生物技术通报 ›› 2024, Vol. 40 ›› Issue (9): 123-130.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0511

• 薯类作物生物技术专题(专题主编:徐建飞,尚轶) • 上一篇    下一篇

基于深度学习的马铃薯花粉活力快速检测

夏士轩1,2(), 耿泽栋1, 祝光涛3, 张春芝2, 李大伟2()   

  1. 1.华中农业大学植物科学技术学院,武汉 430070
    2.中国农业科学院深圳农业基因组研究所,深圳 518000
    3.云南师范大学马铃薯科学研究院,昆明 650500
  • 收稿日期:2024-05-29 出版日期:2024-09-26 发布日期:2024-10-12
  • 通讯作者: 李大伟,男,博士,助理研究员,研究方向:马铃薯分子育种;E-mail: lidawei@caas.cn
  • 作者简介:夏士轩,男,硕士,研究方向:马铃薯育性分子机制;E-mail: xiaxuan172@163.com
  • 基金资助:
    国家自然科学基金项目(32302541);中国博士后科学基金(2022M723462)

Quick Detection of Potato Pollen Viability Based on Deep Learning

XIA Shi-xuan1,2(), GENG Ze-dong1, ZHU Guang-tao3, ZHANG Chun-zhi2, LI Da-wei2()   

  1. 1. College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070
    2. Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000
    3. Joint Academy of Potato Sciences, Yunnan Normal University, Kunming 650500
  • Received:2024-05-29 Published:2024-09-26 Online:2024-10-12

摘要:

【目的】传统马铃薯花粉活力检测方法依靠肉眼计数,存在效率低、准确性差等问题。本研究基于PaddlePaddle深度学习框架,通过比较不同模型,提出一种快速检测花粉活力的方法。【方法】首先收集花粉,使用2,3,5-氯化三苯基四氮唑(2,3,5-triphenyltetrazolium chloride,TTC)染色,通过显微镜拍照获取图像;利用Photoshop(PS)进行数据标注,分别标注有活力花粉和所有花粉,并将标签图转为单通道图像;选用SegFormer、U-Net和DeepLabV3模型进行训练,分割有活力花粉和所有花粉;最后使用Python OpenCV程序计数,计算花粉活力。【结果】与其他模型相比,SegFormer在两类数据集中的各项评估指标均为最优。相比于人工识别,OpenCV程序可以实现快速、批量计数,且误差小。【结论】通过图像处理技术可以快速、准确检测马铃薯花粉活力,进一步利用该方法快速鉴定了200份F2株系的花粉活力,为马铃薯花粉活力表型采集奠定了基础。

关键词: 马铃薯, 花粉活力, 图像处理, 深度学习, SegFormer, OpenCV

Abstract:

【Objective】Traditional methods for detecting potato pollen viability rely on visual counting, which can be inefficient and inaccurate. In this study, a method for quickly detecting pollen viability was proposed based on PaddlePaddle deep learning framework by comparing different models.【Method】First, the pollens were stained with 2,3,5-triphenyltetrazolium chloride(TTC)and imaged using a microscope. The images were annotated by Photoshop(PS). Viable and total pollens were labeled respectively, then the label images were converted into single-channel images. Three models, SegFormer, U-Net and DeepLabV3, were used for training to distinguish viable pollens and total pollens. Finally, a Python OpenCV program was used to count the pollen number and calculate pollen viability. 【Result】Compared with other models, SegFormer demonstrated the best performance in various evaluation indexes of the two datasets. Compared with manual recognition, the OpenCV program enabled fast and batch counting with less error.【Conclusion】Potato pollen viability can be detected quickly and accurately by image processing technology. This method was used to quickly identify the pollen viability of 200 F2 individuals, providing a soild foundation for the collection of pollen viability in potato.

Key words: potato, pollen viability, image processing, deep learning, SegFormer, OpenCV