生物技术通报 ›› 2024, Vol. 40 ›› Issue (6): 68-80.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1196

• 综述与专论 • 上一篇    下一篇

高值化等鞭金藻固碳研究进展

蔡楠1(), 方静平1, 陈必链1,2, 何勇锦1,2()   

  1. 1.福建师范大学生命科学学院,福州 350117
    2.福建师范大学工业微生物教育部工程研究中心,福州 350117
  • 收稿日期:2023-12-19 出版日期:2024-06-26 发布日期:2024-05-14
  • 通讯作者: 何勇锦,男,研究员,研究方向:微藻生物工程、油脂改性、生物质能源、功能活性物质;E-mail: yongjinhe@fjnu.edu.cn
  • 作者简介:蔡楠,女,硕士研究生,研究方向:微藻固碳及微藻生物质转化;E-mail: cainan327@163.com
  • 基金资助:
    国家自然科学基金项目(32172997);福建省教育厅重点项目(2022G02013);福建省环保科技计划项目(2023R0001);福建师范大学碳中和研究院开放项目(TZH-2022-03)

Research Progress in Carbon Sequestration by High-valued Isochrysis Strain

CAI Nan1(), FANG Jing-ping1, CHEN Bi-lian1,2, HE Yong-jin1,2()   

  1. 1. College of Life Sciences, Fujian Normal University, Fuzhou 350117
    2. Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117
  • Received:2023-12-19 Published:2024-06-26 Online:2024-05-14

摘要:

工业生产和人类活动释放的大量CO2是造成全球性气候变暖的主要诱因。气候变暖往往伴随着极端恶劣天气的发生,对人类的生活、财产和基础设施构成严重威胁。为了减轻由此产生的负面影响和应对全球变暖,各国纷纷设定了碳达峰和碳减排目标,并致力于对CO2进行固定和资源化利用。海洋等鞭金藻(Isochrysis galbana)具有生长速度快和固碳效率高的特点,集成废/污水处理和生物固碳,转化合成蛋白质、多不饱和脂肪酸等多种高值生物活性物质的等鞭金藻固碳技术,被认为是最有前途的碳捕获和资源高值化利用的技术之一。本文首先介绍和比较了常用的CO2捕获技术的优缺点,强调基于等鞭金藻的碳捕获技术的适用范围和固碳效率的优势。其次阐明了海洋等鞭金藻光合固碳机制及其与卡尔文循环、三羧酸循环等代谢通路的联系;探讨光和CO2对微藻固碳能力和胞内碳流分布的影响,探究培养条件、光生物反应器、基因工程/合成生物学技术改造藻株等影响等鞭金藻固碳效率的因素。最后,概述了等鞭金藻光合固碳与岩藻黄素、多不饱和脂肪酸、蛋白质等高值生物活性物质合成的关系,为精深加工、开发高值化等鞭金藻提供理论和实践依据,推动等鞭金藻固碳技术的发展和应用,协同推进节能减排,为助力实现“双碳”目标提供一条经济可行的新策略。

关键词: 碳中和, 等鞭金藻, 固碳, 高值化生物质, 碳代谢, 效率, 生物活性成分

Abstract:

CO2 is one of the main greenhouse gases. A large amount of CO2 is released into the atmosphere through industrial production and human activities, leading to a significant increase in global CO2 concentration. This has resulted in the increasing global temperatures, climate warming, and frequent occurrences of extreme weather events, posing a threat to global human security. In order to mitigate the increase of CO2 and address global warming, countries around the world have set carbon peak targets and are committed to carbon capture and utilization. Marine Isochrysis galbana characterizes of a fast growth rate and high carbon-fixing efficiency; moreover, biological carbon sequestration mediated with Isochrysis strain and wastewater synthesized various high-value biologically active substances such as protein, polyunsaturated fatty acids; which is regarded to be a promising way of fixing CO2. In this review, we firstly summarize the prevalent CO2 capture technologies and compares their advantages and disadvantages. Furthermore, we elaborate the carbon metabolism mechanism of Isochrysis strain for the carbon fixing process, and explain the relationship among the Calvin cycle, TCA cycle, and the metabolism of various biologically active substances during photosynthetic carbon fixation. Based on the photosynthetic carbon-fixing mechanism of Isochrysis strain, we propose some methods about cultivation conditions, photobioreactors and modified microalgal cells by genetic engineering and synthetic biology to improve carbon-fixing efficiency for Isochrysis strain. Lastly, we illustrate the correlation between carbon fixation of Isochrysis strain and the synthesis of bioactive components, offering essential details for high valued Isochrysis-derived bioproducts by deep processes. This review will provide essential perspectives to address carbon neutrality by microalgal carbon sequestration and exploit high-value microalgal bioproducts by Isochrysis strain.

Key words: carbon neutrality, Isochrysis strain, carbon fixation, high-value biomass, carbon sequestration, efficiency, bioactive ingredients