生物技术通报 ›› 2023, Vol. 39 ›› Issue (5): 205-216.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0812
刘奎(), 李兴芬, 杨沛欣, 仲昭晨, 曹一博(), 张凌云()
收稿日期:
2022-07-02
出版日期:
2023-05-26
发布日期:
2023-06-08
通讯作者:
曹一博,女,讲师,研究方向:经济林抗逆机理;E-mail: caoyibo@bjfu.edu.cn;作者简介:
刘奎,男,博士研究生,研究方向:林木抗逆生理与分子生物学;E-mail: 742174371@qq.com
基金资助:
LIU Kui(), LI Xing-fen, YANG Pei-xin, ZHONG Zhao-chen, CAO Yi-bo(), ZHANG Ling-yun()
Received:
2022-07-02
Published:
2023-05-26
Online:
2023-06-08
摘要:
克隆通过青杄干旱转录组筛选到的差异候选基因PwMBF1c,对其生物学功能进行分析和验证,以期能够解析青杄的耐旱机理,并为培育优良抗逆林木品种提供基因资源。利用RT-qPCR技术分析PwMBF1c对干旱、高温、低温及激素处理的响应。瞬时转化烟草叶片和洋葱表皮细胞检测PwMBF1c的亚细胞定位。利用酵母单杂验证PwMBF1c的转录活性。在拟南芥和马铃薯体系中验证了PwMBF1c抗旱应答的功能。PwMBF1c主要在成熟叶中表达,其转录水平受干旱、高温、水杨酸(SA)诱导上调;PwMBF1c的C端具有转录激活活性,而N端和全长不具有转录活性;PwMBF1c定位于细胞膜、细胞质和细胞核;过表达PwMBF1c显著提高了拟南芥和马铃薯的耐旱性。干旱胁迫下,与对照组Col-0和VC相比,过表达拟南芥株系PwMBF1c-L1和PwMBF1c-L2存活率更高,叶绿素含量较高,MDA含量较低;在PEG处理后,与野生型马铃薯Y5相比,过表达PwMBF1c显著提高了苗高。PwMBF1c的表达水平受干旱等多种逆境和激素的诱导,PwMBF1c主要定位于细胞膜、细胞质和细胞核,且该蛋白的C端具有转录激活活性。PwMBF1c能够显著提高转基因拟南芥和马铃薯的耐旱性。
刘奎, 李兴芬, 杨沛欣, 仲昭晨, 曹一博, 张凌云. 青杄转录共激活因子PwMBF1c的功能研究与验证[J]. 生物技术通报, 2023, 39(5): 205-216.
LIU Kui, LI Xing-fen, YANG Pei-xin, ZHONG Zhao-chen, CAO Yi-bo, ZHANG Ling-yun. Functional Study and Validation of Transcriptional Coactivator PwMBF1c in Picea wilsonii[J]. Biotechnology Bulletin, 2023, 39(5): 205-216.
用途Use | 引物名称Primer name | 序列Sequence |
---|---|---|
RT-qPCR | AtActin-F | GGTAACATTGTGCTCAGTGGTGG |
AtActin-R | AACGACCTTAATCTTCATGCTGC | |
PwEF1α-RT-F | AACTGGAGAAGGAACCCAAG | |
PwEF1α-RT-R | AACGACCCAATGGAGGATAC | |
PwMBF1c-RT-F | ATGCCGAGCCGAACGAA | |
PwMBF1c-RT-R | AACCGCCTTGGGATCACG | |
载体构建 Vector construction | pEASY-T1-PwMBF1c-F | GAAGGATGCCGAGCCGAA |
pEASY-T1-PwMBF1c-R | GATGACGACAAGCAATTAGTGAGA | |
pGBKT7-PwMBF1c-F | CCGGAATTCATGCCGAGCCGAACGAAC | |
pGBKT7-PwMBF1c-R | TCCCCCGGGGGTGGACTGATGACGACAAGCAATTA | |
pGBKT7-PwMBF1c-C-F | CCGGAATTCGATTCGACATGCTATACAGAAGGC | |
pGBKT7-PwMBF1c-C-R | TCCCCCGGGGGTGGACTGATGACGACAAGCAATTA | |
pGBKT7-PwMBF1c-N-F | CCGGAATTCATGCCGAGCCGAACGAAC | |
pGBKT7-PwMBF1c-N-R | TCCCCCGGGGGGCCTTCTGTATAGCATGTCGAATC |
表1 引物序列
Table 1 Primer sequences
用途Use | 引物名称Primer name | 序列Sequence |
---|---|---|
RT-qPCR | AtActin-F | GGTAACATTGTGCTCAGTGGTGG |
AtActin-R | AACGACCTTAATCTTCATGCTGC | |
PwEF1α-RT-F | AACTGGAGAAGGAACCCAAG | |
PwEF1α-RT-R | AACGACCCAATGGAGGATAC | |
PwMBF1c-RT-F | ATGCCGAGCCGAACGAA | |
PwMBF1c-RT-R | AACCGCCTTGGGATCACG | |
载体构建 Vector construction | pEASY-T1-PwMBF1c-F | GAAGGATGCCGAGCCGAA |
pEASY-T1-PwMBF1c-R | GATGACGACAAGCAATTAGTGAGA | |
pGBKT7-PwMBF1c-F | CCGGAATTCATGCCGAGCCGAACGAAC | |
pGBKT7-PwMBF1c-R | TCCCCCGGGGGTGGACTGATGACGACAAGCAATTA | |
pGBKT7-PwMBF1c-C-F | CCGGAATTCGATTCGACATGCTATACAGAAGGC | |
pGBKT7-PwMBF1c-C-R | TCCCCCGGGGGTGGACTGATGACGACAAGCAATTA | |
pGBKT7-PwMBF1c-N-F | CCGGAATTCATGCCGAGCCGAACGAAC | |
pGBKT7-PwMBF1c-N-R | TCCCCCGGGGGGCCTTCTGTATAGCATGTCGAATC |
图3 PwMBF1c的亚细胞定位 GFP: pCM1205空载体;PwMBF1c-GFP: PwMBF1c与GFP标签的融合蛋白。A:PwMBF1c在烟草叶片的亚细胞定位;B:PwMBF1c在洋葱中的亚细胞定位。标尺Bar:50 µm
Fig. 3 Subcellular localization of PwMBF1c GFP: pCM1205 empty vector. PwMBF1c-GFP: Fusion protein of PwMBF1c and GFP tag. A: Subcellular localization of PwMBF1c in tobacco leaves. B: Subcellular localization of PwMBF1c in onion. The bar in the image: 50 µm
图5 过表达PwMBF1c显著增强了拟南芥的干旱耐受性 Col-0:野生型;VC:空载对照;L1、L2:PwMBF1c过表达株系。A:干旱处理下,不同PwMBF1c转基因拟南芥株系的表型;B:PwMBF1c在不同株系中的相对表达量;C:干旱处理后的存活率;D、E:干旱处理下,叶片的MDA和叶绿素含量
Fig. 5 Overexpression of PwMBF1c significantly improved the drought tolerance of Arabidopsis Col-0: Wild type; VC: empty vector; L1, L2: overexpressing lines of PwMBF1c. A: Phenotypes of different PwMBF1c transgenic lines under drought treatment. B: Relative expressions of PwMBF1c in different lines. C: Statistics of survival rates after drought treatment. D, E: MDA content and chlorophyll content of isolated leaves under drought treatment
图6 不同株系拟南芥在干旱胁迫下的萌发率 A:0、100、200、300 mmol/L甘露醇处理下不同株系的萌发状况;B-E:0、100、200、300 mmol/L甘露醇处理下不同株系的萌发率
Fig. 6 Germination rates of different lines of Arabidopsis under drought stress A: Germination status of different lines treated with 0/100/200/300 mmol/L mannitol. B-E: Germination rates of different lines treated with 0,100,200, and 300 mmol/L mannitol.
图7 过表达PwMBF1c拟南芥的根长 A:甘露醇处理下不同株系的根长生长状况;B:甘露醇处理下不同株系的根长统计
Fig. 7 Root length of overexpressing PwMBF1c in Arabidopsis A: Root length growths of different lines treated with mannitol. B: Root length statistics of different lines treated with mannitol
图8 不同株系马铃薯的干旱表型 Y5:马铃薯野生型。A:在PEG处理下,不同株系的生长状况;B:在PEG处理下,不同株系苗高的统计
Fig. 8 Drought phenotypes of different potato lines Y5: Wild type. A: Growth status of different lines under PEG treatment. B: Seedling heights of different lines under PEG treatments
[1] |
Hommel M, Khalil-Ahmad Q, Jaimes-Miranda F, et al. Over-expression of a chimeric gene of the transcriptional co-activator MBF1 fused to the EAR repressor motif causes developmental alteration in Arabidopsis and tomato[J]. Plant Sci, 2008, 175(1-2): 168-177.
doi: 10.1016/j.plantsci.2008.01.019 URL |
[2] |
Ray S, Dansana PK, Giri J, et al. Modulation of transcription factor and metabolic pathway genes in response to water-deficit stress in rice[J]. Funct Integr Genomics, 2011, 11(1): 157-178.
doi: 10.1007/s10142-010-0187-y URL |
[3] |
Guo WL, Chen RG, Du XH, et al. Reduced tolerance to abiotic stress in transgenic Arabidopsis overexpressing a Capsicum annuum multiprotein bridging factor 1[J]. BMC Plant Biol, 2014, 14: 138.
doi: 10.1186/1471-2229-14-138 |
[4] |
Zhao Q, He L, Wang B, et al. Overexpression of a multiprotein bridging factor 1 gene DgMBF1 improves the salinity tolerance of Chrysanthemum[J]. Int J Mol Sci, 2019, 20(10): 2453.
doi: 10.3390/ijms20102453 URL |
[5] |
Suzuki N, Rizhsky L, Liang HJ, et al. Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c[J]. Plant Physiol, 2005, 139(3): 1313-1322.
doi: 10.1104/pp.105.070110 pmid: 16244138 |
[6] |
Wang XL, Du Y, Yu DQ. Trehalose phosphate synthase 5-dependent trehalose metabolism modulates basal defense responses in Arabidopsis thaliana[J]. J Integr Plant Biol, 2019, 61(4): 509-527.
doi: 10.1111/jipb.v61.4 URL |
[7] |
Qin DD, Wang F, Geng XL, et al. Overexpression of heat stress-responsive TaMBF1c, a wheat(Triticum aestivum L.) Multiprotein Bridging Factor, confers heat tolerance in both yeast and rice[J]. Plant Mol Biol, 2015, 87(1-2): 31-45.
doi: 10.1007/s11103-014-0259-9 URL |
[8] |
Tian XJ, Qin Z, Zhao Y, et al. Stress Granule-associated TaMBF1c confers thermotolerance through regulating specific mRNA translation in wheat(Triticum aestivum)[J]. New Phytol, 2022, 233(4): 1719-1731.
doi: 10.1111/nph.v233.4 URL |
[9] |
Saleh O, Harb J, Karrity A, et al. Identification of differentially expressed genes in two grape varieties cultivated in semi-arid and temperate regions from West-Bank, Palestine[J]. Agri Gene, 2018, 7: 34-42.
doi: 10.1016/j.aggene.2017.11.001 URL |
[10] |
Xu Y, Huang BR. Transcriptomic analysis reveals unique molecular factors for lipid hydrolysis, secondary cell-walls and oxidative protection associated with thermotolerance in perennial grass[J]. BMC Genomics, 2018, 19(1): 70.
doi: 10.1186/s12864-018-4437-z pmid: 29357827 |
[11] |
李小冬, 尚以顺, 武语迪, 等. 紫花苜蓿MsMBF1c基因在拟南芥中表达提高转基因植株的耐热性[J]. 草业学报, 2019, 28(10): 187-198.
doi: 10.11686/cyxb2018739 |
Li XD, Shang YS, Wu YD, et al. Overexpression of Medicago sativa Multi protein Bridging Factor 1c(MsMBF1c)enhances thermotolerance of Arabidopsis[J]. Acta Prataculturae Sin, 2019, 28(10): 187-198. | |
[12] |
Yan Q, Hou HM, Singer SD, et al. The grape VvMBF1 gene improves drought stress tolerance in transgenic Arabidopsis thaliana[J]. Plant Cell Tissue Organ Cult, 2014, 118(3): 571-582.
doi: 10.1007/s11240-014-0508-2 URL |
[13] | 齐瑞, 郭星, 赵阳, 等. 白龙江珍稀濒危植物大果青杄群落物种多样性特征分析[J]. 西北林学院学报, 2017, 32(2): 161-164. |
Qi R, Guo X, Zhao Y, et al. Species diversity characteristics of the community of rare and endangered Picea neoveitchii in the Bailongjiang River[J]. J Northwest For Univ, 2017, 32(2): 161-164. | |
[14] |
Zhang H, Shi Y, Liu XR, et al. Transgenic creeping bentgrass plants expressing a Picea wilsonii dehydrin gene(PicW)demonstrate improved freezing tolerance[J]. Mol Biol Rep, 2018, 45(6): 1627-1635.
doi: 10.1007/s11033-018-4304-7 pmid: 30105551 |
[15] |
Li LL, Yu YL, Wei J, et al. Homologous HAP5 subunit from Picea wilsonii improved tolerance to salt and decreased sensitivity to ABA in transformed Arabidopsis[J]. Planta, 2013, 238(2): 345-356.
doi: 10.1007/s00425-013-1894-0 URL |
[16] | 苗雅慧, 鞠丹, 梁珂豪, 等. 青杄转录因子基因PwNF-YB8的克隆与功能分析[J]. 林业科学, 2021, 57(5): 77-92. |
Miao YH, Ju D, Liang KH, et al. Cloning and functional analysis of transcription factor gene PwNF-YB8 from Picea wilsonii[J]. Sci Silvae Sin, 2021, 57(5): 77-92. | |
[17] | 刘峻玲, 梁珂豪, 苗雅慧, 等. 青杄PwUSP1基因特征及对干旱和盐胁迫的响应[J]. 北京林业大学学报, 2020, 42(10): 62-70. |
Liu JL, Liang KH, Miao YH, et al. Characteristics of PwUSP1 in Picea wilsonii and its response to drought and salt stress[J]. J Beijing For Univ, 2020, 42(10): 62-70. | |
[18] | 崔潇月. 青杄盐胁迫响应基因筛选及功能验证体系的建立[D]. 北京: 北京林业大学, 2018. |
Cui XY. Screening of salt stress response genes in Picea wilsonii and establishment of gene function verification system[D]. Beijing: Beijing Forestry University, 2018. | |
[19] |
刘亚静, 马齐军, 李浩浩, 等. 苹果MdCBL3基因的克隆与功能鉴定[J]. 园艺学报, 2017, 44(1): 1-10.
doi: 10.16420/j.issn.0513-353x.2016-0489 |
Liu YJ, Ma QJ, Li HH, et al. Molecular cloning and functional characterization of MdCBL3 in apple[J]. Acta Hortic Sin, 2017, 44(1): 1-10. | |
[20] |
Zhang FJ, Xie YH, Jiang H, et al. The ankyrin repeat-containing protein MdANK2B regulates salt tolerance and ABA sensitivity in Malus domestica[J]. Plant Cell Rep, 2021, 40(2): 405-419.
doi: 10.1007/s00299-020-02642-9 |
[21] |
Li FQ, Ueda H, et al. Multiprotein bridging factor 1(MBF1)is an evolutionarily conserved transcriptional coactivator that connects a regulatory factor and TATA element-binding protein[J]. Proc Natl Acad Sci USA, 1997, 94(14): 7251-7256.
doi: 10.1073/pnas.94.14.7251 URL |
[22] |
Brendel C, Gelman L, Auwerx J. Multiprotein bridging factor-1(MBF-1)is a cofactor for nuclear receptors that regulate lipid metabolism[J]. Mol Endocrinol, 2002, 16(6): 1367-1377.
pmid: 12040021 |
[23] |
Wang YY, Wei XL, Huang J, et al. Modification and functional adaptation of the MBF1 gene family in the lichenized fungus Endocarpon pusillum under environmental stress[J]. Sci Rep, 2017, 7(1): 16333.
doi: 10.1038/s41598-017-16716-4 |
[24] |
Alavilli H, Lee H, Park M, et al. Antarctic moss multiprotein bridging factor 1c overexpression in Arabidopsis resulted in enhanced tolerance to salt stress[J]. Front Plant Sci, 2017, 8: 1206.
doi: 10.3389/fpls.2017.01206 pmid: 28744295 |
[25] |
Uji T, Sato R, Mizuta H, et al. Changes in membrane fluidity and phospholipase D activity are required for heat activation of PyMBF1 in Pyropia yezoensis(Rhodophyta)[J]. J Appl Phycol, 2013, 25(6): 1887-1893.
doi: 10.1007/s10811-013-0006-7 URL |
[26] |
Zhang Y, Zhang G, Dong YL, et al. Cloning and characterization of a MBF1 transcriptional coactivator factor in wheat induced by stripe rust pathogen[J]. Acta Agronomica Sinica, 2009, 35(1): 11-17.
doi: 10.3724/SP.J.1006.2009.00011 URL |
[27] |
Sugikawa Y, Ebihara S, Tsuda K, et al. Transcriptional coactivator MBF1s from Arabidopsis predominantly localize in nucleolus[J]. J Plant Res, 2005, 118(6): 431-437.
pmid: 16283071 |
[28] |
Kim GD, Cho YH, Yoo SD. Regulatory functions of evolutionarily conserved AN1/A20-like Zinc finger family proteins in Arabidopsis stress responses under high temperature[J]. Biochem Biophys Res Commun, 2015, 457(2): 213-220.
doi: 10.1016/j.bbrc.2014.12.090 URL |
[29] | 赵楠. 菊花CmMBF1c基因调控耐涝性的分子机制研究[D]. 南京: 南京农业大学, 2019. |
Zhao N. Molecular mechanisms of CmMBF1c involved in chrysanthemum waterlogging tolerance[D]. Nanjing: Nanjing Agricultural University, 2019. | |
[30] |
Hao YJ, Wei W, Song QX, et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants[J]. Plant J, 2011, 68(2): 302-313.
doi: 10.1111/j.1365-313X.2011.04687.x URL |
[31] |
Rizhsky L, Liang HJ, Shuman J, et al. When defense pathways collide. the response of Arabidopsis to a combination of drought and heat stress[J]. Plant Physiol, 2004, 134(4): 1683-1696.
doi: 10.1104/pp.103.033431 pmid: 15047901 |
[32] |
Sah SK, Reddy KR, Li JX. Abscisic acid and abiotic stress tolerance in crop plants[J]. Front Plant Sci, 2016, 7: 571.
doi: 10.3389/fpls.2016.00571 pmid: 27200044 |
[33] |
Li YM, Sun XR, You JL, et al. Transcriptional analysis of the early ripening of ‘Summer Black’ grape in response to abscisic acid treatment[J]. Sci Hortic, 2022, 299: 111054.
doi: 10.1016/j.scienta.2022.111054 URL |
[34] |
Baloglu MC, Inal B, Kavas M, et al. Diverse expression pattern of wheat transcription factors against abiotic stresses in wheat species[J]. Gene, 2014, 550(1): 117-122.
doi: 10.1016/j.gene.2014.08.025 pmid: 25130909 |
[35] |
Katano K, Kataoka R, Fujii M, et al. Differences between seedlings and flowers in anti-ROS based heat responses of Arabidopsis plants deficient in cyclic nucleotide gated channel 2[J]. Plant Physiol Biochem, 2018, 123: 288-296.
doi: 10.1016/j.plaphy.2017.12.021 URL |
[1] | 杨志晓, 侯骞, 刘国权, 卢志刚, 曹毅, 芶剑渝, 王轶, 林英超. 不同抗性烟草品系Rubisco及其活化酶对赤星病胁迫的响应[J]. 生物技术通报, 2023, 39(9): 202-212. |
[2] | 李帜奇, 袁月, 苗荣庆, 庞秋颖, 张爱琴. 盐胁迫盐芥和拟南芥褪黑素含量及合成相关基因表达模式分析[J]. 生物技术通报, 2023, 39(5): 142-151. |
[3] | 赖瑞联, 冯新, 高敏霞, 路喻丹, 刘晓驰, 吴如健, 陈义挺. 猕猴桃过氧化氢酶基因家族全基因组鉴定与表达分析[J]. 生物技术通报, 2023, 39(4): 136-147. |
[4] | 郭三保, 宋美玲, 李灵心, 尧子钊, 桂明明, 黄胜和. 斑地锦查尔酮合酶基因及启动子的克隆与分析[J]. 生物技术通报, 2023, 39(4): 148-156. |
[5] | 魏明, 王欣玉, 伍国强, 赵萌. NAD依赖型去乙酰化酶SRT在植物表观遗传调控中的作用[J]. 生物技术通报, 2023, 39(4): 59-70. |
[6] | 陈强, 邹明康, 宋家敏, 张冲, 吴隆坤. 甜瓜LBD基因家族的鉴定和果实发育进程中的表达分析[J]. 生物技术通报, 2023, 39(3): 176-183. |
[7] | 姚晓文, 梁晓, 陈青, 伍春玲, 刘迎, 刘小强, 税军, 乔阳, 毛奕茗, 陈银华, 张银东. 二斑叶螨抗性木薯木质素合成途径基因表达特性研究[J]. 生物技术通报, 2023, 39(2): 161-171. |
[8] | 李彦霞, 王晋鹏, 冯芬, 包斌武, 董益闻, 王兴平, 罗仍卓么. 大肠杆菌型奶牛乳房炎对产奶性状相关基因表达的影响[J]. 生物技术通报, 2023, 39(2): 274-282. |
[9] | 杨茂, 林宇丰, 戴阳朔, 潘素君, 彭伟业, 严明雄, 李魏, 王冰, 戴良英. OsDIS1通过抗氧化途径负调控水稻耐旱性[J]. 生物技术通报, 2023, 39(2): 88-95. |
[10] | 张红红, 方晓峰. 相分离调控植物胁迫感知和应答的研究进展[J]. 生物技术通报, 2023, 39(11): 44-53. |
[11] | 冯策婷, 江律, 刘鑫颖, 罗乐, 潘会堂, 张启翔, 于超. 单叶蔷薇NAC基因家族鉴定及干旱胁迫响应分析[J]. 生物技术通报, 2023, 39(11): 283-296. |
[12] | 吴柏增, 何琪, 姚方杰, 赵梦然. 糙皮侧耳乳酸脱氢酶鉴定及其菌丝高温胁迫下表达特征分析[J]. 生物技术通报, 2023, 39(11): 350-359. |
[13] | 姜南, 石杨, 赵志慧, 李斌, 赵熠辉, 杨俊彪, 闫家铭, 靳雨璠, 陈稷, 黄进. 镉胁迫下水稻OsPT1的表达及功能分析[J]. 生物技术通报, 2023, 39(1): 166-174. |
[14] | 段敏杰, 李怡斐, 杨小苗, 王春萍, 黄启中, 黄任中, 张世才. 辣椒锌指蛋白DnaJ-Like基因家族鉴定及对高温胁迫的表达响应[J]. 生物技术通报, 2023, 39(1): 187-198. |
[15] | 袁星, 郭彩华, 刘金明, 亢超, 全绍文, 牛建新. 核桃CONSTANS-Like基因家族全基因组鉴定及表达分析[J]. 生物技术通报, 2022, 38(9): 167-179. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||