生物技术通报 ›› 2023, Vol. 39 ›› Issue (11): 44-53.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0720
收稿日期:
2023-07-27
出版日期:
2023-11-26
发布日期:
2023-12-20
通讯作者:
方晓峰,男,博士,助理教授/研究员,研究方向:植物相分离;E-mail: xffang@mail.tsinghua.edu.cn作者简介:
张红红,女,博士后,研究方向:植物相分离;E-mail: zhanghonghong@mail.tsinghua.edu.cn
基金资助:
ZHANG Hong-hong(), FANG Xiao-feng()
Received:
2023-07-27
Published:
2023-11-26
Online:
2023-12-20
摘要:
生物大分子凝聚体(biomolecular condensates)是由相分离(phase separation)驱动形成的具有特定功能的无膜细胞器(MLOs),为特定的生化反应提供微环境,对细胞生命活动进行精细的时空调控。相分离是一种高度动态的过程,对温度、pH、盐浓度等理化因素的变化非常敏感。因此,相分离可以快速响应外界刺激,作为生物感受器感知压力信号,参与胁迫应答。近年来,相分离在植物中的应用受到越来越多的关注,特别是在胁迫感知和逆境响应方面。本文基于近期关于相分离响应胁迫的研究,探讨了相分离在胁迫信号感知和应答中的机制,综述了相分离在植物响应胁迫的研究成果,旨在为进一步研究植物胁迫感知和逆境响应中相分离的作用提供参考依据。
张红红, 方晓峰. 相分离调控植物胁迫感知和应答的研究进展[J]. 生物技术通报, 2023, 39(11): 44-53.
ZHANG Hong-hong, FANG Xiao-feng. Advances in the Regulation of Stress Sensing and Responses by Phase Separation in Plants[J]. Biotechnology Bulletin, 2023, 39(11): 44-53.
蛋白质 Protein | 胁迫信号 Stress signal | 分子机制 Molecular mechanism | 相分离功能 Functions of phase separation | 文献 Reference |
---|---|---|---|---|
FLOE1 | 水势 | 由DS和QPS这两个IDR施加的相反力调控LLPS | 介导水分胁迫响应,调控种子萌发 | [ |
ELF3 | 热胁迫 | PrD驱动LLPS,温度敏感性受PrD的PolyQ重复序列和ELF4的水平调节 | 高温胁迫感受器,调控植物开花 | [ |
PhyB | 光照和温度 | NTE的无序性和C末端结构寡聚化共同驱动LLPS,NTE直接感知温度信号 | 通过可逆构象转变(光控)与LLPS(温控),同时感知光照与温度 | [ |
SEU | 渗透胁迫 | LLPS取决于IDR1,IDR1的2个α-螺旋的构象变化感知大分子拥挤 | 渗透胁迫感受器,增强植物抗逆性 | [ |
RBGD2/4 | 热胁迫 | LCD富集酪氨酸提供疏水作用驱动LLPS,促进耐热相关的蛋白和转录本招募于SGs | 响应热胁迫,增强拟南芥耐热性 | [ |
NPR1 | SA | IDRs的保守半胱氨酸簇介导LLPS,形成SINCs,富集细胞死亡调控和应激响应蛋白,在各种胁迫下促进细胞存活 | 响应SA,调控细胞程序性死亡和防御反应 | [ |
GBPL3 | 生物胁迫 | 病原菌侵染诱导GBPL3的LLPS,促进GBPL3与防御相关基因启动子结合,并招募Mediator和RNAPII的组分,实现宿主防御 | 响应免疫信号,调控植物防御相关基因转录,增强抗病性。 | [ |
TMF | 氧化胁迫 | 半胱氨酸的巯基氧化,生成二硫键和IDR共同驱动LLPS | 响应氧化信号,调控番茄茎尖分生组织的成熟和开花转换 | [ |
ALBA4/5/6 | 热胁迫 | 热胁迫诱导ALBA的LLPS,协助SGs和P-bodies招募HSFmRNAs,抑制HSF mRNAs的降解 | 响应热胁迫,稳定HSF mRNAs,调控植物耐热性 | [ |
FRI | 低温 | 低温信号诱导FRI核凝聚体形成,使FRI从FLC基因上脱离,FLC反义RNA COOLAIR促进FRI凝聚体积累,稳定FRI蛋白,以快速响应温度变化 | 响应冷信号,抑制FLC表达,调控植物响应季节性温度变化 | [ |
NUP62/58/54 | 免疫信号 | N端IDR富含芳香族氨基酸驱动LLPS,决定核孔复合体选择性和渗透性,调控MPK3蛋白的核转运,参与植物抵御多种生物胁迫 | 正向调控核孔复合体中央屏障的选择性运输,控植物对病虫害的防御作用 | [ |
MED19a | 缺氮胁迫 | 在缺氮条件下,MED19a赖氨酸乙酰化水平降低调控LLPS,增强与转录因子ORE1互作以激活缺氮衰老反应基因 | 响应缺氮胁迫,调控衰老反应基因 | [ |
HEM1 | 免疫信号 | LCD驱动LLPS,形成凝聚体,隔离翻译因子,抑制免疫基因翻译 | 响应ETI,参与植物防御反应调控 | [ |
STM | 盐胁迫 | PrLD驱动LLPS,与BELL蛋白和MED8互作且共相分离 | 响应盐胁迫,增强自身转录调控活性,促进分生组织活性和耐盐性 | [ |
表1 相分离介导植物胁迫响应从而增强环境适应性
Table 1 Phase separation mediates stress response and plant adaptation to environment
蛋白质 Protein | 胁迫信号 Stress signal | 分子机制 Molecular mechanism | 相分离功能 Functions of phase separation | 文献 Reference |
---|---|---|---|---|
FLOE1 | 水势 | 由DS和QPS这两个IDR施加的相反力调控LLPS | 介导水分胁迫响应,调控种子萌发 | [ |
ELF3 | 热胁迫 | PrD驱动LLPS,温度敏感性受PrD的PolyQ重复序列和ELF4的水平调节 | 高温胁迫感受器,调控植物开花 | [ |
PhyB | 光照和温度 | NTE的无序性和C末端结构寡聚化共同驱动LLPS,NTE直接感知温度信号 | 通过可逆构象转变(光控)与LLPS(温控),同时感知光照与温度 | [ |
SEU | 渗透胁迫 | LLPS取决于IDR1,IDR1的2个α-螺旋的构象变化感知大分子拥挤 | 渗透胁迫感受器,增强植物抗逆性 | [ |
RBGD2/4 | 热胁迫 | LCD富集酪氨酸提供疏水作用驱动LLPS,促进耐热相关的蛋白和转录本招募于SGs | 响应热胁迫,增强拟南芥耐热性 | [ |
NPR1 | SA | IDRs的保守半胱氨酸簇介导LLPS,形成SINCs,富集细胞死亡调控和应激响应蛋白,在各种胁迫下促进细胞存活 | 响应SA,调控细胞程序性死亡和防御反应 | [ |
GBPL3 | 生物胁迫 | 病原菌侵染诱导GBPL3的LLPS,促进GBPL3与防御相关基因启动子结合,并招募Mediator和RNAPII的组分,实现宿主防御 | 响应免疫信号,调控植物防御相关基因转录,增强抗病性。 | [ |
TMF | 氧化胁迫 | 半胱氨酸的巯基氧化,生成二硫键和IDR共同驱动LLPS | 响应氧化信号,调控番茄茎尖分生组织的成熟和开花转换 | [ |
ALBA4/5/6 | 热胁迫 | 热胁迫诱导ALBA的LLPS,协助SGs和P-bodies招募HSFmRNAs,抑制HSF mRNAs的降解 | 响应热胁迫,稳定HSF mRNAs,调控植物耐热性 | [ |
FRI | 低温 | 低温信号诱导FRI核凝聚体形成,使FRI从FLC基因上脱离,FLC反义RNA COOLAIR促进FRI凝聚体积累,稳定FRI蛋白,以快速响应温度变化 | 响应冷信号,抑制FLC表达,调控植物响应季节性温度变化 | [ |
NUP62/58/54 | 免疫信号 | N端IDR富含芳香族氨基酸驱动LLPS,决定核孔复合体选择性和渗透性,调控MPK3蛋白的核转运,参与植物抵御多种生物胁迫 | 正向调控核孔复合体中央屏障的选择性运输,控植物对病虫害的防御作用 | [ |
MED19a | 缺氮胁迫 | 在缺氮条件下,MED19a赖氨酸乙酰化水平降低调控LLPS,增强与转录因子ORE1互作以激活缺氮衰老反应基因 | 响应缺氮胁迫,调控衰老反应基因 | [ |
HEM1 | 免疫信号 | LCD驱动LLPS,形成凝聚体,隔离翻译因子,抑制免疫基因翻译 | 响应ETI,参与植物防御反应调控 | [ |
STM | 盐胁迫 | PrLD驱动LLPS,与BELL蛋白和MED8互作且共相分离 | 响应盐胁迫,增强自身转录调控活性,促进分生组织活性和耐盐性 | [ |
[1] |
Solis-Miranda J, Chodasiewicz M, Skirycz A, et al. Stress-related biomolecular condensates in plants[J]. Plant Cell, 2023, 35(9): 3187-3204.
doi: 10.1093/plcell/koad127 URL |
[2] |
Brangwynne CP, Eckmann CR, Courson DS, et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation[J]. Science, 2009, 324(5935): 1729-1732.
doi: 10.1126/science.1172046 pmid: 19460965 |
[3] |
Hyman AA, Weber CA, Jülicher F. Liquid-liquid phase separation in biology[J]. Annu Rev Cell Dev Biol, 2014, 30: 39-58.
doi: 10.1146/annurev-cellbio-100913-013325 pmid: 25288112 |
[4] |
Boeynaems S, Alberti S, Fawzi NL, et al. Protein phase separation: a new phase in cell biology[J]. Trends Cell Biol, 2018, 28(6): 420-435.
doi: S0962-8924(18)30028-X pmid: 29602697 |
[5] |
Lafontaine DLJ, Riback JA, Bascetin R, et al. The nucleolus as a multiphase liquid condensate[J]. Nat Rev Mol Cell Biol, 2021, 22(3): 165-182.
doi: 10.1038/s41580-020-0272-6 |
[6] |
Maruri-López I, Figueroa NE, Hernández-Sánchez IE, et al. Plant stress granules: trends and beyond[J]. Front Plant Sci, 2021, 12: 722643.
doi: 10.3389/fpls.2021.722643 URL |
[7] |
Xie DQ, Chen M, Niu JR, et al. Phase separation of SERRATE drives dicing body assembly and promotes miRNA processing in Arabidopsis[J]. Nat Cell Biol, 2021, 23(1): 32-39.
doi: 10.1038/s41556-020-00606-5 |
[8] |
Fang XF, Wang L, Ishikawa R, et al. Arabidopsis FLL2 promotes liquid-liquid phase separation of polyadenylation complexes[J]. Nature, 2019, 569(7755): 265-269.
doi: 10.1038/s41586-019-1165-8 |
[9] |
Kim J, Lee H, Lee HG, et al. Get closer and make hotspots: liquid-liquid phase separation in plants[J]. EMBO Rep, 2021, 22(5): e51656.
doi: 10.15252/embr.202051656 URL |
[10] |
Emenecker RJ, Holehouse AS, Strader LC. Emerging roles for phase separation in plants[J]. Dev Cell, 2020, 55(1): 69-83.
doi: 10.1016/j.devcel.2020.09.010 pmid: 33049212 |
[11] |
Alberti S, Gladfelter A, Mittag T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates[J]. Cell, 2019, 176(3): 419-434.
doi: S0092-8674(18)31649-0 pmid: 30682370 |
[12] |
Gao YF, Li X, Li PL, et al. A brief guideline for studies of phase-separated biomolecular condensates[J]. Nat Chem Biol, 2022, 18(12): 1307-1318.
doi: 10.1038/s41589-022-01204-2 pmid: 36400991 |
[13] |
Li PL, Banjade S, Cheng HC, et al. Phase transitions in the assembly of multivalent signalling proteins[J]. Nature, 2012, 483(7389): 336-340.
doi: 10.1038/nature10879 |
[14] |
Banani SF, Lee HO, Hyman AA, et al. Biomolecular condensates: organizers of cellular biochemistry[J]. Nat Rev Mol Cell Biol, 2017, 18(5): 285-298.
doi: 10.1038/nrm.2017.7 |
[15] |
Bergeron-Sandoval LP, Safaee N, Michnick SW. Mechanisms and consequences of macromolecular phase separation[J]. Cell, 2016, 165(5): 1067-1079.
doi: S0092-8674(16)30574-8 pmid: 27203111 |
[16] |
Uversky VN. Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder[J]. Curr Opin Struct Biol, 2017, 44: 18-30.
doi: 10.1016/j.sbi.2016.10.015 URL |
[17] |
Zhang HH, Peng FY, He C, et al. Large-scale identification of potential phase-separation proteins from plants using a cell-free system[J]. Mol Plant, 2023, 16(2): 310-313.
doi: 10.1016/j.molp.2022.11.013 URL |
[18] |
Pullara P, Alshareedah I, Banerjee PR. Temperature-dependent reentrant phase transition of RNA-polycation mixtures[J]. Soft Matter, 2022, 18(7): 1342-1349.
doi: 10.1039/d1sm01557e pmid: 34984429 |
[19] |
Dao TP, Kolaitis RM, Kim HJ, et al. Ubiquitin modulates liquid-liquid phase separation of UBQLN2 via disruption of multivalent interactions[J]. Mol Cell, 2018, 69(6): 965-978.e6.
doi: S1097-2765(18)30102-3 pmid: 29526694 |
[20] |
Riback JA, Katanski CD, Kear-Scott JL, et al. Stress-triggered phase separation is an adaptive, evolutionarily tuned response[J]. Cell, 2017, 168(6): 1028-1040.e19.
doi: S0092-8674(17)30242-8 pmid: 28283059 |
[21] |
Ambadipudi S, Biernat J, Riedel D, et al. Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau[J]. Nat Commun, 2017, 8(1): 275.
doi: 10.1038/s41467-017-00480-0 pmid: 28819146 |
[22] |
Lin Y, Protter DSW, Rosen MK, et al. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins[J]. Mol Cell, 2015, 60(2): 208-219.
doi: 10.1016/j.molcel.2015.08.018 pmid: 26412307 |
[23] |
Molliex A, Temirov J, Lee JH, et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization[J]. Cell, 2015, 163(1): 123-133.
doi: 10.1016/j.cell.2015.09.015 pmid: 26406374 |
[24] |
Krainer G, Welsh TJ, Joseph JA, et al. Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions[J]. Nat Commun, 2021, 12(1): 1085.
doi: 10.1038/s41467-021-21181-9 pmid: 33597515 |
[25] |
Du MJ, Chen ZJ. DNA-induced liquid phase condensation of cGAS activates innate immune signaling[J]. Science, 2018, 361(6403): 704-709.
doi: 10.1126/science.aat1022 pmid: 29976794 |
[26] |
Wright RHG, Le Dily F, Beato M. ATP, Mg2+, nuclear phase separation, and genome accessibility[J]. Trends Biochem Sci, 2019, 44(7): 565-574.
doi: S0968-0004(19)30053-2 pmid: 31072688 |
[27] |
Dinic J, Marciel AB, Tirrell MV. Polyampholyte physics: liquid-liquid phase separation and biological condensates[J]. Curr Opin Colloid Interface Sci, 2021, 54: 101457.
doi: 10.1016/j.cocis.2021.101457 URL |
[28] |
Munder MC, Midtvedt D, Franzmann T, et al. A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy[J]. eLife, 2016, 5: e09347.
doi: 10.7554/eLife.09347 URL |
[29] |
Jin XJ, Zhou M, Chen SX, et al. Effects of pH alterations on stress- and aging-induced protein phase separation[J]. Cell Mol Life Sci, 2022, 79(7): 380.
doi: 10.1007/s00018-022-04393-0 pmid: 35750966 |
[30] |
Franzmann TM, Jahnel M, Pozniakovsky A, et al. Phase separation of a yeast prion protein promotes cellular fitness[J]. Science, 2018, 359(6371): eaao5654.
doi: 10.1126/science.aao5654 URL |
[31] |
Adame-Arana O, Weber CA, Zaburdaev V, et al. Liquid phase separation controlled by pH[J]. Biophys J, 2020, 119(8): 1590-1605.
doi: 10.1016/j.bpj.2020.07.044 pmid: 33010236 |
[32] |
Park S, Barnes R, Lin YX, et al. Dehydration entropy drives liquid-liquid phase separation by molecular crowding[J]. Commun Chem, 2020, 3(1): 83.
doi: 10.1038/s42004-020-0328-8 pmid: 36703474 |
[33] |
Delarue M, Brittingham GP, Pfeffer S, et al. mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding[J]. Cell, 2018, 174(2): 338-349.e20.
doi: S0092-8674(18)30654-8 pmid: 29937223 |
[34] |
Jalihal AP, Pitchiaya S, Xiao LB, et al. Multivalent proteins rapidly and reversibly phase-separate upon osmotic cell volume change[J]. Mol Cell, 2020, 79(6): 978-990.e5.
doi: S1097-2765(20)30547-5 pmid: 32857953 |
[35] |
Cai DF, Feliciano D, Dong P, et al. Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression[J]. Nat Cell Biol, 2019, 21(12): 1578-1589.
doi: 10.1038/s41556-019-0433-z pmid: 31792379 |
[36] |
Yang YS, Kato M, Wu X, et al. Yeast ataxin-2 forms an intracellular condensate required for the inhibition of TORC1 signaling during respiratory growth[J]. Cell, 2019, 177(3): 697-710.e17.
doi: 10.1016/j.cell.2019.02.043 URL |
[37] |
Kato M, Yang YS, Sutter BM, et al. Redox state controls phase separation of the yeast ataxin-2 protein via reversible oxidation of its methionine-rich low-complexity domain[J]. Cell, 2019, 177(3): 711-721.e8.
doi: S0092-8674(19)30227-2 pmid: 30982603 |
[38] |
Lin Y, Zhou XM, Kato M, et al. Redox-mediated regulation of an evolutionarily conserved cross-β structure formed by the TDP43 low complexity domain[J]. Proc Natl Acad Sci USA, 2020, 117(46): 28727-28734.
doi: 10.1073/pnas.2012216117 pmid: 33144500 |
[39] |
Hong K, Song D, Jung Y. Behavior control of membrane-less protein liquid condensates with metal ion-induced phase separation[J]. Nat Commun, 2020, 11(1): 5554.
doi: 10.1038/s41467-020-19391-8 pmid: 33144560 |
[40] |
Babinchak WM, Dumm BK, Venus S, et al. Small molecules as potent biphasic modulators of protein liquid-liquid phase separation[J]. Nat Commun, 2020, 11(1): 5574.
doi: 10.1038/s41467-020-19211-z pmid: 33149109 |
[41] |
Itoh Y, Iida S, Tamura S, et al. 1, 6-hexanediol rapidly immobilizes and condenses chromatin in living human cells[J]. Life Sci Alliance, 2021, 4(4): e202001005.
doi: 10.26508/lsa.202001005 URL |
[42] |
Jung JH, Barbosa AD, Hutin S, et al. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis[J]. Nature, 2020, 585(7824): 256-260.
doi: 10.1038/s41586-020-2644-7 |
[43] |
Hutin S, Kumita JR, Strotmann VI, et al. Phase separation and molecular ordering of the prion-like domain of the Arabidopsis thermosensory protein EARLY FLOWERING 3[J]. Proc Natl Acad Sci USA, 2023, 120(28): e2304714120.
doi: 10.1073/pnas.2304714120 URL |
[44] |
Zhu SB, Gu JG, Yao JJ, et al. Liquid-liquid phase separation of RBGD2/4 is required for heat stress resistance in Arabidopsis[J]. Dev Cell, 2022, 57(5): 583-597.e6.
doi: 10.1016/j.devcel.2022.02.005 URL |
[45] |
Tong JJ, Ren ZT, Sun LH, et al. ALBA proteins confer thermotolerance through stabilizing HSF messenger RNAs in cytoplasmic granules[J]. Nat Plants, 2022, 8(7): 778-791.
doi: 10.1038/s41477-022-01175-1 pmid: 35817823 |
[46] |
Legris M, Klose C, Burgie ES, et al. Phytochrome B integrates light and temperature signals in Arabidopsis[J]. Science, 2016, 354(6314): 897-900.
doi: 10.1126/science.aaf5656 URL |
[47] |
Jung JH, Domijan M, Klose C, et al. Phytochromes function as thermosensors in Arabidopsis[J]. Science, 2016, 354(6314): 886-889.
doi: 10.1126/science.aaf6005 URL |
[48] |
Chen D, Lyu MH, Kou XX, et al. Integration of light and temperature sensing by liquid-liquid phase separation of phytochrome B[J]. Mol Cell, 2022, 82(16): 3015-3029.e6.
doi: 10.1016/j.molcel.2022.05.026 pmid: 35728588 |
[49] |
Reimann TM, Müdsam C, Schachtler C, et al. The large GTPase AtGBPL3 links nuclear envelope formation and morphogenesis to transcriptional repression[J]. Nat Plants, 2023, 9(5): 766-784.
doi: 10.1038/s41477-023-01400-5 |
[50] |
Kim JH, Castroverde CDM, Huang S, et al. Increasing the resilience of plant immunity to a warming climate[J]. Nature, 2022, 607(7918): 339-344.
doi: 10.1038/s41586-022-04902-y |
[51] |
Yoo H, Triandafillou C, Drummond DA. Cellular sensing by phase separation: using the process, not just the products[J]. J Biol Chem, 2019, 294(18): 7151-7159.
doi: 10.1074/jbc.TM118.001191 pmid: 30877200 |
[52] |
Iserman C, Desroches Altamirano C, Jegers C, et al. Condensation of Ded1p promotes a translational switch from housekeeping to stress protein production[J]. Cell, 2020, 181(4): 818-831.e19.
doi: S0092-8674(20)30404-9 pmid: 32359423 |
[53] |
Kroschwald S, Munder MC, Maharana S, et al. Different material states of Pub1 condensates define distinct modes of stress adaptation and recovery[J]. Cell Rep, 2018, 23(11): 3327-3339.
doi: S2211-1247(18)30787-3 pmid: 29898402 |
[54] |
Wang BY, Zhang HH, Huai JL, et al. Condensation of SEUSS promotes hyperosmotic stress tolerance in Arabidopsis[J]. Nat Chem Biol, 2022, 18(12): 1361-1369.
doi: 10.1038/s41589-022-01196-z |
[55] |
Boyd-Shiwarski CR, Shiwarski DJ, Griffiths SE, et al. WNK kinases sense molecular crowding and rescue cell volume via phase separation[J]. Cell, 2022, 185(24): 4488-4506.e20.
doi: 10.1016/j.cell.2022.09.042 pmid: 36318922 |
[56] |
Watanabe K, Morishita K, Zhou XY, et al. Cells recognize osmotic stress through liquid-liquid phase separation lubricated with poly(ADP-ribose)[J]. Nat Commun, 2021, 12(1): 1353.
doi: 10.1038/s41467-021-21614-5 pmid: 33649309 |
[57] |
Morishita K, Watanabe K, Naguro I, et al. Sodium ion influx regulates liquidity of biomolecular condensates in hyperosmotic stress response[J]. Cell Rep, 2023, 42(4): 112315.
doi: 10.1016/j.celrep.2023.112315 URL |
[58] |
Cuevas-Velazquez CL, Vellosillo T, Guadalupe K, et al. Intrinsically disordered protein biosensor tracks the physical-chemical effects of osmotic stress on cells[J]. Nat Commun, 2021, 12(1): 5438.
doi: 10.1038/s41467-021-25736-8 pmid: 34521831 |
[59] |
Huang XZ, Chen SD, Li WP, et al. ROS regulated reversible protein phase separation synchronizes plant flowering[J]. Nat Chem Biol, 2021, 17(5): 549-557.
doi: 10.1038/s41589-021-00739-0 pmid: 33633378 |
[60] |
Dorone Y, Boeynaems S, Flores E, et al. A prion-like protein regulator of seed germination undergoes hydration-dependent phase separation[J]. Cell, 2021, 184(16): 4284-4298.e27.
doi: 10.1016/j.cell.2021.06.009 pmid: 34233164 |
[61] |
Zhang M, Zhu C, Duan YY, et al. The intrinsically disordered region from PP2C phosphatases functions as a conserved CO2 sensor[J]. Nat Cell Biol, 2022, 24(7): 1029-1037.
doi: 10.1038/s41556-022-00936-6 |
[62] |
Chong PA, Forman-Kay JD. Liquid-liquid phase separation in cellular signaling systems[J]. Curr Opin Struct Biol, 2016, 41: 180-186.
doi: 10.1016/j.sbi.2016.08.001 URL |
[63] |
Takahara T, Maeda T. Transient sequestration of TORC1 into stress granules during heat stress[J]. Mol Cell, 2012, 47(2): 242-252.
doi: 10.1016/j.molcel.2012.05.019 pmid: 22727621 |
[64] |
Kosmacz M, Gorka M, Schmidt S, et al. Protein and metabolite composition of Arabidopsis stress granules[J]. New Phytol, 2019, 222(3): 1420-1433.
doi: 10.1111/nph.15690 pmid: 30664249 |
[65] |
Gutierrez-Beltran E, Elander PH, Dalman K, et al. Tudor staphylococcal nuclease is a docking platform for stress granule components and is essential for SnRK1 activation in Arabidopsis[J]. EMBO J, 2021, 40(17): e105043.
doi: 10.15252/embj.2020105043 URL |
[66] |
Zhang JZ, Lu TW, Stolerman LM, et al. Phase separation of a PKA regulatory subunit controls cAMP compartmentation and oncogenic signaling[J]. Cell, 2020, 182(6): 1531-1544.e15.
doi: S0092-8674(20)30991-0 pmid: 32846158 |
[67] |
Frottin F, Schueder F, Tiwary S, et al. The nucleolus functions as a phase-separated protein quality control compartment[J]. Science, 2019, 365(6451): 342-347.
doi: 10.1126/science.aaw9157 pmid: 31296649 |
[68] |
Youn JY, Dyakov BJA, Zhang JP, et al. Properties of stress granule and P-body proteomes[J]. Mol Cell, 2019, 76(2): 286-294.
doi: 10.1016/j.molcel.2019.09.014 URL |
[69] |
Glauninger H, Wong Hickernell CJ, Bard JAM, et al. Stressful steps: progress and challenges in understanding stress-induced mRNA condensation and accumulation in stress granules[J]. Mol Cell, 2022, 82(14): 2544-2556.
doi: 10.1016/j.molcel.2022.05.014 pmid: 35662398 |
[70] |
Zhu P, Lister C, Dean C. Cold-induced Arabidopsis FRIGIDA nuclear condensates for FLC repression[J]. Nature, 2021, 599(7886): 657-661.
doi: 10.1038/s41586-021-04062-5 |
[71] |
Hentze N, Le Breton L, Wiesner J, et al. Molecular mechanism of thermosensory function of human heat shock transcription factor Hsf1[J]. eLife, 2016, 5: e11576.
doi: 10.7554/eLife.11576 URL |
[72] |
Zhang HC, Shao SP, Zeng Y, et al. Reversible phase separation of HSF1 is required for an acute transcriptional response during heat shock[J]. Nat Cell Biol, 2022, 24(3): 340-352.
doi: 10.1038/s41556-022-00846-7 pmid: 35256776 |
[73] |
Ayache J, Bénard M, Ernoult-Lange M, et al. P-body assembly requires DDX6 repression complexes rather than decay or Ataxin2/2L complexes[J]. Mol Biol Cell, 2015, 26(14): 2579-2595.
doi: 10.1091/mbc.E15-03-0136 pmid: 25995375 |
[74] |
Zhou YL, Niu RX, Tang ZJ, et al. Plant HEM1 specifies a condensation domain to control immune gene translation[J]. Nat Plants, 2023, 9(2): 289-301.
doi: 10.1038/s41477-023-01355-7 pmid: 36797349 |
[75] |
Cheng XD. Protein SUMOylation and phase separation: partners in stress?[J]. Trends Biochem Sci, 2023, 48(5): 417-419.
doi: 10.1016/j.tibs.2022.12.003 pmid: 36621339 |
[76] |
Zavaliev R, Mohan R, Chen TY, et al. Formation of NPR1 condensates promotes cell survival during the plant immune response[J]. Cell, 2020, 182(5): 1093-1108.e18.
doi: S0092-8674(20)30881-3 pmid: 32810437 |
[77] |
Guan B, Xue HW. Arabidopsis AUTOPHAGY-RELATED3(ATG3)facilitates the liquid-liquid phase separation of ATG8e to promote autophagy[J]. Sci Bull, 2022, 67(4): 350-354.
doi: 10.1016/j.scib.2021.10.012 pmid: 36546085 |
[78] |
Yasuda S, Tsuchiya H, Kaiho A, et al. Stress- and ubiquitylation-dependent phase separation of the proteasome[J]. Nature, 2020, 578(7794): 296-300.
doi: 10.1038/s41586-020-1982-9 |
[79] |
Wang JJ, Pei GF, Wang YP, et al. Phase separation of the nuclear pore complex facilitates selective nuclear transport to regulate plant defense against pathogen and pest invasion[J]. Mol Plant, 2023, 16(6): 1016-1030.
doi: 10.1016/j.molp.2023.04.008 URL |
[80] |
Cheng SLH, Wu HW, Xu HY, et al. Nutrient status regulates MED19a phase separation for ORESARA1-dependent senescence[J]. New Phytol, 2022, 236(5): 1779-1795.
doi: 10.1111/nph.18478 pmid: 36093737 |
[81] | Cao XW, Du QW, Guo YH, et al. Condensation of STM is critical for shoot meristem maintenance and salt tolerance in Arabidopsis[J]. Mol Plant, 2023: S1674-2052(23)00257. |
[1] | 展艳, 周利斌, 金文杰, 杜艳, 余丽霞, 曲颖, 马永贵, 刘瑞媛. 辐射诱导植物叶色突变的研究进展[J]. 生物技术通报, 2023, 39(8): 106-113. |
[2] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[3] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[4] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[5] | 张曼, 张叶卓, 何其邹洪, 鄂一岚, 李晔. 植物细胞壁结构及成像技术研究进展[J]. 生物技术通报, 2023, 39(7): 113-122. |
[6] | 李英, 岳祥华. DNA甲基化在解析毛竹自然变异中的应用[J]. 生物技术通报, 2023, 39(7): 48-55. |
[7] | 李玉岭, 毛欣, 张元帅, 董元夫, 刘翠兰, 段春华, 毛秀红. 辐射诱变技术在木本植物育种中的应用及展望[J]. 生物技术通报, 2023, 39(6): 12-30. |
[8] | 杨洋, 朱金成, 娄慧, 韩泽刚, 张薇. 海岛棉与枯萎病菌的互作转录组分析[J]. 生物技术通报, 2023, 39(6): 259-273. |
[9] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[10] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[11] | 刘奎, 李兴芬, 杨沛欣, 仲昭晨, 曹一博, 张凌云. 青杄转录共激活因子PwMBF1c的功能研究与验证[J]. 生物技术通报, 2023, 39(5): 205-216. |
[12] | 罗义, 张丽娟, 黄伟, 王宁, 吾尔丽卡·买提哈斯木, 施宠, 王玮. 一株耐铀菌株的鉴定及其促生特性研究[J]. 生物技术通报, 2023, 39(5): 286-296. |
[13] | 孙亚玲, 李瑞平, 王振宝, 张庶, 刘冰江, 霍雨猛. 洋葱种子消毒和无菌苗培养新方法[J]. 生物技术通报, 2023, 39(4): 212-220. |
[14] | 魏明, 王欣玉, 伍国强, 赵萌. NAD依赖型去乙酰化酶SRT在植物表观遗传调控中的作用[J]. 生物技术通报, 2023, 39(4): 59-70. |
[15] | 张华香, 徐晓婷, 郑云婷, 肖春桥. 溶磷微生物在钝化和植物修复重金属污染土壤中的作用[J]. 生物技术通报, 2023, 39(3): 52-58. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||