生物技术通报 ›› 2024, Vol. 40 ›› Issue (4): 33-39.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1051
收稿日期:
2023-11-09
出版日期:
2024-04-26
发布日期:
2024-04-30
通讯作者:
谭桂玉,女,博士,副研究员,研究方向:药用植物品质形成机理;E-mail: tanguiyu@126.com作者简介:
彭凤,女,硕士,研究方向:药用植物分子生物学;E-mail: 1272277231@qq.com
基金资助:
PENG Feng(), YU Hai-xia, ZHANG Kun, LIU Ying-ying, TAN Gui-yu()
Received:
2023-11-09
Published:
2024-04-26
Online:
2024-04-30
摘要:
脂滴是植物体内常见细胞器,它包裹多种脂类物质并将其存储于胞质中,参与调控脂质代谢,对维持植物脂质内稳态具有重要作用。油体钙蛋白是脂滴最重要的外膜蛋白之一,对脂滴的生物合成、稳定以及脂质和内含次生代谢物的积累具有重要调控作用。全面了解油体钙蛋白对脂滴的调控作用,可为后续深入研究脂滴相关的脂质内稳态及次生代谢反应提供基础。首先,介绍了植物油体钙蛋白的结构,指明其蛋白序列中的重要元件及潜在功能。其次,就油体钙蛋白基因家族的物种特异性和组织特异性进行综述,证明油体钙蛋白的基因功能不仅在陆生植物进化过程中发生了分化,其特定的生物学功能在不同组织间也出现分化。随后,总结了近年来油体钙蛋白影响脂滴生物合成的报道,阐释其在环境因子的作用下诱导脂滴生物合成的作用。在油体钙蛋白调节脂滴代谢方面,本文认为该调节功能与油体钙蛋白N端序列对脂滴结构的稳定作用相关。此外,还以黄曲霉素、紫杉醇和芦丁等为例,介绍油体钙蛋白对脂滴包裹的次生代谢物积累影响。最后,就植物油体钙蛋白研究存在问题,探讨了基因编辑技术在油体钙蛋白、脂滴研究方面的前景及其在人工油体的应用,以期为相关作物的油脂品质形成机制及脂质内稳态的科学探索提供参考。
彭凤, 余海霞, 张坤, 刘颖颖, 谭桂玉. 植物油体钙蛋白调控脂滴功能的研究进展[J]. 生物技术通报, 2024, 40(4): 33-39.
PENG Feng, YU Hai-xia, ZHANG Kun, LIU Ying-ying, TAN Gui-yu. Review on the Regulation of Caleosin on Plant Lipid Droplet[J]. Biotechnology Bulletin, 2024, 40(4): 33-39.
[1] |
Ischebeck T, Krawczyk HE, Mullen RT, et al. Lipid droplets in plants and algae: distribution, formation, turnover and function[J]. Semin Cell Dev Biol, 2020, 108: 82-93.
doi: 10.1016/j.semcdb.2020.02.014 pmid: 32147380 |
[2] |
Lundquist PK, Shivaiah KK, Espinoza-Corral R. Lipid droplets throughout the evolutionary tree[J]. Prog Lipid Res, 2020, 78: 101029.
doi: 10.1016/j.plipres.2020.101029 URL |
[3] |
Zhao M, Wu SP. Seed development and oil body dynamics of tree peony[J]. Trees, 2020, 34(3): 721-729.
doi: 10.1007/s00468-020-01952-5 |
[4] |
Chen YM, Li HN, Zhang CM, et al. Novel strategy for the demulsification of isolated sesame oil bodies by endogenous proteases[J]. J Americ Oil Chem Soc, 2021, 98(11): 1057-1068.
doi: 10.1002/aocs.v98.11 URL |
[5] |
Krawczyk HE, Rotsch AH, Herrfurth C, et al. Heat stress leads to rapid lipid remodeling and transcriptional adaptations in Nicotiana tabacum pollen tubes[J]. Plant Physiol, 2022, 189(2): 490-515.
doi: 10.1093/plphys/kiac127 pmid: 35302599 |
[6] | Zhao YW, Dong QD, Geng YH, et al. Dynamic regulation of lipid droplet biogenesis in plant cells and proteins involved in the process[J]. Int J Mol Sci, 2023, 24(8): 7476. |
[7] |
Bouchnak I, Coulon D, Salis V, et al. Lipid droplets are versatile organelles involved in plant development and plant response to environmental changes[J]. Front Plant Sci, 2023, 14: 1193905.
doi: 10.3389/fpls.2023.1193905 URL |
[8] |
Mamode Cassim A, Gouguet P, Gronnier J, et al. Plant lipids: key players of plasma membrane organization and function[J]. Prog Lipid Res, 2019, 73: 1-27.
doi: S0163-7827(17)30071-1 pmid: 30465788 |
[9] |
Nikiforidis CV. Structure and functions of oleosomes(oil bodies)[J]. Adv Colloid Interface Sci, 2019, 274: 102039.
doi: 10.1016/j.cis.2019.102039 URL |
[10] | Zienkiewicz A, Saldat M, Zienkiewicz K. Here, there and everywhere - the importance of neutral lipids in plant growth and development[J]. Postepy Biochem, 2021, 68(1): 46-56. |
[11] |
Scholz P, Chapman KD, Mullen RT, et al. Finding new friends and revisiting old ones - how plant lipid droplets connect with other subcellular structures[J]. New Phytol, 2022, 236(3): 833-838.
doi: 10.1111/nph.v236.3 URL |
[12] |
Shao Q, Liu XF, Su T, et al. New insights into the role of seed oil body proteins in metabolism and plant development[J]. Front Plant Sci, 2019, 10: 1568.
doi: 10.3389/fpls.2019.01568 pmid: 31921234 |
[13] |
Jiang PL, Tzen JTC. Caleosin serves as the major structural protein as efficient as oleosin on the surface of seed oil bodies[J]. Plant Signal Behav, 2010, 5(4): 447-449.
doi: 10.4161/psb.5.4.10874 URL |
[14] |
Charuchinda P, Waditee-Sirisattha R, Kageyama H, et al. Caleosin from Chlorella vulgaris TISTR 8580 is salt-induced and heme-containing protein[J]. Biosci Biotechnol Biochem, 2015, 79(7): 1119-1124.
doi: 10.1080/09168451.2015.1010480 URL |
[15] | Fang Y, Zhu RL, Mishler BD. Evolution of oleosin in land plants[J]. PLoS One, 2014, 9(8): e103806. |
[16] |
Huang CY, Huang AHC. Unique motifs and length of hairpin in oleosin target the cytosolic side of endoplasmic reticulum and budding lipid droplet[J]. Plant Physiol, 2017, 174(4): 2248-2260.
doi: 10.1104/pp.17.00366 URL |
[17] |
Purkrtová Z, Chardot T, Froissard M. N-terminus of seed caleosins is essential for lipid droplet sorting but not for lipid accumulation[J]. Arch Biochem Biophys, 2015, 579: 47-54.
doi: 10.1016/j.abb.2015.05.008 pmid: 26032334 |
[18] |
Laibach N, Post J, Twyman RM, et al. The characteristics and potential applications of structural lipid droplet proteins in plants[J]. J Biotechnol, 2015, 201: 15-27.
doi: 10.1016/j.jbiotec.2014.08.020 pmid: 25160916 |
[19] |
Hanano A, Burcklen M, Flenet M, et al. Plant seed peroxygenase is an original heme-oxygenase with an EF-hand calcium binding motif[J]. J Biol Chem, 2006, 281(44): 33140-33151.
doi: 10.1074/jbc.M605395200 pmid: 16956885 |
[20] |
Chapman KD, Dyer JM, Mullen RT. Biogenesis and functions of lipid droplets in plants: thematic review series: lipid droplet synthesis and metabolism: from yeast to man[J]. J Lipid Res, 2012, 53(2): 215-226.
doi: 10.1194/jlr.R021436 pmid: 22045929 |
[21] |
Pasaribu B, Chung TY, Chen CS, et al. Identification of caleosin and two oleosin isoforms in oil bodies of pine megagametophytes[J]. Plant Physiol Biochem, 2014, 82: 142-150.
doi: 10.1016/j.plaphy.2014.05.015 URL |
[22] |
Song WL, Qin YJ, Zhu Y, et al. Delineation of plant caleosin residues critical for functional divergence, positive selection and coevolution[J]. BMC Evol Biol, 2014, 14: 124.
doi: 10.1186/1471-2148-14-124 pmid: 24913827 |
[23] |
Shen Y, Xie J, Liu RD, et al. Genomic analysis and expression investigation of caleosin gene family in Arabidopsis[J]. Biochem Biophys Res Commun, 2014, 448(4): 365-371.
doi: 10.1016/j.bbrc.2014.04.115 URL |
[24] | 赵浩强, 王小斐, 高少培. 植物油体蛋白基因家族研究进展[J]. 遗传, 2022, 44(12): 1128-1140. |
Zhao HQ, Wang XF, Gao SP. Progress on the functional role of oleosin gene family in plants[J]. Hered Beijing, 2022, 44(12): 1128-1140. | |
[25] | Rahman F, Hassan M, Rosli R, et al. Evolutionary and genomic analysis of the caleosin/peroxygenase(CLO/PXG)gene/protein families in the Viridiplantae[J]. PLoS One, 2018, 13(5): e0196669. |
[26] | Khalil HB, Brunetti SC, Pham UM, et al. Characterization of the caleosin gene family in the Triticeae[J]. BMC Genomics, 2014, 15(1): 239. |
[27] |
Fu XK, Yang YL, Kang M, et al. Evolution and stress responses of CLO genes and potential function of the GhCLO06 gene in salt resistance of cotton[J]. Front Plant Sci, 2022, 12: 801239.
doi: 10.3389/fpls.2021.801239 URL |
[28] |
Shimada TL, Hayashi M, Hara-Nishimura I. Membrane dynamics and multiple functions of oil bodies in seeds and leaves[J]. Plant Physiol, 2018, 176(1): 199-207.
doi: 10.1104/pp.17.01522 pmid: 29203559 |
[29] |
Brocard L, Immel F, Coulon D, et al. Proteomic analysis of lipid droplets from Arabidopsis aging leaves brings new insight into their biogenesis and functions[J]. Front Plant Sci, 2017, 8: 894.
doi: 10.3389/fpls.2017.00894 URL |
[30] |
Huang AHC. Plant lipid droplets and their associated proteins: potential for rapid advances[J]. Plant Physiol, 2018, 176(3): 1894-1918.
doi: 10.1104/pp.17.01677 pmid: 29269574 |
[31] |
Shimada TL, Hara-Nishimura I. Leaf oil bodies are subcellular factories producing antifungal oxylipins[J]. Curr Opin Plant Biol, 2015, 25: 145-150.
doi: 10.1016/j.pbi.2015.05.019 pmid: 26051035 |
[32] |
Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets[J]. Nat Rev Mol Cell Biol, 2019, 20(3): 137-155.
doi: 10.1038/s41580-018-0085-z |
[33] | 陈镇, 李秀丽, 陈法志. 植物油体合成及功能研究进展[J]. 世界科技研究与发展, 2021, 43(2): 182-191. |
Chen Z, Li XL, Chen FZ. Research progress on biological synthesis and biological function in plant oil body[J]. World Sci Tech R D, 2021, 43(2): 182-191. | |
[34] | Choi YJ, Zaikova K, Yeom SJ, et al. Biogenesis and lipase-mediated mobilization of lipid droplets in plants[J]. Plants, 2022, 11(9): 1243. |
[35] |
Guzha A, Whitehead P, Ischebeck T, et al. Lipid droplets: packing hydrophobic molecules within the aqueous cytoplasm[J]. Annu Rev Plant Biol, 2023, 74: 195-223.
doi: 10.1146/arplant.2023.74.issue-1 URL |
[36] | 李世升, 何宇清. 油菜种子发育早期的油体发生与调控[J]. 植物科学学报, 2019, 37(3): 389-395. |
Li SS, He YQ. Biogenesis and regulation of oil bodies during early stage seed formation in Brassica napus[J]. Plant Sci J, 2019, 37(3): 389-395. | |
[37] |
Chorlay A, Thiam AR. An asymmetry in monolayer tension regulates lipid droplet budding direction[J]. Biophys J, 2018, 114(3): 631-640.
doi: S0006-3495(17)35094-4 pmid: 29414709 |
[38] |
Chapman KD, Aziz M, Dyer JM, et al. Mechanisms of lipid droplet biogenesis[J]. Biochem J, 2019, 476(13): 1929-1942.
doi: 10.1042/BCJ20180021 pmid: 31289128 |
[39] |
Liu H, Hedley P, Cardle L, et al. Characterisation and functional analysis of two barley caleosins expressed during barley caryopsis development[J]. Planta, 2005, 221(4): 513-522.
pmid: 15702354 |
[40] |
Liu XL, Yang Z, Wang Y, et al. Multiple caleosins have overlapping functions in oil accumulation and embryo development[J]. J Exp Bot, 2022, 73(12): 3946-3962.
doi: 10.1093/jxb/erac153 pmid: 35419601 |
[41] |
Veerabagu M, Rinne PLH, Skaugen M, et al. Lipid body dynamics in shoot meristems: production, enlargement, and putative organellar interactions and plasmodesmal targeting[J]. Front Plant Sci, 2021, 12: 674031.
doi: 10.3389/fpls.2021.674031 URL |
[42] |
Mishra SK, Khan MH, Misra S, et al. Drought tolerant Ochrobactrum sp. inoculation performs multiple roles in maintaining the homeostasis in Zea mays L. subjected to deficit water stress[J]. Plant Physiol Biochem, 2020, 150: 1-14.
doi: 10.1016/j.plaphy.2020.02.025 URL |
[43] |
Jing P, Kong DY, Ji LX, et al. OsClo5 functions as a transcriptional co-repressor by interacting with OsDi19-5 to negatively affect salt stress tolerance in rice seedlings[J]. Plant J, 2021, 105(3): 800-815.
doi: 10.1111/tpj.v105.3 URL |
[44] | Sham A, Moustafa K, Al-Ameri S, et al. Identification of Arabidopsis candidate genes in response to biotic and abiotic stresses using comparative microarrays[J]. PLoS One, 2015, 10(5): e0125666. |
[45] | 向兰舟, 胡娅晴, 谢涵, 等. 拟南芥油体钙蛋白基因CALEOSIN3对胁迫环境及ABA诱导的响应[J]. 分子植物育种, 2022, 20(14): 4685-4690. |
Xiang LZ, Hu YQ, Xie H, et al. Response of Arabidopsis oil body protein gene CALEOSIN3 to stress environment and ABA induction[J]. Mol Plant Breed, 2022, 20(14): 4685-4690. | |
[46] |
Aubert Y, Leba LJ, Cheval C, et al. Involvement of RD20, a member of caleosin family, in ABA-mediated regulation of germination in Arabidopsis thaliana[J]. Plant Signal Behav, 2011, 6(4): 538-540.
doi: 10.4161/psb.6.4.14836 pmid: 21673513 |
[47] | Jamme F, Vindigni JD, Méchin V, et al. Single cell synchrotron FT-IR microspectroscopy reveals a link between neutral lipid and storage carbohydrate fluxes in S. cerevisiae[J]. PLoS One, 2013, 8(9): e74421. |
[48] |
Poxleitner M, Rogers SW, Lacey Samuels A, et al. A role for caleosin in degradation of oil-body storage lipid during seed germination[J]. Plant J, 2006, 47(6): 917-933.
pmid: 16961733 |
[49] |
Miklaszewska M, Zienkiewicz K, Klugier-Borowska E, et al. CALEOSIN 1 interaction with AUTOPHAGY-RELATED PROTEIN 8 facilitates lipid droplet microautophagy in seedlings[J]. Plant Physiol, 2023, 193(4): 2361-2380.
doi: 10.1093/plphys/kiad471 pmid: 37619984 |
[50] |
Schmidt MA, Herman EM. Suppression of soybean oleosin produces micro-oil bodies that aggregate into oil body/ER complexes[J]. Mol Plant, 2008, 1(6): 910-924.
doi: 10.1093/mp/ssn049 pmid: 19825592 |
[51] | Pasaribu B, Fu JH, Jiang PL. Identification and characterization of caleosin in Cycas revoluta pollen[J]. Plant Signal Behav, 2020, 15(8): 1779486. |
[52] | Chang MT, Tsai TR, Lee CY, et al. Elevating bioavailability of curcumin via encapsulation with a novel formulation of artificial oil bodies[J]. J Agric Food Chem, 2013, 61(40): 9666-9671. |
[53] |
Shih YE, Lin YC, Chung TY, et al. In vitro assay to estimate tea astringency via observing flotation of artificial oil bodies sheltered by caleosin fused with histatin 3[J]. J Food Drug Anal, 2017, 25(4): 828-836.
doi: 10.1016/j.jfda.2016.08.008 URL |
[54] |
Hanano A, Blée E, Murphy DJ. Caleosin/peroxygenases: multifunctional proteins in plants[J]. Ann Bot, 2023, 131(3): 387-409.
doi: 10.1093/aob/mcad001 URL |
[55] |
Hudak KA, Thompson JE. Flotation of lipid-protein particles containing triacylglycerol and phospholipid from the cytosol of carnation petals[J]. Physiol Plant, 1996, 98(4): 810-818.
doi: 10.1111/ppl.1996.98.issue-4 URL |
[56] |
Hudak KA, Thompson JE. Subcellular localization of secondary lipid metabolites including fragrance volatiles in carnation petals[J]. Plant Physiol, 1997, 114(2): 705-713.
pmid: 12223738 |
[57] |
Romani F, Banić E, Florent SN, et al. Oil body formation in Marchantia polymorpha is controlled by MpC1HDZ and serves as a defense against arthropod herbivores[J]. Curr Biol, 2020, 30(14): 2815-2828.e8.
doi: 10.1016/j.cub.2020.05.081 URL |
[58] |
Hanano A, Alkara M, Almousally I, et al. The peroxygenase activity of the Aspergillus flavus caleosin, AfPXG, modulates the biosynthesis of aflatoxins and their trafficking and extracellular secretion via lipid droplets[J]. Front Microbiol, 2018, 9: 158.
doi: 10.3389/fmicb.2018.00158 URL |
[59] |
Hanano A, Perez-Matas E, Shaban M, et al. Characterization of lipid droplets from a Taxus media cell suspension and their potential involvement in trafficking and secretion of paclitaxel[J]. Plant Cell Rep, 2022, 41(4): 853-871.
doi: 10.1007/s00299-021-02823-0 pmid: 34984531 |
[60] | Liu CT, Tzen JTC. Exploring the relative astringency of tea catechins and distinct astringent sensation of catechins and flavonol glycosides via an in vitro assay composed of artificial oil bodies[J]. Molecules, 2022, 27(17): 5679. |
[1] | 关智晶, 孙超. 植物次生代谢的区室化研究进展[J]. 生物技术通报, 2024, 40(1): 1-11. |
[2] | 郭少华, 毛会丽, 刘征权, 付美媛, 赵平原, 马文博, 李旭东, 关建义. 一株鱼源致病性嗜水气单胞菌XDMG的全基因组测序及比较基因组分析[J]. 生物技术通报, 2023, 39(8): 291-306. |
[3] | 侯筱媛, 车郑郑, 李姮静, 杜崇玉, 胥倩, 王群青. 大豆膜系统cDNA文库的构建及大豆疫霉效应子PsAvr3a互作蛋白的筛选[J]. 生物技术通报, 2023, 39(4): 268-276. |
[4] | 位欣欣, 兰海燕. 植物MYB转录因子调控次生代谢及逆境响应的研究进展[J]. 生物技术通报, 2022, 38(8): 12-23. |
[5] | 燕炯, 冯晨毅, 高学坤, 许祥, 杨佳敏, 陈朝阳. 基于CRISPR/Cas9技术构建Plin1基因敲除小鼠模型及表型分析[J]. 生物技术通报, 2022, 38(3): 173-180. |
[6] | 张国宁, 冯婧娴, 杨颖博, 陈万生, 肖莹. 环糊精葡萄糖基转移酶在天然产物糖基化修饰中的应用[J]. 生物技术通报, 2022, 38(3): 246-255. |
[7] | 梁振霆, 唐婷. 内生菌对植物次生代谢产物的生物合成影响和抗逆功能研究[J]. 生物技术通报, 2021, 37(8): 35-45. |
[8] | 谢伟, 郝志鹏, 郭兰萍, 张莘, 张淑彬, 王幼珊, 陈保冬. 丛枝菌根影响植物萜类化合物合成与积累研究进展[J]. 生物技术通报, 2020, 36(9): 49-63. |
[9] | 胡濒月, 胡杨, 成文敏, 赵素梅, 赵红业, 魏红江. Leptin过表达对猪前脂肪细胞脂滴形成的研究[J]. 生物技术通报, 2020, 36(8): 111-119. |
[10] | 高云山, 刘丹丹, 徐俊林, 桑雨浓, 梁夏夏, 刘建欣, 王文彬. 嗜水气单胞菌孔蛋白OmpF重组表达及其免疫原性 分析[J]. 生物技术通报, 2019, 35(9): 234-243. |
[11] | 毛然然, 李小艳, 武瑶, 张丽珊, 林镇平, 林向民. 嗜水气单胞菌OprM蛋白的克隆表达与免疫保护作用评价[J]. 生物技术通报, 2019, 35(9): 244-248. |
[12] | 张麒, 陈静, 李俐, 赵明珠, 张美萍, 王义. 植物AP2/ERF转录因子家族的研究进展[J]. 生物技术通报, 2018, 34(8): 1-7. |
[13] | 安志远,苏建荣. 鲍曼不动杆菌外膜蛋白34的表达纯化及其生物活性分析[J]. 生物技术通报, 2017, 33(7): 185-194. |
[14] | 徐岩, 韩玉乾, 于放, 刘志文, 王燕燕. 过表达长春花JAR1基因促进文朵灵和长春质碱的生物合成[J]. 生物技术通报, 2017, 33(6): 62-68. |
[15] | 冯小艳,张树珍. RNAi作用机制及应用研究进展[J]. 生物技术通报, 2017, 33(5): 1-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||