[1] |
Stokstad E. The new potato[J]. Science, 2019, 363(6427): 574-577.
doi: 10.1126/science.363.6427.574
pmid: 30733400
|
[2] |
徐建飞, 金黎平. 马铃薯遗传育种研究: 现状与展望[J]. 中国农业科学, 2017, 50(6): 990-1015.
doi: 10.3864/j.issn.0578-1752.2017.06.003
|
|
Xu JF, Jin LP. Advances and perspectives in research of potato genetics and breeding[J]. Sci Agric Sin, 2017, 50(6): 990-1015.
doi: 10.3864/j.issn.0578-1752.2017.06.003
|
[3] |
Wallace JG, Rodgers-Melnick E, Buckler ES. On the road to breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics[J]. Annu Rev Genet, 2018, 52: 421-444.
doi: 10.1146/annurev-genet-120116-024846
pmid: 30285496
|
[4] |
Bethke PC, Nassar AMK, Kubow S, et al. History and origin of Russet Burbank(netted gem)a sport of Burbank[J]. Am J Potato Res, 2014, 91(6): 594-609.
|
[5] |
Lindhout P, Meijer D, Schotte T, et al. Towards F1 hybrid seed potato breeding[J]. Potato Res, 2011, 54(4): 301-312.
|
[6] |
李颖, 李广存, 李灿辉, 等. 二倍体杂种优势马铃薯育种的展望[J]. 中国马铃薯, 2013, 27(2): 96-99.
|
|
Li Y, Li GC, Li CH, et al. Prospects of diploid hybrid breeding in potato[J]. Chin Potato J, 2013, 27(2): 96-99.
|
[7] |
Jansky SH, Charkowski AO, Douches DS, et al. Reinventing potato as a diploid inbred line-based crop[J]. Crop Sci, 2016, 56(4): 1412-1422.
|
[8] |
Spooner DM, Ghislain M, Simon R, et al. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes[J]. Bot Rev, 2014, 80(4): 283-383.
|
[9] |
The Potato Genome Sequencing Consortium. Genome sequence and analysis of the tuber crop potato[J]. Nature, 2011, 475(7355): 189-195.
|
[10] |
Sharma SK, Bolser D, de Boer J, et al. Construction of reference chromosome-scale pseudomolecules for potato: integrating the potato genome with genetic and physical maps[J]. G3, 2013, 3(11): 2031-2047.
|
[11] |
Pham GM, Hamilton JP, Wood JC, et al. Construction of a chromosome-scale long-read reference genome assembly for potato[J]. GigaScience, 2020, 9(9): giaa100.
|
[12] |
Yang XH, Zhang LK, Guo X, et al. The gap-free potato genome assembly reveals large tandem gene clusters of agronomical importance in highly repeated genomic regions[J]. Mol Plant, 2023, 16(2): 314-317.
|
[13] |
Zhou Q, Tang D, Huang W, et al. Haplotype-resolved genome analyses of a heterozygous diploid potato[J]. Nat Genet, 2020, 52(10): 1018-1023.
doi: 10.1038/s41588-020-0699-x
pmid: 32989320
|
[14] |
Aversano R, Contaldi F, Ercolano MR, et al. The Solanum commersonii genome sequence provides insights into adaptation to stress conditions and genome evolution of wild potato relatives[J]. Plant Cell, 2015, 27(4): 954-968.
|
[15] |
Leisner CP, Hamilton JP, Crisovan E, et al. Genome sequence of M6, a diploid inbred clone of the high-glycoalkaloid-producing tuber-bearing potato species Solanum chacoense, reveals residual heterozygosity[J]. Plant J, 2018, 94(3): 562-570.
|
[16] |
Zhang CZ, Yang ZM, Tang D, et al. Genome design of hybrid potato[J]. Cell, 2021, 184(15): 3873-3883.e12.
doi: 10.1016/j.cell.2021.06.006
pmid: 34171306
|
[17] |
van Lieshout N, van der Burgt A, de Vries ME, et al. Solyntus, the new highly contiguous reference genome for potato(Solanum tuberosum)[J]. G3, 2020, 10(10): 3489-3495.
|
[18] |
Sun HQ, Jiao WB, Krause K, et al. Chromosome-scale and haplotype-resolved genome assembly of a tetraploid potato cultivar[J]. Nat Genet, 2022, 54(3): 342-348.
doi: 10.1038/s41588-022-01015-0
pmid: 35241824
|
[19] |
Bao ZG, Li CH, Li GC, et al. Genome architecture and tetrasomic inheritance of autotetraploid potato[J]. Mol Plant, 2022, 15(7): 1211-1226.
doi: 10.1016/j.molp.2022.06.009
pmid: 35733345
|
[20] |
Wang F, Xia ZQ, Zou ML, et al. The autotetraploid potato genome provides insights into highly heterozygous species[J]. Plant Biotechnol J, 2022, 20(10): 1996-2005.
|
[21] |
Hoopes G, Meng XX, Hamilton JP, et al. Phased, chromosome-scale genome assemblies of tetraploid potato reveal a complex genome, transcriptome, and predicted proteome landscape underpinning genetic diversity[J]. Mol Plant, 2022, 15(3): 520-536.
|
[22] |
Li YP, Colleoni C, Zhang JJ, et al. Genomic analyses yield markers for identifying agronomically important genes in potato[J]. Mol Plant, 2018, 11(3): 473-484.
doi: S1674-2052(18)30049-2
pmid: 29421339
|
[23] |
Hardigan MA, Laimbeer FPE, Newton L, et al. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato[J]. Proc Natl Acad Sci U S A, 2017, 114(46): E9999-E10008.
|
[24] |
Tang D, Jia YX, Zhang JZ, et al. Genome evolution and diversity of wild and cultivated potatoes[J]. Nature, 2022, 606(7914): 535-541.
|
[25] |
Bozan I, Achakkagari SR, Anglin NL, et al. Pangenome analyses reveal impact of transposable elements and ploidy on the evolution of potato species[J]. Proc Natl Acad Sci U S A, 2023, 120(31): e2211117120.
|
[26] |
宋伯符, 唐洪明. 用种子生产马铃薯[M]. 北京: 中国农业科技出版社, 1988.
|
|
Song BF, Tang HM. Produce potato from seeds[M]. Beijing: China Agricultural Science and Technology Press, 1988.
|
[27] |
Takayama S, Isogai A. Self-incompatibility in plants[J]. Annu Rev Plant Biol, 2005, 56: 467-489.
pmid: 15862104
|
[28] |
Kubo KI, Entani T, Takara A, et al. Collaborative non-self recognition system in S-RNase-based self-incompatibility[J]. Science, 2010, 330(6005): 796-799.
|
[29] |
Ye MW, Peng Z, Tang D, et al. Generation of self-compatible diploid potato by knockout of S-RNase[J]. Nat Plants, 2018, 4(9): 651-654.
doi: 10.1038/s41477-018-0218-6
pmid: 30104651
|
[30] |
Enciso-Rodriguez F, Manrique-Carpintero NC, Nadakuduti SS, et al. Overcoming self-incompatibility in diploid potato using CRISPR-Cas9[J]. Front Plant Sci, 2019, 10: 376.
doi: 10.3389/fpls.2019.00376
pmid: 31001300
|
[31] |
Zhang CZ, Wang P, Tang D, et al. The genetic basis of inbreeding depression in potato[J]. Nat Genet, 2019, 51(3): 374-378.
doi: 10.1038/s41588-018-0319-1
pmid: 30643248
|
[32] |
Eggers EJ, van der Burgt A, et al. Neofunctionalisation of the Sli gene leads to self-compatibility and facilitates precision breeding in potato[J]. Nat Commun, 2021, 12(1): 4141.
|
[33] |
Ma L, Zhang CZ, Zhang B, et al. A nonS-locus F-box gene breaks self-incompatibility in diploid potatoes[J]. Nat Commun, 2021, 12(1): 4142.
|
[34] |
Hosaka K, Hanneman RE. Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. 1. Detection of an S locus inhibitor(Sli)gene[J]. Euphytica, 1998, 99(3): 191-197.
|
[35] |
Hosaka K, Hanneman RE. Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. 2. Localization of an S locus inhibitor(Sli)gene on the potato genome using DNA markers[J]. Euphytica, 1998, 103(2): 265-271.
|
[36] |
Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm[J]. Nat Protoc, 2009, 4(7): 1073-1081.
doi: 10.1038/nprot.2009.86
pmid: 19561590
|
[37] |
Wu YY, Li DW, Hu Y, et al. Phylogenomic discovery of deleterious mutations facilitates hybrid potato breeding[J]. Cell, 2023, 186(11): 2313-2328.e15.
doi: 10.1016/j.cell.2023.04.008
pmid: 37146612
|
[38] |
Lian Q, Tang D, Bai ZY, et al. Acquisition of deleterious mutations during potato polyploidization[J]. J Integr Plant Biol, 2019, 61(1): 7-11.
doi: 10.1111/jipb.12748
|
[39] |
Adams JR, de Vries ME, Zheng CZ, et al. Little heterosis found in diploid hybrid potato: the genetic underpinnings of a new hybrid crop[J]. G3, 2022, 12(6): jkac076.
|
[40] |
Li DW, Lu XY, Zhu YH, et al. The multi-omics basis of potato heterosis[J]. J Integr Plant Biol, 2022, 64(3): 671-687.
doi: 10.1111/jipb.13211
|