生物技术通报 ›› 2024, Vol. 40 ›› Issue (6): 57-67.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1222
收稿日期:
2023-12-29
出版日期:
2024-06-26
发布日期:
2024-06-24
通讯作者:
张欣,男,博士,研究员,研究方向:热带果树病害防控;E-mail: zhxppi@163.com作者简介:
漆艳香,女,博士,副研究员,研究方向:热带果树病害病原学及防控;E-mail: qiyanxiang@126.com
基金资助:
QI Yan-xiang(), XIE Yi-xian, PENG Jun, ZENG Fan-yun, ZHANG Xin()
Received:
2023-12-29
Published:
2024-06-26
Online:
2024-06-24
摘要:
枯萎病严重危害香蕉生产,可致香蕉大幅减产甚至绝收。该病害通过土传、种苗调运等途径进行传播扩散,其病原菌产生的厚垣孢子在土壤中存活的时间长达30年,防治非常困难,是政府、学术界和产业界高度关注的对象之一。为了攻克这一难题,国内外科研工作者及相关从业者进行了广泛而深入的研究。本文从香蕉枯萎病的发生与危害、植物根际微生态及其与土传病害的关系、香蕉根际微生态及其在枯萎病防治中的作用和贡献等方面进行综述,并对其研究趋势进行了展望,以期为后续香蕉根际微生态的深入研究、优良生防资源的挖掘与创新利用及香蕉枯萎病的有效防治提供参考。
漆艳香, 谢艺贤, 彭军, 曾凡云, 张欣. 香蕉根际微生态及其与枯萎病防治之间的关系[J]. 生物技术通报, 2024, 40(6): 57-67.
QI Yan-xiang, XIE Yi-xian, PENG Jun, ZENG Fan-yun, ZHANG Xin. Banana Rhizosphere Microecology and Its Relationship with Fusarium Wilt Control[J]. Biotechnology Bulletin, 2024, 40(6): 57-67.
防治策略 Control strategy | 措施 Measures | 不足 Deficiencies |
---|---|---|
植物检疫 Plant quarantine | 对拟进入国内的香蕉种苗、吸芽等繁殖材料进行隔离试种、检验与处理;对拟进入国内无病区的香蕉种苗、吸芽等繁殖材料进行检验与处理 | 《植物检疫条例》宣贯力度不足 |
抗病品种选育和利用 Variety breeding for resistance to banana Fusarium wilt | (1)种质资源收集、引进、保存、评价与创新利用。如引进并试种成功的抗Foc R1香蕉品种如‘巴西蕉’[ (2)转抗病基因育种。如将野生蕉抗病基因RGA2转入栽培种香蕉,获得了6个具有RGA2不同拷贝数的抗Foc R4植株[ | 生态适应性强、商品性优良的香蕉新品种不多 |
农业防治 Agricultural control | (1)选种健壮无病组培苗; (2)加强田间管理。免(少)耕、土壤调理、增施生物菌肥、病株原位灭除、农具清洗与消毒; (3)轮作、间(套)作等不同耕作措施。水稻、甘蔗、菠萝等与香蕉轮 作[ | 人工成本高;受区域和季节性限制 |
化学防治 Chemical control | (1)土壤熏蒸:将带菌土壤用氨水、石灰碳铵联用熏蒸,30℃覆膜闷土30 d[ (2)化学杀菌剂利用:定植后1个月或发病初期,选择苯咪唑类杀菌剂灌根 | (1)无选择灭生性,处理过的土壤需活化修复; (2)防效微弱,且污染环境 |
生物防治 Biological control | 用拮抗微生物“以菌治菌”:内生细菌如分离自香蕉叶片的贝莱斯芽孢杆菌(B. velezensis)YX-11[ | 优异菌种不多;生防制品保质期短且田间防效不稳定 |
表1 香蕉枯萎病防治措施及其不足
Table 1 Control measures of banana Fusarium wilt and their deficiencies
防治策略 Control strategy | 措施 Measures | 不足 Deficiencies |
---|---|---|
植物检疫 Plant quarantine | 对拟进入国内的香蕉种苗、吸芽等繁殖材料进行隔离试种、检验与处理;对拟进入国内无病区的香蕉种苗、吸芽等繁殖材料进行检验与处理 | 《植物检疫条例》宣贯力度不足 |
抗病品种选育和利用 Variety breeding for resistance to banana Fusarium wilt | (1)种质资源收集、引进、保存、评价与创新利用。如引进并试种成功的抗Foc R1香蕉品种如‘巴西蕉’[ (2)转抗病基因育种。如将野生蕉抗病基因RGA2转入栽培种香蕉,获得了6个具有RGA2不同拷贝数的抗Foc R4植株[ | 生态适应性强、商品性优良的香蕉新品种不多 |
农业防治 Agricultural control | (1)选种健壮无病组培苗; (2)加强田间管理。免(少)耕、土壤调理、增施生物菌肥、病株原位灭除、农具清洗与消毒; (3)轮作、间(套)作等不同耕作措施。水稻、甘蔗、菠萝等与香蕉轮 作[ | 人工成本高;受区域和季节性限制 |
化学防治 Chemical control | (1)土壤熏蒸:将带菌土壤用氨水、石灰碳铵联用熏蒸,30℃覆膜闷土30 d[ (2)化学杀菌剂利用:定植后1个月或发病初期,选择苯咪唑类杀菌剂灌根 | (1)无选择灭生性,处理过的土壤需活化修复; (2)防效微弱,且污染环境 |
生物防治 Biological control | 用拮抗微生物“以菌治菌”:内生细菌如分离自香蕉叶片的贝莱斯芽孢杆菌(B. velezensis)YX-11[ | 优异菌种不多;生防制品保质期短且田间防效不稳定 |
图1 香蕉植株受枯萎病菌侵染后地下部的自我调节机制预测图 黑色虚线为图标注释,橙色粗箭头表示出香蕉植株地上部与地下部的互作,橙色细箭头表示正向响应,蓝色细箭头表示逆向响应
Fig. 1 Prediction of self-regulating mechanism in under-ground parts of banana plant after infected by Foc The dotted black line indicates the icon annotation, the thick orange arrow indicates the interaction between banana plant above-ground and the under-ground, the thin orange arrow indicates the positive response, and the thin blue arrow indicates the reverse response
[1] |
Bakker PAHM, Berendsen RL, Doornbos RF, et al. The rhizosphere revisited: root microbiomics[J]. Front Plant Sci, 2013, 4: 165.
doi: 10.3389/fpls.2013.00165 pmid: 23755059 |
[2] | 张瑞福. 根际微生物: 农业绿色发展中大有作为的植物第二基因组[J]. 生物技术通报, 2020, 36(9): 1-2. |
Zhang RF. Rhizosphere microorganism: the second genome of plants with great potential in agricultural green development[J]. Biotechnol Bull, 2020, 36(9): 1-2. | |
[3] |
张靖, 尤垂淮, 曹月, 等. 甘蔗根际微生态及其与黑穗病防治之间的关系[J]. 生物技术通报, 2022, 38(11): 21-31.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0303 |
Zhang J, You CH, Cao Y, et al. Sugarcane rhizosphere microecology and its relationship with smut control[J]. Biotechnol Bull, 2022, 38(11): 21-31.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0303 |
|
[4] | Ploetz RC. Fusarium wilt[M]// Jones DR. Handbook of Diseases of Banana, Abacá and Enset. Boston: CABI Publishing International, 2019: 207-228. |
[5] | 孙雪丽, 郝向阳, 王天池, 等. 香蕉枯萎病防控和抗病育种研究进展[J]. 果树学报, 2018, 35(7): 870-879. |
Sun XL, Hao XY, Wang TC, et al. Researches on the control and disease resistance breeding of banana Fusarium wilt disease[J]. J Fruit Sci, 2018, 35(7): 870-879. | |
[6] | 李华平, 李云锋, 聂燕芳. 香蕉枯萎病的发生及防控研究现状[J]. 华南农业大学学报, 2019, 40(5): 128-136. |
Li HP, Li YF, Nie YF. Research status of occurrence and control of Fusarium wilt of banana[J]. J South China Agric Univ, 2019, 40(5): 128-136. | |
[7] | 胡莉莉. 香蕉抗枯萎病生理生化基础的研究[D]. 海口: 华南热带农业大学, 2006. |
Hu LL. Studies on basic of physiological and biochemical resistance of banana to Fusarium wilt[D]. Haikou: South China University of Tropical Agriculture, 2006. | |
[8] | 何欣, 黄启为, 杨兴明, 等. 香蕉枯萎病致病菌筛选及致病菌浓度对香蕉枯萎病的影响[J]. 中国农业科学, 2010, 43(18): 3809-3816. |
He X, Huang QW, Yang XM, et al. Screening and identification of pathogen causing banana Fusarium wilt and the relationship between spore suspension concentration and the incidence rate[J]. Sci Agric Sin, 2010, 43(18): 3809-3816. | |
[9] | 吴小燕, 缪卫国, 郑服丛. 香蕉枯萎病对香蕉苗期生长的影响[J]. 广东农业科学, 2013, 40(18): 55-57, 0, 4. |
Wu XY, Miao WG, Zheng FC. Effects of banana Fusarium wilt on banana seedling growth[J]. Guangdong Agric Sci, 2013, 40(18): 55-57, 0, 4. | |
[10] | 黄永辉, 陈琦光, 迟远丽, 等. 土壤理化因素对香蕉枯萎病菌生长和侵染的影响[J]. 华中农业大学学报, 2016, 35(2): 30-34. |
Huang YH, Chen QG, Chi YL, et al. Effects of soil physi-chemical factors on growth and infection of banana Fusarium wilt pathogen Fusarium oxysporum f. sp. cubense[J]. J Huazhong Agric Univ, 2016, 35(2): 30-34. | |
[11] | 樊小林, 李进. 碱性肥料调节香蕉园土壤酸度及防控香蕉枯萎病的效果[J]. 植物营养与肥料学报, 2014, 20(4): 938-946. |
Fan XL, Li J. Effectiveness of alkaline fertilizer on the control of banana Fusarium wilt and regulation of soil acidity in banana orchard[J]. J Plant Nutr Fertil, 2014, 20(4): 938-946. | |
[12] |
黄素梅, 韦绍龙, 韦莉萍, 等. 8种香蕉种质对枯萎病的抗性比较与分析[J]. 热带作物学报, 2019, 40(11): 2189-2196.
doi: 10.3969/j.issn.1000-2561.2019.11.013 |
Huang SM, Wei SL, Wei LP, et al. Comparison and analysis of resistance of eight banana accessions to Fusarium wilt[J]. Chin J Trop Crops, 2019, 40(11): 2189-2196. | |
[13] | 黄素梅, 韦莉萍, 李朝生, 等. 5个抗枯萎病香蕉品种(系)在广西蕉区的引种表现[J]. 西南农业学报, 2020, 33(11): 2530-2536. |
Huang SM, Wei LP, Li CS, et al. Performance of five introduced banana varieties(lines)resistant to Fusarium wilt disease in Guangxi[J]. Southwest China J Agric Sci, 2020, 33(11): 2530-2536. | |
[14] | 周健民. 我国耕地资源保护与地力提升[J]. 中国科学院院刊, 2013, 28(2): 269-274, 263. |
Zhou JM. Protection of arable land resources and increase of soil productivity in China[J]. Bull Chin Acad Sci, 2013, 28(2): 269-274, 263. | |
[15] | 连文慧, 董雷, 李文均. 土壤环境下的根际微生物和植物互作关系研究进展[J]. 微生物学杂志, 2021, 41(4): 74-83. |
Lian WH, Dong L, Li WJ. Advances in rhizosphere microorganism and plant interaction in soil environment[J]. J Microbiol, 2021, 41(4): 74-83. | |
[16] | 蔡祖聪, 黄新琦. 土壤学不应忽视对作物土传病原微生物的研究[J]. 土壤学报, 2016, 53(2): 305-310. |
Cai ZC, Huang XQ. Soil-borne pathogens should not be ignored by soil science[J]. Acta Pedol Sin, 2016, 53(2): 305-310. | |
[17] | 任改弟, 王光飞, 马艳. 根系分泌物与土传病害的关系研究进展[J]. 土壤, 2021, 53(2): 229-235. |
Ren GD, Wang GF, Ma Y. Research progresses on relationship between plant root exudates and soil-borne diseases[J]. Soils, 2021, 53(2): 229-235. | |
[18] |
陈雪, 莫芹, 陈一帆, 等. 大豆土传病害生防菌及其应用研究进展[J]. 中国油料作物学报, 2023, 45(5): 1082-1094.
doi: 10.19802/j.issn.1007-9084.2022219 |
Chen X, Mo Q, Chen YF, et al. Research progress on biocontrol bacteria for soybean soil-borne diseases and its application[J]. Chin J Oil Crop Sci, 2023, 45(5): 1082-1094.
doi: 10.19802/j.issn.1007-9084.2022219 |
|
[19] | el Zahar Haichar F, Santaella C, Heulin T, et al. Root exudates mediated interactions belowground[J]. Soil Biol Biochem, 2014, 77: 69-80. |
[20] |
Baetz U, Martinoia E. Root exudates: the hidden part of plant defense[J]. Trends Plant Sci, 2014, 19(2): 90-98.
doi: 10.1016/j.tplants.2013.11.006 pmid: 24332225 |
[21] |
Vives-Peris V, de Ollas C, Gómez-Cadenas A, et al. Root exudates: from plant to rhizosphere and beyond[J]. Plant Cell Rep, 2020, 39(1): 3-17.
doi: 10.1007/s00299-019-02447-5 pmid: 31346716 |
[22] | Ye SF, Yu JQ, Peng YH, et al. Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates[J]. Plant Soil, 2004, 263(1): 143-150. |
[23] | 杨瑞秀, 高增贵, 姚远, 等. 甜瓜根系分泌物中酚酸物质对尖孢镰孢菌的化感效应[J]. 应用生态学报, 2014, 25(8): 2355-2360. |
Yang RX, Gao ZG, Yao Y, et al. Allelopathic effects of phenolic compounds of melon root exudates on Fusarium oxysporum f.sp. melonis[J]. Chin J Appl Ecol, 2014, 25(8): 2355-2360. | |
[24] | Yang RX, Gao ZG, Liu X, et al. Root exudates from muskmelon(Cucumis melon L)induce autotoxicity and promote growth of Fusarium oxysporum f. sp. melonis[J]. Allelopathy Journal, 2014, 33(2): 175-187. |
[25] | 鞠会艳, 韩丽梅, 王树起, 等. 连作大豆根分泌物对根腐病病原菌的化感作用[J]. 应用生态学报, 2002, 13(6): 723-727. |
Ju HY, Han LM, Wang SQ, et al. Allelopathic effect of root exudates on pathogenic fungi of root rot in continuous cropping soybean[J]. Chin J Appl Ecol, 2002, 13(6): 723-727. | |
[26] |
Peters NK, Frost JW, Long SR. A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes[J]. Science, 1986, 233(4767): 977-980.
doi: 10.1126/science.3738520 pmid: 3738520 |
[27] |
Rudrappa T, Czymmek KJ, Paré PW, et al. Root-secreted malic acid recruits beneficial soil bacteria[J]. Plant Physiol, 2008, 148(3): 1547-1556.
doi: 10.1104/pp.108.127613 pmid: 18820082 |
[28] |
Santoyo G. How plants recruit their microbiome? New insights into beneficial interactions[J]. J Adv Res, 2022, 40: 45-58.
doi: 10.1016/j.jare.2021.11.020 pmid: 36100333 |
[29] |
Gu SH, Wei Z, Shao ZY, et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes[J]. Nat Microbiol, 2020, 5(8): 1002-1010.
doi: 10.1038/s41564-020-0719-8 pmid: 32393858 |
[30] | 路丹丹. 一株拮抗链霉菌的筛选及活性物质鉴定[D]. 杭州: 中国计量大学, 2016. |
Lu DD. Isolation of the antagonist Streptomyces and identification of the active compound[D]. Hangzhou: China University of Metrology, 2016. | |
[31] | Rousseau A. Mycoparasitism of the extramatrical phase of Glomus intraradices by Trichoderma harzianum[J]. Phytopathology, 1996, 86(5): 434. |
[32] | Li ZF, Bai XL, Jiao S, et al. A simplified synthetic community rescues Astragalus mongholicus from root rot disease by activating plant-induced systemic resistance[J]. Microbiome, 2021, 9(1): 217. |
[33] | 左梅, 向必坤, 沈始权, 等. 不同调酸处理对土壤细菌群落结构及雪茄烟株青枯病发生的影响[J]. 烟草科技, 2023, 56(7): 25-31. |
Zuo M, Xiang BK, Shen SQ, et al. Effects of different acid-conditioning treatments on soil bacterial community structure and bacterial wilt incidence of cigar tobacco plants[J]. Tob Sci Technol, 2023, 56(7): 25-31. | |
[34] | 尚双华. 设施土壤氮素积累条件下番茄枯萎病发生的微生态机制研究[D]. 沈阳: 沈阳农业大学, 2016. |
Shang SH. Micro-ecological mechanism of soil-borne tomato Fusarium wilt in the nitrogen-rich facilities cultivation soil[D]. Shenyang: Shenyang Agricultural University, 2016. | |
[35] | 李雪萍, 李建宏, 姚拓, 等. 土壤理化性质与青稞根腐病发生的关系[J]. 草原与草坪, 2017, 37(1): 84-91. |
Li XP, Li JH, Yao T, et al. Relationships between naked barleyroot rot and soil physicochemical properties[J]. Grassland Turf, 2017, 37(1): 84-91. | |
[36] | 文家富, 郑小惠, 陆淑静, 等. 不同土壤类型及栽培方式对丹参枯萎病的影响[J]. 陕西农业科学, 2014, 60(1): 35-37. |
Wen JF, Zheng XH, Lu SJ, et al. Effects of different soil types and cultivation methods on Fusarium wilt of Salvia miltiorrhiza bunge[J]. Shaanxi J Agric Sci, 2014, 60(1): 35-37. | |
[37] | 耿欢欢. 耕层重构抑制棉花黄萎病发生的根际微生态机制[D]. 邯郸: 河北工程大学, 2020. |
Geng HH. Inhibition of rhizosphere microecological mechanism of Verticillium wilt in cotton by surface layer reconstruction[D]. Handan: Hebei University of Engineering, 2020. | |
[38] | 欧阳娴, 阮小蕾, 吴超, 等. 香蕉轮作和连作土壤细菌主要类群[J]. 应用生态学报, 2011, 22(6): 1573-1578. |
Ouyang X, Ruan XL, Wu C, et al. Main bacterial groups in banana soil under rotated and continuous cropping[J]. Chin J Appl Ecol, 2011, 22(6): 1573-1578.
pmid: 21941761 |
|
[39] | 钟爽, 何应对, 韩丽娜, 等. 连作年限对蕉园土壤氮磷钾养分的影响[J]. 广东农业科学, 2011, 38(23): 64-67. |
Zhong S, He YD, Han LN, et al. Effect of continuous banana-cropping on soil N, P and K nutrients[J]. Guangdong Agric Sci, 2011, 38(23): 64-67. | |
[40] | 吴宇佳, 张文, 肖彤斌, 等. 缺钾对不同基因型香蕉根系分泌物产生及土壤钾活化的影响[J]. 西南农业学报, 2017, 30(3): 624-628. |
Wu YJ, Zhang W, Xiao TB, et al. Effect of K deficiency on emergence of root exudates and mobilization of soil potassium in different banana genotypes[J]. Southwest China J Agric Sci, 2017, 30(3): 624-628. | |
[41] | 李茂富, 韦建学, 符良峰, 等. 低温胁迫下外源甜菜碱对香蕉叶片和根系内源甜菜碱合成的影响[J]. 中国农学通报, 2011, 27(16): 244-247. |
Li MF, Wei JX, Fu LF, et al. Effects of exogenous betaine on the endogenous betaine synthesis in leaf and root of banana under low temperature stress[J]. Chin Agric Sci Bull, 2011, 27(16): 244-247.
doi: 10.11924/j.issn.1000-6850.2011-0060 |
|
[42] | 王蕊, 李新国, 李绍鹏, 等. 干旱胁迫下2种香蕉幼苗叶片和根的主要渗透调节物质的变化[J]. 基因组学与应用生物学, 2010, 29(3): 518-522. |
Wang R, Li XG, Li SP, et al. Changes of drought stress on main osmotic adjustment substance in leaves and roots of two banana plantlets[J]. Genom Appl Biol, 2010, 29(3): 518-522. | |
[43] | 辛侃. 水稻—香蕉轮作并向土壤中添加有机物料防控香蕉枯萎病的研究[D]. 海口: 海南大学, 2014. |
Xin K. Control of Fusarium oxysporum f. sp. cubense in banana by rice-banana rotation combine with application of organic materials[D]. Haikou: Hainan University, 2014. | |
[44] | 曾莉莎, 林威鹏, 吕顺, 等. 香蕉-甘蔗轮作模式防控香蕉枯萎病的持续效果与土壤微生态机理(I)[J]. 中国生态农业学报: 中英文, 2019, 27(2): 257-266. |
Zeng LS, Lin WP, Lyu S, et al. Continual effect and soil microbial ecology mechanism of banana-sugarcane rotation controlling Fusarium wilt of banana(I)[J]. Chin J Eco Agric, 2019, 27(2): 257-266. | |
[45] | 杨劲明. 不同菠萝品种轮作防控香蕉枯萎病的土壤微生物机制研究[D]. 海口: 海南大学, 2020. |
Yang JM. Suppression of Fusarium wilt of banana by different pineapples-banana rotation on soil microflora[D]. Haikou: Hainan University, 2020. | |
[46] | 李燕培. 香蕉与红薯间作对土壤微生态和香蕉生长发育的影响[D]. 南宁: 广西大学, 2022. |
Li YP. Effects of banana and sweet potato intercropping on soil microecology and banana growth and development[D]. Nanning: Guangxi University, 2022. | |
[47] | 柳影, 丁文娟, 曹群, 等. 套种韭菜配施生物有机肥对香蕉枯萎病及土壤微生物的影响[J]. 农业环境科学学报, 2015, 34(2): 303-309. |
Liu Y, Ding WJ, Cao Q, et al. Effects of Allium tuberosum interplanting and bio-organic fertilizer application on banana wilt disease and soil microorganisms[J]. J Agro Environ Sci, 2015, 34(2): 303-309. | |
[48] | 王禹童. 套作豆科绿肥抑制香蕉枯萎病的土壤微生物学效应研究[D]. 海口: 海南大学, 2020. |
Wang YT. Soil microbiology effects of intercropping legume green manure on banana Fusarium wilt[D]. Haikou: Hainan University, 2020. | |
[49] | 李朝生, 田丹丹, 覃柳燕, 等. 香蕉套种黑皮冬瓜对香蕉枯萎病的防控效果及土壤微生物群落的影响[J]. 南方农业学报, 2021, 52(5): 1238-1245. |
Li CS, Tian DD, Qin LY, et al. Effects of interplanting of banana with black-skinned wax gourd on controlling Fusarium wilt and soil microbial community[J]. J South Agric, 2021, 52(5): 1238-1245. | |
[50] | 王春梅, 黄赛, 郑道君, 等. 不同农艺措施对香蕉枯萎病园土壤微生态的影响[J]. 分子植物育种, 2024, 22(7): 2345-2353. |
Wang CM, Huang S, Zheng DJ, et al. Effects of different agronomic measures on soil microbiota in banana blight garden[J]. Mol Plant Breed, 2024, 22(7): 2345-2353. | |
[51] | 薛超. 香蕉根际土壤微生物区系特征与土传枯萎病防控研究[D]. 南京: 南京农业大学, 2015. |
Xue C. Manipulation of microbial community in banana rhizospherer to suppress Fusarium wilt of banana[D]. Nanjing: Nanjing Agricultural University, 2015. | |
[52] | Tao CY, Wang Z, Liu SS, et al. Additive fungal interactions drive biocontrol of Fusarium wilt disease[J]. New Phytol, 2023, 238(3): 1198-1214. |
[53] | Amir H, Alabouvette C. Involvement of soil abiotic factors in the mechanisms of soil suppressiveness to fusarium wilts[J]. Soil Biol Biochem, 1993, 25(2): 157-164. |
[54] | 左存武, 孙清明, 黄秉智, 等. 利用根系分泌物与绿色荧光蛋白标记的病原菌互作关系鉴定香蕉对枯萎病的抗性[J]. 园艺学报, 2010, 37(5): 713-720. |
Zuo CW, Sun QM, Huang BZ, et al. Screening method for resistance to Fusarium wilt of banana basing on green fluorescent protein tagged pathogen and root exudates[J]. Acta Hortic Sin, 2010, 37(5): 713-720. | |
[55] | 漆艳香, 张欣, 彭军, 等. 不同抗、感枯萎病香蕉种质根际土壤的微生物数量[J]. 江苏农业科学, 2019, 47(13): 110-114. |
Qi YX, Zhang X, Peng J, et al. Microbial population in rhizosphere soil of different banana germplasms with Fusarium oxysporum f. sp. cubense resistance[J]. Jiangsu Agric Sci, 2019, 47(13): 110-114. | |
[56] | 番华彩, 魏薇, 曾莉, 等. 香蕉枯萎病和健康植株根际土壤细菌群落结构差异对比分析[J]. 西南农业学报, 2021, 34(9): 1885-1891. |
Fan HC, Wei W, Zeng L, et al. Comparative analysis on difference of bacterial community structure in rhizosphere soil between banana Fusarium wilt and healthy plants[J]. Southwest China J Agric Sci, 2021, 34(9): 1885-1891. | |
[57] | 张锡炎, 许林兵, 李宝荣, 等. 巴西蕉品种选育及栽培技术要点[J]. 热带农业科学, 2014, 34(11): 1-5, 9. |
Zhang XY, Xu LB, Li BR, et al. Introduction of baxijiao(Musa AAA Cavendish)and its cultivation technology[J]. Chin J Trop Agric, 2014, 34(11): 1-5, 9. | |
[58] | 程世敏, 张欣, 赵明, 等. 抗香蕉枯萎病新品种‘宝岛蕉’[J]. 园艺学报, 2023, 50(S2): 43-44. |
Cheng SM, Zhang X, Zhao M, et al. A new banana cultivar ‘Baodao Banana’ with resistance to Fusarium wilt[J]. Acta Horticulturae Sinica, 2023, 50(S2): 43-44. | |
[59] | 林雪茜, 彭淼, 吴少平, 等. ‘中蕉9号’与‘巴西蕉’果实后熟过程中可溶性糖积累差异的原因分析[J]. 果树学报, 2019, 36(11): 1524-1539. |
Lin XX, Peng M, Wu SP, et al. A comparative analysis of the differences in starch degradation and soluble sugar accumulation between ‘Zhongjiao No.9’ and ‘Baxijiao’ during fruit ripening[J]. J Fruit Sci, 2019, 36(11): 1524-1539. | |
[60] | Rowe P, Rosales F. Diploid breeding at FHIA and the development of Goldfinger(FHIA-01)[J]. Infomusa, 1993, 2(2): 9-11. |
[61] | Dale J, James A, Paul JY, et al. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4[J]. Nat Commun, 2017, 8(1): 1496. |
[62] | 钟书堂, 吕娜娜, 孙逸飞, 等. 连作香蕉园生态熏蒸剂的筛选及其对土壤微生物群落结构的影响[J]. 土壤, 2015, 47(6): 1092-1100. |
Zhong ST, Lv NN, Sun YF, et al. Screening eco-fumigants for banana orchards with serious Fusarium wilt disease and their influences on soil microflora[J]. Soils, 2015, 47(6): 1092-1100. | |
[63] | 李万芹, 何鹏飞, 吴毅歆, 等. 香蕉内生贝莱斯芽孢杆菌YX-11的分离鉴定与功能研究[J]. 江西农业学报, 2021, 33(12): 8-13. |
Li WQ, He PF, Wu YX, et al. Isolation, identification and functional properties of endophytic Bacillus velezensis YX-11 from banana[J]. Acta Agric Jiangxi, 2021, 33(12): 8-13. | |
[64] | 杨扬, 陈奕鹏, 周维, 等. 内生真菌HND5菌株抗香蕉枯萎病菌相关非核糖体多肽合成酶基因簇的鉴定[J]. 植物保护学报, 2019, 46(5): 1110-1120. |
Yang Y, Chen YP, Zhou W, et al. Identification of the non-ribosomal peptide synthetase(NRPS)gene clusters involved in resistance to Fusarium oxysporum f. sp. cubense in the endophytic fungal isolate HND5[J]. J Plant Prot, 2019, 46(5): 1110-1120. | |
[65] | 邱晓聪. 利用几丁质和镰刀菌酸降解菌防控香蕉枯萎病初步研究[D]. 海口: 海南大学, 2013. |
Qiu XC. Preliminary research on strains of degradating chitin and Fusarium acid for the control of Fusarium wilt of banana[D]. Haikou: Hainan University, 2013. | |
[66] | Damodaran T, Rajan S, Muthukumar M, et al. Biological management of banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race 4 using antagonistic fungal isolate CSR-T-3(Trichoderma reesei)[J]. Front Microbiol, 2020, 11: 595845. |
[67] | Wang J, Cai BY, Li K, et al. Biological control of Fusarium oxysporum f. sp. cubense tropical race 4 in banana plantlets using newly isolated Streptomyces sp. WHL7 from marine soft coral[J]. Plant Dis, 2022, 106(1): 254-259. |
[68] | Meredith CH. The antagonism of actinomyces to Fusarium oxysporum cubense[J]. Phytopathology, 1943, 33(5): 403. |
[69] | Meredith CH. The antagonism of soil organisms to Fusarium oxysporum cubense[J]. Phytopathology, 1944, 34(4): 426-429. |
[70] | Sekhar AC, Thomas P. Isolation and identification of shoot-tip associated endophytic bacteria from banana cv. grand naine and testing for antagonistic activity against Fusarium oxysporum f. sp. cubense[J]. Am J Plant Sci, 2015, 6(7): 943-954. |
[71] | 曹理想, 田新莉, 周世宁. 香蕉内生真菌、放线菌类群分析[J]. 中山大学学报: 自然科学版, 2003, 42(2): 70-73. |
Cao LX, Tian XL, Zhou SN. Isolation of endophytic fungi and actinomycetes from banana(Musa paradisiaca)plants[J]. Acta Sci Nat Univ Sunyatseni, 2003, 42(2): 70-73. | |
[72] | 阮彦楠, 付利波, 番华彩, 等. 光叶苕子(Vicia villosa var.)内生细菌Sz-2的特性及其对香蕉枯萎病的防治效果[J]. 植物营养与肥料学报, 2023, 29(8): 1507-1519. |
Ruan YN, Fu LB, Fan HC, et al. Characteristics of endophytic bacteria Sz-2 from smooth vetch(Vicia villosa var.) and its control effect on banana Fusarium wilt[J]. J Plant Nutr Fertil, 2023, 29(8): 1507-1519. | |
[73] | 程亮, 肖爱萍, 游春平. 拮抗菌对香蕉枯萎病菌的抑菌作用初步研究[J]. 仲恺农业技术学院学报, 2005, 18(1): 9-13. |
Cheng L, Xiao AP, You CP. Primary study on inhibition of antagonistic bacterium against Fusarium oxysporum f. sp. cubense in banana[J]. J Zhongkai Agrotech Coll, 2005, 18(1): 9-13. | |
[74] | Getha K, Vikineswary S. Antagonistic effects of Streptomyces violaceusniger strain G10 on Fusarium oxysporum f. sp. cubense race 4: indirect evidence for the role of antibiosis in the antagonistic process[J]. J Ind Microbiol Biotech, 2002, 28(6): 303-310. |
[75] |
Ayyadurai N, Naik PR, Rao MS, et al. Isolation and characterization of a novel banana rhizosphere bacterium as fungal antagonist and microbial adjuvant in micropropagation of banana[J]. J Appl Microbiol, 2006, 100(5): 926-937.
pmid: 16629993 |
[76] | Yadav K, Damodaran T, Dutt K, et al. Effective biocontrol of banana Fusarium wilt tropical race 4 by a bacillus rhizobacteria strain with antagonistic secondary metabolites[J]. Rhizosphere, 2021, 18: 100341. |
[77] | 辛鑫, 刘磊, 潘江禹, 等. 绿色木霉H6对香蕉枯萎病的诱导抗性作用[J]. 广东农业科学, 2013, 40(7): 83-85. |
Xin X, Liu L, Pan JY, et al. Studies on Induced resistance of banana Fusarium wilt with Trichoderma viride strain H6[J]. Guangdong Agric Sci, 2013, 40(7): 83-85. | |
[78] | Shen NK, Li SY, Li SY, et al. The siderophore-producing bacterium, Bacillus siamensis Gxun-6, has an antifungal activity against Fusarium oxysporum and promotes the growth of banana[J]. Egypt J Biol Pest Contr, 2022, 32(1): 34. |
[79] | Zhu ZY, Tian ZH, Li JX. A Streptomyces morookaensis strain promotes plant growth and suppresses Fusarium wilt of banana[J]. Trop Plant Pathol, 2021, 46(2): 175-185. |
[80] | Selvaraj S, Ganeshamoorthi P, Anand T, et al. Evaluation of a liquid formulation of Pseudomonas fluorescens against Fusarium oxysporum f. sp. cubense and Helicotylenchus multicinctus in banana plantation[J]. BioControl, 2014, 59(3): 345-355. |
[81] | 覃柳燕, 郭成林, 黄素梅, 等. 棘孢木霉菌株PZ6对香蕉促生效应及枯萎病室内防效的影响[J]. 南方农业学报, 2017, 48(2): 277-283. |
Qin LY, Guo CL, Huang SM, et al. Growth-promoting effects of Trichoderma asperellum strain PZ6 on banana and its indoor control effect against banana Fusarium wilt[J]. J South Agric, 2017, 48(2): 277-283. | |
[82] | 农倩, 张雯龙, 蓝桃菊, 等. 一株抗香蕉枯萎病DSE菌株的筛选鉴定及抗病机理初探[J]. 热带作物学报, 2017, 38(3): 559-564. |
Nong Q, Zhang WL, Lan TJ, et al. Screening and identification of dark septate endophyte strain L-14 and its mechanism of banana Fusarium wilt disease resistance[J]. Chin J Trop Crops, 2017, 38(3): 559-564. | |
[83] | 邱美莎, 张艳, 曾凤花, 等. 深色有隔内生真菌Ochroconis guangxiensis X22诱导子对香蕉的促生和抗枯萎病效果[J]. 南方农业学报, 2022, 53(10): 2928-2936. |
Qiu MS, Zhang Y, Zeng FH, et al. Effects of dark septate endophyte Ochroconis guangxiensis X22 elicitor on banana growth promotion and Fusarium wilt resistance[J]. J South Agric, 2022, 53(10): 2928-2936. | |
[84] | 王松. 贝莱斯芽孢杆菌YQ1菌株对香蕉枯萎病菌的拮抗效果研究[D]. 昆明: 云南大学, 2020. |
Wang S. Effects of Bacillus velezensis strain YQ1 on antagonism of Fusarium wilt[D]. Kunming: Yunnan University, 2020. | |
[85] | 李枢妍, 何艳丽, 宋超东, 等. 铜绿假单胞菌Gxun-2产铁载体发酵条件优化及其抑菌效果[J]. 食品工业科技, 2024, 45(1):118-125. |
Li SY, He YL, Song CD, et al. Optimization of siderophores production and its antifungal activity of Pseudomonas aeruginosa Gxun-2[J]. Science and Technology of Food Industry, 2024, 45(1):118-125. | |
[86] | 陈德强. 木霉防治香蕉镰刀菌枯萎病研究[D]. 海口: 海南大学, 2012. |
Chen DQ. The study of Trichoderma strains against banana Fusarium wilt[D]. Haikou: Hainan University, 2012. | |
[87] | Jaizme-Vega MC, Sosa Hernández B, Hernández Hernández JM. Interaction of arbuscular mycorrhizal fungi and the soil pathogen Fusarium oxysporum f. sp. cubense on the first stages of micropropagated grande naine banana[J]. Acta Hortic, 1998(490): 285-296. |
[88] | Nel B, Steinberg C, Labuschagne N, et al. The potential of nonpathogenic Fusarium oxysporum and other biological control organisms for suppressing Fusarium wilt of banana[J]. Plant Pathol, 2006, 55(2): 217-223. |
[89] | Liu SJ, Moon CD, Zheng N, et al. Opportunities and challenges of using metagenomic data to bring uncultured microbes into cultivation[J]. Microbiome, 2022, 10(1): 76. |
[90] | 高游慧, 郑泽慧, 张越, 等. 根际微生态防治作物土传真菌病害的机制研究进展[J]. 中国农业大学学报, 2021, 26(6): 100-113. |
Gao YH, Zheng ZH, Zhang Y, et al. Mechanism of rhizosphere micro-ecology in controlling soil-borne fungal diseases: a review[J]. J China Agric Univ, 2021, 26(6): 100-113. |
[1] | 郝思怡, 张君珂, 王斌, 曲朋燕, 李瑞得, 程春振. 香蕉ELF3的克隆与表达分析[J]. 生物技术通报, 2024, 40(5): 131-140. |
[2] | 方天一, 岳艳玲. 根系分泌物介导的植物对土传病害的抗性机制[J]. 生物技术通报, 2024, 40(3): 52-61. |
[3] | 王楠, 廖永琴, 施竹凤, 申云鑫, 杨童雨, 冯路遥, 矣小鹏, 唐加菜, 陈齐斌, 杨佩文. 三株无量山森林土壤芽孢杆菌鉴定及其生物活性挖掘[J]. 生物技术通报, 2024, 40(2): 277-288. |
[4] | 娄慧, 朱金成, 杨洋, 张薇. 抗、感品种棉花根系分泌物对尖孢镰刀菌生长及基因表达的影响[J]. 生物技术通报, 2023, 39(9): 156-167. |
[5] | 赵志祥, 王殿东, 周亚林, 王培, 严婉荣, 严蓓, 罗路云, 张卓. 枯草芽孢杆菌Ya-1对辣椒枯萎病的防治及其对根际真菌群落的影响[J]. 生物技术通报, 2023, 39(9): 213-224. |
[6] | 褚睿, 李昭轩, 张学青, 杨东亚, 曹行行, 张雪艳. 黄瓜枯萎病拮抗芽孢杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271. |
[7] | 杨洋, 朱金成, 娄慧, 韩泽刚, 张薇. 海岛棉与枯萎病菌的互作转录组分析[J]. 生物技术通报, 2023, 39(6): 259-273. |
[8] | 申云鑫, 施竹凤, 周旭东, 李铭刚, 张庆, 冯路遥, 陈齐斌, 杨佩文. 三株具生防功能芽孢杆菌的分离鉴定及其生物活性研究[J]. 生物技术通报, 2023, 39(3): 267-277. |
[9] | 滕梦鑫, 徐亚, 何静, 汪奇, 乔飞, 李敬阳, 李新国. 香蕉MaMC6的克隆及原核表达分析[J]. 生物技术通报, 2023, 39(12): 179-186. |
[10] | 朱金成, 杨洋, 娄慧, 张薇. 外源褪黑素调控棉花枯萎病抗性研究[J]. 生物技术通报, 2023, 39(1): 243-252. |
[11] | 李霁虹, 荆玉玲, 马桂珍, 郭荣君, 李世东. 无色杆菌77的基因组构成及其趋化和耐药特性[J]. 生物技术通报, 2022, 38(9): 136-146. |
[12] | 赵曾强, 郭文婷, 张析, 李潇玲, 张薇. 棉花抗枯萎病相关基因GhERF5-4D的克隆及功能分析[J]. 生物技术通报, 2022, 38(4): 193-201. |
[13] | 张靖, 尤垂淮, 曹月, 崔天真, 杨靖涛, 罗俊. 甘蔗根际微生态及其与黑穗病防治之间的关系[J]. 生物技术通报, 2022, 38(11): 21-31. |
[14] | 张美君, 吴庆, 尹翠, 王妮, 马晓庆, 马晓霞, 曹云娥. 尖镰孢黄瓜专化型枯萎病菌拮抗菌的筛选、鉴定及培养条件优化[J]. 生物技术通报, 2020, 36(9): 125-136. |
[15] | 王玉杰, 王湘君. 响应面法优化改性香蕉皮对Pb2+的吸附研究[J]. 生物技术通报, 2019, 35(4): 188-194. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||