(2): 425-440.
doi: 10.1007/s00709-012-0437-z pmid: 22926776 |
[10] |
Catalá R, López-Cobollo R, Mar Castellano M, et al. The Arabidopsis 14-3-3 protein rare cold inducible 1a links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation[J]. Plant Cell, 2014, 26(8): 3326-3342.
doi: 10.1105/tpc.114.127605 URL |
[11] |
Gampala SS, Kim TW, He JX, et al. An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis[J]. Dev Cell, 2007, 13(2): 177-189.
doi: 10.1016/j.devcel.2007.06.009 URL |
[12] | He FY, Duan SG, Jian YQ, et al. Genome-wide identification and gene expression analysis of the 14-3-3 gene family in potato(Solanum tuberosum L.)[J]. BMC Genomics, 2022, 23(1): 811. |
[13] |
Chevalier D, Morris ER, Walker JC. 14-3-3 and FHA domains mediate phosphoprotein interactions[J]. Annu Rev Plant Biol, 2009, 60: 67-91.
doi: 10.1146/annurev.arplant.59.032607.092844 pmid: 19575580 |
[14] | Tian FX, Wang T, Xie YL, et al. Genome-wide identification, classification, and expression analysis of 14-3-3 gene family in Populus[J]. PLoS One, 2015, 10(4): e0123225. |
[15] | Zuo XY, Wang SX, Xiang W, et al. Genome-wide identification of the 14-3-3 gene family and its participation in floral transition by interacting with TFL1/FT in apple[J]. BMC Genomics, 2021, 22(1): 41. |
[16] | Cheng C, Wang Y, Chai FM, et al. Genome-wide identification and characterization of the 14-3-3 family in Vitis vinifera L. during berry development and cold- and heat-stress response[J]. BMC Genomics, 2018, 19(1): 579. |
[17] | Xia LM, He XH, Huang X, et al. Genome-wide identification and expression analysis of the 14-3-3 gene family in mango(Mangifera indica L.)[J]. Int J Mol Sci, 2022, 23(3): 1593. |
[18] | Liang YF, Ma F, Zhang RL, et al. Genome-wide identification and characterization of tomato 14-3-3(SlTFT)genes and functional analysis of SlTFT6 under heat stress[J]. Physiol Plant, 2023, 175(2): e13888. |
[19] | Lyu SH, Chen GX, Pan DM, et al. Molecular analysis of 14-3-3 genes in Citrus sinensis and their responses to different stresses[J]. Int J Mol Sci, 2021, 22(2): 568. |
[20] |
Visconti S, D’Ambrosio C, Fiorillo A, et al. Overexpression of 14-3-3 proteins enhances cold tolerance and increases levels of stress-responsive proteins of Arabidopsis plants[J]. Plant Sci, 2019, 289: 110215.
doi: 10.1016/j.plantsci.2019.110215 URL |
[21] | Yu ZP, Ma JX, Zhang MY, et al. Auxin promotes hypocotyl elongation by enhancing BZR1 nuclear accumulation in Arabidopsis[J]. Sci Adv, 2023, 9(1): eade2493. |
[22] |
Xu WF, Jia LG, Shi WM, et al. The Tomato 14-3-3 protein TFT4 modulates H+ efflux, basipetal auxin transport, and the PKS5-J3 pathway in the root growth response to alkaline stress[J]. Plant Physiol, 2013, 163(4): 1817-1828.
doi: 10.1104/pp.113.224758 URL |
[23] |
Ren YR, Yang YY, Zhang R, et al. MdGRF11, an apple 14-3-3 protein, acts as a positive regulator of drought and salt tolerance[J]. Plant Sci, 2019, 288: 110219.
doi: 10.1016/j.plantsci.2019.110219 URL |
[24] |
Zhu YQ, Kuang W, Leng J, et al. The apple 14-3-3 gene MdGRF6 negatively regulates salt tolerance[J]. Front Plant Sci, 2023, 14: 1161539.
doi: 10.3389/fpls.2023.1161539 URL |
[25] |
Camoni L, Visconti S, Aducci P, et al. 14-3-3 proteins in plant hormone signaling: doing several things at once[J]. Front Plant Sci, 2018, 9: 297.
doi: 10.3389/fpls.2018.00297 pmid: 29593761 |
[26] |
Bai MY, Zhang LY, Gampala SS, et al. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice[J]. Proc Natl Acad Sci USA, 2007, 104(34): 13839-13844.
doi: 10.1073/pnas.0706386104 URL |
[27] |
Gao XY, Zhang JQ, Cai G, et al. qGL3/OsPPKL1 induces phosphorylation of 14-3-3 protein OsGF14b to inhibit OsBZR1 function in brassinosteroid signaling[J]. Plant Physiol, 2022, 188(1): 624-636.
doi: 10.1093/plphys/kiab484 URL |
[28] |
Chen YX, Zhou XJ, Chang S, et al. Calcium-dependent protein kinase 21 phosphorylates 14-3-3 proteins in response to ABA signaling and salt stress in rice[J]. Biochem Biophys Res Commun, 2017, 493(4): 1450-1456.
doi: 10.1016/j.bbrc.2017.09.166 URL |
[29] | Sun J, Zhang GC, Cui ZB, et al. Regain flood adaptation in rice through a 14-3-3 protein OsGF14h[J]. Nat Commun, 2022, 13(1): 5664. |
[30] |
Ishida S, Yuasa T, Nakata M, et al. A tobacco calcium-dependent protein kinase, CDPK1, regulates the transcription factor repression of shoot growth in response to gibberellins[J]. Plant Cell, 2008, 20(12): 3273-3288.
doi: 10.1105/tpc.107.057489 pmid: 19106376 |
[31] |
Keicher J, Jaspert N, Weckermann K, et al. Arabidopsis 14-3-3 epsilon members contribute to polarity of PIN auxin carrier and auxin transport-related development[J]. eLife, 2017, 6: e24336.
doi: 10.7554/eLife.24336 URL |
[32] |
Huang Y, Wang WS, Yu H, et al. The role of 14-3-3 proteins in plant growth and response to abiotic stress[J]. Plant Cell Rep, 2022, 41(4): 833-852.
doi: 10.1007/s00299-021-02803-4 |
[33] |
Mayfield JD, Paul AL, Ferl RJ. The 14-3-3 proteins of Arabidopsis regulate root growth and chloroplast development as components of the photosensory system[J]. J Exp Bot, 2012, 63(8): 3061-3070.
doi: 10.1093/jxb/ers022 pmid: 22378945 |
[34] |
Song PY, Yang ZD, Guo C, et al. 14-3-3 proteins regulate photomorphogenesis by facilitating light-induced degradation of PIF3[J]. New Phytol, 2023, 237(1): 140-159.
doi: 10.1111/nph.v237.1 URL |
[35] |
Qi H, Lei X, Wang Y, et al. 14-3-3 proteins contribute to autophagy by modulating SINAT-mediated degradation of ATG13[J]. Plant Cell, 2022, 34(12): 4857-4876.
doi: 10.1093/plcell/koac273 URL |
[36] |
Zhao SS, Zhao YX, Guo Y. 14-3-3 λ protein interacts with ADF1 to regulate actin cytoskeleton dynamics in Arabidopsis[J]. Sci China Life Sci, 2015, 58(11): 1142-1150.
doi: 10.1007/s11427-015-4897-1 URL |
[37] |
Hloušková P, Černý M, Kořínková N, et al. Affinity chromatography revealed 14-3-3 interactome of tomato(Solanum lycopersicum L.) during blue light-induced de-etiolation[J]. J Proteomics, 2019, 193: 44-61.
doi: S1874-3919(18)30446-9 pmid: 30583044 |
[38] | Sullivan S, Waksman T, Paliogianni D, et al. Regulation of plant phototropic growth by NPH3/RPT2-like substrate phosphorylation and 14-3-3 binding[J]. Nat Commun, 2021, 12(1): 6129. |
[39] | Reuter L, Schmidt T, Manishankar P, et al. Light-triggered and phosphorylation-dependent 14-3-3 association with NON-PHOTOTROPIC HYPOCOTYL 3 is required for hypocotyl phototropism[J]. Nat Commun, 2021, 12(1): 6128. |
[40] |
Taoka KI, Ohki I, Tsuji H, et al. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen[J]. Nature, 2011, 476(7360): 332-335.
doi: 10.1038/nature10272 |
[41] |
Tsuji H, Nakamura H, Taoka KI, et al. Functional diversification of FD transcription factors in rice, components of florigen activation complexes[J]. Plant Cell Physiol, 2013, 54(3): 385-397.
doi: 10.1093/pcp/pct005 pmid: 23324168 |
[42] |
Xia LM, He XH, Hu WL, et al. Overexpression of the mango MiGF6A and MiGF6B genes promotes early flowering in transgenic Arabidopsis plants[J]. Sci Hortic, 2023, 318: 112074.
doi: 10.1016/j.scienta.2023.112074 URL |
[43] |
Liu H, Huang XZ, Ma B, et al. Components and functional diversification of florigen activation complexes in cotton[J]. Plant Cell Physiol, 2021, 62(10): 1542-1555.
doi: 10.1093/pcp/pcab107 pmid: 34245289 |
[44] | Sang N, Liu H, Ma B, et al. Roles of the 14-3-3 gene family in cotton flowering[J]. BMC Plant Biol, 2021, 21(1): 162. |
[45] |
Pan R, Ren WJ, Liu SS, et al. Ectopic over-expression of HaFT-1, a 14-3-3 protein from Haloxylon ammodendron, enhances acquired thermotolerance in transgenic Arabidopsis[J]. Plant Mol Biol, 2023, 112(4-5): 261-277.
doi: 10.1007/s11103-023-01361-5 |
[46] |
Ma W, Kong Q, Mantyla JJ, et al. 14-3-3 protein mediates plant seed oil biosynthesis through interaction with AtWRI1[J]. Plant J, 2016, 88(2): 228-235.
doi: 10.1111/tpj.2016.88.issue-2 URL |
[47] |
Zhang ZX, Zhao H, Huang FL, et al. The 14-3-3 protein GF14f negatively affects grain filling of inferior spikelets of rice(Oryza sativa L.)[J]. Plant J, 2019, 99(2): 344-358.
doi: 10.1111/tpj.2019.99.issue-2 URL |
[48] |
Pertl H, Rittmann S, Schulze WX, et al. Identification of lily pollen 14-3-3 isoforms and their subcellular and time-dependent expression profile[J]. Biol Chem, 2011, 392(3): 249-262.
doi: 10.1515/BC.2011.026 pmid: 21291338 |
[49] |
Ho SL, Huang LF, Lu CG, et al. Sugar starvation- and GA-inducible calcium-dependent protein kinase 1 feedback regulates GA biosynthesis and activates a 14-3-3 protein to confer drought tolerance in rice seedlings[J]. Plant Mol Biol, 2013, 81(4-5): 347-361.
doi: 10.1007/s11103-012-0006-z URL |
[50] | Liu JP, Sun XJ, Liao WC, et al. Involvement of OsGF14b adaptation in the drought resistance of rice plants[J]. Rice, 2019, 12(1): 82. |
[51] |
Jiang W, Tong T, Li W, et al. Molecular evolution of plant 14-3-3 proteins and function of Hv14-3-3A in stomatal regulation and drought tolerance[J]. Plant Cell Physiol, 2023, 63(12): 1857-1872.
doi: 10.1093/pcp/pcac034 URL |
[52] | Han YY, Lou X, Zhang WR, et al. Arbuscular mycorrhizal fungi enhanced drought resistance of Populus cathayana by regulating the 14-3-3 family protein genes[J]. Microbiol Spectr, 2022, 10(3): e0245621. |
[53] |
Gao J, de Boer MH, et al. Ion homeostasis and metabolome analysis of Arabidopsis 14-3-3 quadruple mutants to salt stress[J]. Front Plant Sci, 2021, 12: 697324.
doi: 10.3389/fpls.2021.697324 URL |
[54] |
Wang NN, Shi YY, Jiang Q, et al. A 14-3-3 protein positively regulates rice salt tolerance by stabilizing phospholipase C1[J]. Plant Cell Environ, 2023, 46(4): 1232-1248.
doi: 10.1111/pce.14520 URL |
[55] | Yang ZJ, Wang CW, Xue Y, et al. Calcium-activated 14-3-3 proteins as a molecular switch in salt stress tolerance[J]. Nat Commun, 2019, 10(1): 1199. |
[56] |
Zhang Y, Zhao HY, Zhou SY, et al. Expression of TaGF14b, a 14-3-3 adaptor protein gene from wheat, enhances drought and salt tolerance in transgenic tobacco[J]. Planta, 2018, 248(1): 117-137.
doi: 10.1007/s00425-018-2887-9 pmid: 29616395 |
[57] | Shao WN, Chen W, Zhu XG, et al. Genome-wide identification and characterization of wheat 14-3-3 genes unravels the role of TaGRF6-a in salt stress tolerance by binding MYB transcription factor[J]. Int J Mol Sci, 2021, 22(4): 1904. |
[58] |
Cui LH, Min HJ, Yu SG, et al. OsATL38 mediates mono-ubiquitination of the 14-3-3 protein OsGF14d and negatively regulates the cold stress response in rice[J]. J Exp Bot, 2022, 73(1): 307-323.
doi: 10.1093/jxb/erab392 URL |
[59] |
Liu ZY, Jia YX, Ding YL, et al. Plasma membrane CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune CBF signaling during cold response[J]. Mol Cell, 2017, 66(1): 117-128.e5.
doi: S1097-2765(17)30131-4 pmid: 28344081 |
[60] | Wiese AJ, Steinbachová L, Timofejeva L, et al. Arabidopsis bZIP18 and bZIP52 accumulate in nuclei following heat stress where they regulate the expression of a similar set of genes[J]. Int J Mol Sci, 2021, 22(2): 530. |
[61] |
Dobrá J, Černý M, Štorchová H, et al. The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis[J]. Plant Sci, 2015, 231: 52-61.
doi: 10.1016/j.plantsci.2014.11.005 pmid: 25575991 |
[62] | 李芳, 滕建晒, 陈宣钦. 14-3-3蛋白参与植物应答非生物胁迫的研究进展[J]. 植物科学学报, 2018, 36(3): 459-469. |
Li F, Teng JS, Chen XQ. Research progress on the 14-3-3 protein involved in plant responses to abiotic stress[J]. Plant Sci J, 2018, 36(3): 459-469. | |
[63] |
Cai JS, Cai WW, Huang XY, et al. Ca14-3-3 interacts with CaWRKY58 to positively modulate pepper response to low-phosphorus starvation[J]. Front Plant Sci, 2021, 11: 607878.
doi: 10.3389/fpls.2020.607878 URL |
[64] |
Xu WF, Shi WM, Jia LG, et al. TFT6 and TFT7, two different members of tomato 14-3-3 gene family, play distinct roles in plant adaption to low phosphorus stress[J]. Plant Cell Environ, 2012, 35(8): 1393-1406.
doi: 10.1111/pce.2012.35.issue-8 URL |
[65] |
Yuan W, Zhang DP, Song T, et al. Arabidopsis plasma membrane H+-ATPase genes AHA2 and AHA7 have distinct and overlapping roles in the modulation of root tip H+ efflux in response to low-phosphorus stress[J]. J Exp Bot, 2017, 68(7): 1731-1741.
doi: 10.1093/jxb/erx040 pmid: 28369625 |
[66] |
Zhu FY, Chen MX, Chan WL, et al. SWATH-MS quantitative proteomic investigation of nitrogen starvation in Arabidopsis reveals new aspects of plant nitrogen stress responses[J]. J Proteomics, 2018, 187: 161-170.
doi: 10.1016/j.jprot.2018.07.014 URL |
[67] | 冯倩, 陈永富, 姚银安, 等. 烟草异源过表达胡杨PeGRF6/8a对不同逆境的响应[J]. 应用与环境生物学报, 2019, 25(3): 665-671. |
Feng Q, Chen YF, Yao YA, et al. Response of heterologous overexpression of Populus euphratica PeGRF6/8a in tobacco under different stresses[J]. Chin J Appl Environ Biol, 2019, 25(3): 665-671. | |
[68] | 孙熔谦, 晋欢欢, 张静, 等. 植物14-3-3蛋白结构与功能的研究进展[J]. 福建农林大学学报:自然科学版, 2023: 1-8. http://kns.cnki.net/kcms/detail/35.1255.S.20230516.0918.002.html. |
Sun RQ, Jin HH, Zhang J, et al. Research progress in the structure and function of plant 14-3-3 proteins[J]. Journal of Fujian Agriculture and Forestry University Natural Science Edition, 2023: 1-8. http://kns.cnki.net/kcms/detail/35.1255.S.20230516.0918.002.html. | |
[69] |
吴静, 王媛媛, 王丹妮, 等. 刚毛柽柳ThGRF2基因的克隆和渗透胁迫应答分析[J]. 植物研究, 2022, 42(6): 1044-1051.
doi: 10.7525/j.issn.1673-5102.2022.06.014 |
Wu J, Wang YY, Wang DN, et al. Cloning and osmotic stress response analysis of ThGRF2 from Tamarix hispida[J]. Bull Bot Res, 2022, 42(6): 1044-1051. | |
[70] |
Yao H, Li XY, Peng L, et al. Binding of 14-3-3κ to ADF4 is involved in the regulation of hypocotyl growth and response to osmotic stress in Arabidopsis[J]. Plant Sci, 2022, 320: 111261.
doi: 10.1016/j.plantsci.2022.111261 URL |
[71] | Li MY, Ren LC, Xu BY, et al. Genome-wide identification, phylogeny, and expression analyses of the 14-3-3 family reveal their involvement in the development, ripening, and abiotic stress response in banana[J]. Front Plant Sci, 2016, 7: 1442. |
[72] |
Liang CJ, Ma YJ, Li LR. Comparison of plasma membrane H+-ATPase response to acid rain stress between rice and soybean[J]. Environ Sci Pollut Res Int, 2020, 27(6): 6389-6400.
doi: 10.1007/s11356-019-07285-2 |
[73] |
He YC, Wu JJ, Lv B, et al. Involvement of 14-3-3 protein GRF9 in root growth and response under polyethylene glycol-induced water stress[J]. J Exp Bot, 2015, 66(8): 2271-2281.
doi: 10.1093/jxb/erv149 pmid: 25873671 |
[74] | Guo JF, Chai XQ, Mei YC, et al. Acetylproteomics analyses reveal critical features of lysine-ε-acetylation in Arabidopsis and a role of 14-3-3 protein acetylation in alkaline response[J]. Stress Biol, 2022, 2(1): 1. |
[75] | 程雨果, 魏炳峥, 李春霞, 等. 水稻PR1基因响应生物胁迫的表达模式[J]. 分子植物育种, 2023: 1-24. http://kns.cnki.net/kcms/detail/46.1068.s.20230619.1458.002.html. |
Cheng YG, Wei BZ, Li CX, et al. Expression patterns of rice PR1 family genes in response to biotic stresses[J]. Mol Plant Breed, 2023: 1-24. http://kns.cnki.net/kcms/detail/46.1068.s.20230619.1458.002.html. | |
[76] |
Dong XJ, Feng F, Li YJ, et al. 14-3-3 proteins facilitate the activation of MAP kinase cascades by upstream immunity-related kinases[J]. Plant Cell, 2023, 35(6): 2413-2428.
doi: 10.1093/plcell/koad088 URL |
[77] | Gao ZY, Zhang DL, Wang XL, et al. Coat proteins of necroviruses target 14-3-3a to subvert MAPKKKα-mediated antiviral immunity in plants[J]. Nat Commun, 2022, 13(1): 716. |
[78] |
Kaundal A, Ramu VS, Oh S, et al. GENERAL CONTROL NONREPRESSIBLE4 degrades 14-3-3 and the RIN4 complex to regulate stomatal aperture with implications on nonhost disease resistance and drought tolerance[J]. Plant Cell, 2017, 29(9): 2233-2248.
doi: 10.1105/tpc.17.00070 URL |
[79] |
Deb S, Ghosh P, Patel HK, et al. Interaction of the Xanthomonas effectors XopQ and XopX results in induction of rice immune responses[J]. Plant J, 2020, 104(2): 332-350.
doi: 10.1111/tpj.v104.2 URL |
[80] |
Deb S, Gupta MK, Patel HK, et al. Xanthomonas oryzae pv. oryzae XopQ protein suppresses rice immune responses through interaction with two 14-3-3 proteins but its phospho-null mutant induces rice immune responses and interacts with another 14-3-3 protein[J]. Mol Plant Pathol, 2019, 20(7): 976-989.
doi: 10.1111/mpp.2019.20.issue-7 URL |
[81] |
Lu L, Diao ZJ, Yang DW, et al. The 14-3-3 protein GF14c positively regulates immunity by modulating the protein homoeostasis of the GRAS protein OsSCL7 in rice[J]. Plant Cell Environ, 2022, 45(4): 1065-1081.
doi: 10.1111/pce.v45.4 URL |
[82] |
Liu Q, Yang JY, Zhang SH, et al. OsGF14b positively regulates panicle blast resistance but negatively regulates leaf blast resistance in rice[J]. Mol Plant Microbe Interact, 2016, 29(1): 46-56.
doi: 10.1094/MPMI-03-15-0047-R URL |
[83] |
Liu Q, Yang JY, Zhang SH, et al. OsGF14e positively regulates panicle blast resistance in rice[J]. Biochem Biophys Res Commun, 2016, 471(1): 247-252.
doi: 10.1016/j.bbrc.2016.02.005 URL |
[84] | Ma YM, Yang JY, Dong JF, et al. Overexpression of OsGF14f enhances quantitative leaf blast and bacterial blight resistance in rice[J]. Int J Mol Sci, 2022, 23(13): 7440. |
[1] | 沈天虹, 齐孝博, 赵瑞丰, 马欣荣. 微藻盐胁迫响应分子机制研究进展[J]. 生物技术通报, 2024, 40(3): 89-99. |
[2] | 付威, 韦素云, 陈赢男. 植物生长发育动态QTL解析研究进展[J]. 生物技术通报, 2024, 40(2): 9-19. |
[3] | 唐伟林, 康琴, 汪霞, 谌明洋, 孙欣江, 王棵, 侯凯, 吴卫, 徐东北. 薄荷茉莉酸受体McCOI1a基因的克隆与表达模式分析[J]. 生物技术通报, 2024, 40(1): 270-280. |
[4] | 毕芳玲, 赵爽, 栗斌, 李爱芹, 张建恒, 何培民. 共附生菌对绿潮浒苔作用的研究进展及应用[J]. 生物技术通报, 2024, 40(1): 32-44. |
[5] | 胡海琳, 徐黎, 李晓旭, 王晨璨, 梅曼, 丁文静, 赵媛媛. 小肽激素调控植物生长发育及逆境生理研究进展[J]. 生物技术通报, 2023, 39(7): 13-25. |
[6] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[7] | 刘奎, 李兴芬, 杨沛欣, 仲昭晨, 曹一博, 张凌云. 青杄转录共激活因子PwMBF1c的功能研究与验证[J]. 生物技术通报, 2023, 39(5): 205-216. |
[8] | 薛皦, 朱庆锋, 冯彦钊, 陈沛, 刘文华, 张爱霞, 刘勤坚, 张琪, 于洋. 植物基因上游开放阅读框的研究进展[J]. 生物技术通报, 2023, 39(4): 157-165. |
[9] | 魏明, 王欣玉, 伍国强, 赵萌. NAD依赖型去乙酰化酶SRT在植物表观遗传调控中的作用[J]. 生物技术通报, 2023, 39(4): 59-70. |
[10] | 桑田, 王鹏程. 植物SUMO化修饰研究进展[J]. 生物技术通报, 2023, 39(3): 1-12. |
[11] | 张红红, 方晓峰. 相分离调控植物胁迫感知和应答的研究进展[J]. 生物技术通报, 2023, 39(11): 44-53. |
[12] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[13] | 安昌, 陆琳, 沈梦千, 陈盛圳, 叶康卓, 秦源, 郑平. 植物bHLH基因家族研究进展及在药用植物中的应用前景[J]. 生物技术通报, 2023, 39(10): 1-16. |
[14] | 王楠楠, 王文佳, 朱强. 植物胁迫相关microRNA研究进展[J]. 生物技术通报, 2022, 38(8): 1-11. |
[15] | 汤茜茜, 林楚宇, 陶增. 植物组蛋白去甲基化酶研究进展[J]. 生物技术通报, 2022, 38(7): 13-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||