生物技术通报 ›› 2024, Vol. 40 ›› Issue (11): 162-168.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0308
孙美华1(), 孙慧贤1, 田林林1, 苗妍秀1, 侯雷平1, 齐明芳2(
), 李天来2(
)
收稿日期:
2024-03-28
出版日期:
2024-11-26
发布日期:
2024-12-19
通讯作者:
齐明芳,男,博士,教授,研究方向:设施蔬菜栽培与生理;E-mail: qimingfang@syau.edu.cn;作者简介:
孙美华,女,博士,研究方向:设施蔬菜栽培与生理;E-mail: sunmeihua19@163.com
基金资助:
SUN Mei-hua1(), SUN Hui-xian1, TIAN Lin-lin1, MIAO Yan-xiu1, HOU Lei-ping1, QI Ming-fang2(
), LI Tian-lai2(
)
Received:
2024-03-28
Published:
2024-11-26
Online:
2024-12-19
摘要:
【目的】 分析番茄SlYABBY2b功能,解析其果实大小调控机制,为丰富果实发育调控基因网络及挖掘我国番茄优质基因资源提供依据。【方法】 以番茄‘Ailsa Craig’为材料,通过CRISPR/Cas9技术编辑SlYABBY2b,构建yabby2b突变体株系,并分析yabby2b突变体表型变化,通过石蜡切片技术统计果实细胞数目,RT-qPCR分析候选基因在yabby2b突变体中的表达变化,并对候选基因进行启动子调控元件分析。【结果】 从T0代转化苗中鉴定到3株突变体,为嵌合突变或双等位突变,从T1代中分离到3个纯合突变体株系,且不包含转基因元件。表型观察发现,与野生型相比,yabby2b突变体的植株变矮、果实变小。进一步分析果实发育过程发现,yabby2b突变体果实发育早期的子房变小,子房的细胞数目变少。分析候选基因表达变化发现,SlYABBY2b突变后细胞分裂抑制子SlFW2.2的表达水平上调,而且还发现SlFW2.2启动子上有YABBY转录因子的调控元件。【结论】 揭示了SlYABBY2b参与番茄株高和果实大小调控,可能是通过调控SlFW2.2表达,进而影响果实发育早期的细胞分裂,最终调控果实大小。
孙美华, 孙慧贤, 田林林, 苗妍秀, 侯雷平, 齐明芳, 李天来. 番茄YABBY2b功能鉴定及下游基因的表达分析[J]. 生物技术通报, 2024, 40(11): 162-168.
SUN Mei-hua, SUN Hui-xian, TIAN Lin-lin, MIAO Yan-xiu, HOU Lei-ping, QI Ming-fang, LI Tian-lai. Functional Identification of YABBY2b Gene and Expression Analysis of Downstream Genes in Tomato[J]. Biotechnology Bulletin, 2024, 40(11): 162-168.
基因Gene | 引物序列Primer sequence(5'-3') |
---|---|
SlFW2.2 | F: GCTGGGATTGACAGGATTGC |
R: GCATACATTTCACCTGGTCATGC | |
SlKLUH | F: AGTTCACCCTCCTGGTCCAT |
R: ACCGAATGGTGCAAGCCTTA | |
SlCSR | F: AGCGGCTTCCATTTCACCTAA |
R: ATCACCACCACCACTGTCTG |
表1 基因表达量分析引物
Table 1 Primers for gene expression analysis
基因Gene | 引物序列Primer sequence(5'-3') |
---|---|
SlFW2.2 | F: GCTGGGATTGACAGGATTGC |
R: GCATACATTTCACCTGGTCATGC | |
SlKLUH | F: AGTTCACCCTCCTGGTCCAT |
R: ACCGAATGGTGCAAGCCTTA | |
SlCSR | F: AGCGGCTTCCATTTCACCTAA |
R: ATCACCACCACCACTGTCTG |
株系Plant | 突变类型Mutation type | CRISPR/Cas9 T-DNA |
---|---|---|
#1 | 嵌合突变Chimeric mutation | + |
#3 | 双等位突变Biallelic mutation | + |
#7 | 双等位突变Biallelic mutation | + |
表2 T0代番茄yabby2b突变体
Table 2 Tomato yabby2b mutant of T0 generation
株系Plant | 突变类型Mutation type | CRISPR/Cas9 T-DNA |
---|---|---|
#1 | 嵌合突变Chimeric mutation | + |
#3 | 双等位突变Biallelic mutation | + |
#7 | 双等位突变Biallelic mutation | + |
图1 T1代番茄yabby2b突变体 A:yabby2b突变体基因序列(WT:野生型;#2、#3、#6:yabby2b突变体;PAM:前间区序列邻近基序;-为碱基缺失);B:PCR检测突变体中的CRISPR/Cas9 T-DNA元件(1-11:T1代突变体植株),下同
Fig. 1 Tomato yabby2b mutant of T1 generation A: Gene sequence in yabby2b mutants(WT: Wild-type. #2, #3, #6: yabby2b mutant plants. PAM: Protospacer adjacent motif. - indicates a base deletion). B: CRISPR/Cas9 T-DNA was detected by PCR in mutants(1-11: plants of T1 generation). The same below
[1] |
Monforte AJ, Diaz A, Caño-Delgado A, et al. The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon[J]. J Exp Bot, 2014, 65(16): 4625-4637.
doi: 10.1093/jxb/eru017 pmid: 24520021 |
[2] |
Van der Knaap E, Chakrabarti M, Chu YH, et al. What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape[J]. Front Plant Sci, 2014, 5: 227.
doi: 10.3389/fpls.2014.00227 pmid: 24904622 |
[3] |
Apri M, Kromdijk J, et al. Modelling cell division and endoreduplication in tomato fruit pericarp[J]. J Theor Biol, 2014, 349: 32-43.
doi: 10.1016/j.jtbi.2014.01.031 pmid: 24486251 |
[4] |
Cong B, Barrero LS, Tanksley SD. Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication[J]. Nat Genet, 2008, 40(6): 800-804.
doi: 10.1038/ng.144 pmid: 18469814 |
[5] |
Frary A, Nesbitt TC, Grandillo S, et al. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size[J]. Science, 2000, 289(5476): 85-88.
doi: 10.1126/science.289.5476.85 pmid: 10884229 |
[6] |
Zhang N, Brewer MT, van der Knaap E. Fine mapping of fw3.2 controlling fruit weight in tomato[J]. Theor Appl Genet, 2012, 125(2): 273-284.
doi: 10.1007/s00122-012-1832-8 pmid: 22406954 |
[7] |
Chakrabarti M, Zhang N, Sauvage C, et al. A cytochrome P450 regulates a domestication trait in cultivated tomato[J]. Proc Natl Acad Sci USA, 2013, 110(42): 17125-17130.
doi: 10.1073/pnas.1307313110 pmid: 24082112 |
[8] | Mu Q. The cloning and cellular basis of a novel tomato fruit weight gene: Cell Size Regulator(FW11.3/CSR)[D]. Columbus: The Ohio State University, 2015. |
[9] |
Cong B, Tanksley SD. FW2.2 and cell cycle control in developing tomato fruit: a possible example of gene co-option in the evolution of a novel organ[J]. Plant Mol Biol, 2006, 62(6): 867-880.
doi: 10.1007/s11103-006-9062-6 pmid: 16941207 |
[10] |
Li Q, Chakrabarti M, Taitano NK, et al. Differential expression of SlKLUH controlling fruit and seed weight is associated with changes in lipid metabolism and photosynthesis-related genes[J]. J Exp Bot, 2021, 72(4): 1225-1244.
doi: 10.1093/jxb/eraa518 pmid: 33159787 |
[11] | Mu Q, Huang ZJ, Chakrabarti M, et al. Fruit weight is controlled by Cell Size Regulator encoding a novel protein that is expressed in maturing tomato fruits[J]. PLoS Genet, 2017, 13(8): e1006930. |
[12] | 刘爽. 赤霉素与fasciated在调控番茄心室形成中的作用关系分析[D]. 沈阳: 沈阳农业大学, 2012. |
Liu S. Analysis of the relationship between gibberellin and fasciated in regulating the formation of tomato locule[D]. Shenyang: Shenyang Agricultural University, 2012. | |
[13] |
Xu C, Liberatore KL, MacAlister CA, et al. A cascade of arabinosyltransferases controls shoot meristem size in tomato[J]. Nat Genet, 2015, 47(7): 784-792.
doi: 10.1038/ng.3309 pmid: 26005869 |
[14] | 孙美华. 调控番茄心室数量的fasciated位点基因解析[D]. 沈阳: 沈阳农业大学, 2020. |
Sun MH. Gene analysis of fasciated locus regulating the locule number of tomato[D]. Shenyang: Shenyang Agricultural University, 2020. | |
[15] | Dai MQ, Zhao Y, Ma Q, et al. The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism[J]. Plant Physiol, 2007, 144(1): 121-133. |
[16] |
Franco-Zorrilla JM, López-Vidriero I, Carrasco JL, et al. DNA-binding specificities of plant transcription factors and their potential to define target genes[J]. Proc Natl Acad Sci USA, 2014, 111(6): 2367-2372.
doi: 10.1073/pnas.1316278111 pmid: 24477691 |
[17] | Gross T, Becker A. Transcription factor action orchestrates the complex expression pattern of CRABS CLAW in Arabidopsis[J]. Genes(Basel), 2021, 12(11): 1663. |
[18] |
Bonaccorso O, Lee JE, Puah L, et al. FILAMENTOUS FLOWER controls lateral organ development by acting as both an activator and a repressor[J]. BMC Plant Biol, 2012, 12: 176.
doi: 10.1186/1471-2229-12-176 pmid: 23025792 |
[19] | Jia DD, Chen LG, Yin GM, et al. Brassinosteroids regulate outer ovule integument growth in part via the control of INNER NO OUTER by BRASSINOZOLE-RESISTANT family transcription factors[J]. J Integr Plant Biol, 2020, 62(8): 1093-1111. |
[20] |
Siegfried KR, Eshed Y, Baum SF, et al. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis[J]. Development, 1999, 126(18): 4117-4128.
doi: 10.1242/dev.126.18.4117 pmid: 10457020 |
[21] | Ha CM, Jun JH, Fletcher JC. Control of Arabidopsis leaf morphogenesis through regulation of the YABBY and KNOX families of transcription factors[J]. Genetics, 2010, 186(1): 197-206. |
[22] |
Toriba T, Harada K, Takamura A, et al. Molecular characterization the YABBY gene family in Oryza sativa and expression analysis of OsYABBY1[J]. Mol Genet Genomics, 2007, 277(5): 457-468.
doi: 10.1007/s00438-006-0202-0 pmid: 17216490 |
[23] |
Dai MQ, Hu YF, Zhao Y, et al. Regulatory networks involving YABBY genes in rice shoot development[J]. Plant Signal Behav, 2007, 2(5): 399-400.
doi: 10.4161/psb.2.5.4279 pmid: 19704613 |
[24] | Toriba T, Hirano HY. The DROOPING LEAF and OsETTIN2 genes promote awn development in rice[J]. Plant J, 2014, 77(4): 616-626. |
[25] |
Lieberman SL, Ruderman JV. CK2 beta, which inhibits Mos function, binds to a discrete domain in the N-terminus of Mos[J]. Dev Biol, 2004, 268(2): 271-279.
doi: 10.1016/j.ydbio.2003.12.009 pmid: 15063167 |
[26] |
Homma MK, Wada I, Suzuki T, et al. CK2 phosphorylation of eukaryotic translation initiation factor 5 potentiates cell cycle progression[J]. Proc Natl Acad Sci USA, 2005, 102(43): 15688-15693.
doi: 10.1073/pnas.0506791102 pmid: 16227438 |
[27] | 宛晨晨, 陈元利, 樊婷婷. 蛋白激酶CK2的结构及其生理功能研究进展[J]. 生物工程学报, 2021, 37(12): 4201-4214. |
Wan CC, Chen YL, Fan TT. Advances in the structure and physiological function of protein kinase CK2[J]. Chin J Biotechnol, 2021, 37(12): 4201-4214. | |
[28] | Velez-Bermudez IC, Irar S, Carretero-Paulet L, et al. Specific characteristics of CK2β regulatory subunits in plants[J]. Mol Cell Biochem, 2011, 356(1/2): 255-260. |
[29] |
Salinas P, Fuentes D, Vidal E, et al. An extensive survey of CK2 α and β subunits in Arabidopsis: Multiple isoforms exhibit differential subcellular localization[J]. Plant Cell Physiol, 2006, 47(9): 1295-1308.
doi: 10.1093/pcp/pcj100 pmid: 16926165 |
[30] |
Łebska M, Ciesielski A, Szymona L, et al. Phosphorylation of maize eukaryotic translation initiation factor 5A(eIF5A)by casein kinase 2: identification of phosphorylated residue and influence on intracellular localization of eIF5A[J]. J Biol Chem, 2010, 285(9): 6217-6226.
doi: 10.1074/jbc.M109.018770 pmid: 20018887 |
[31] |
Espunya MC, Combettes B, Dot J, et al. Cell-cycle modulation of CK2 activity in tobacco BY-2 cells[J]. Plant J, 1999, 19(6): 655-666.
doi: 10.1046/j.1365-313x.1999.00563.x pmid: 10571851 |
[32] |
Tapia JC, Bolanos-Garcia VM, Sayed M, et al. Cell cycle regulatory protein p27KIP1 is a substrate and interacts with the protein kinase CK2[J]. J Cell Biochem, 2004, 91(5): 865-879.
pmid: 15034923 |
[33] | Yang C, Sofroni K, Wijnker E, et al. The Arabidopsis Cdk1/Cdk2 homolog CDKA;1 controls chromosome axis assembly during plant meiosis[J]. EMBO J, 2020, 39(3): e101625. |
[1] | 刘文志, 贺丹, 李鹏, 傅应林, 张译心, 温华杰, 于文清. 多粘类芽胞杆菌新菌株X-11及其对番茄和水稻的促生效应[J]. 生物技术通报, 2024, 40(9): 249-259. |
[2] | 廖杨梅, 赵国春, 翁学煌, 贾黎明, 陈仲. 无患子雄性不育品种‘琦蕊’不同发育时期雄花转录组分析[J]. 生物技术通报, 2024, 40(7): 197-206. |
[3] | 张明亚, 庞胜群, 刘玉东, 苏永峰, 牛博文, 韩琼琼. 番茄FAD基因家族的鉴定与表达分析[J]. 生物技术通报, 2024, 40(7): 150-162. |
[4] | 赵曜, 文朗, 骆少丹, 栗子杏, 刘超超. 番茄HMA基因家族的鉴定及SlHMA1镉转运功能研究[J]. 生物技术通报, 2024, 40(2): 212-222. |
[5] | 王楠, 廖永琴, 施竹凤, 申云鑫, 杨童雨, 冯路遥, 矣小鹏, 唐加菜, 陈齐斌, 杨佩文. 三株无量山森林土壤芽孢杆菌鉴定及其生物活性挖掘[J]. 生物技术通报, 2024, 40(2): 277-288. |
[6] | 刘珍银, 段郅臻, 彭婷, 王童欣, 王健. 基于三角梅的病毒诱导基因沉默体系的建立与优化[J]. 生物技术通报, 2023, 39(7): 123-130. |
[7] | 史建磊, 宰文珊, 苏世闻, 付存念, 熊自立. 番茄青枯病抗性相关miRNA的鉴定与表达分析[J]. 生物技术通报, 2023, 39(5): 233-242. |
[8] | 车永梅, 郭艳苹, 刘广超, 叶青, 李雅华, 赵方贵, 刘新. 菌株C8和B4的分离鉴定及其耐盐促生效果和机制[J]. 生物技术通报, 2023, 39(5): 276-285. |
[9] | 胡明月, 杨宇, 郭仰东, 张喜春. 低温胁迫下番茄SlMYB96的功能分析[J]. 生物技术通报, 2023, 39(4): 236-245. |
[10] | 申云鑫, 施竹凤, 周旭东, 李铭刚, 张庆, 冯路遥, 陈齐斌, 杨佩文. 三株具生防功能芽孢杆菌的分离鉴定及其生物活性研究[J]. 生物技术通报, 2023, 39(3): 267-277. |
[11] | 陈浩婷, 张玉静, 刘洁, 代泽敏, 刘伟, 石玉, 张毅, 李天来. 低磷胁迫下番茄转录因子WRKY6功能分析[J]. 生物技术通报, 2023, 39(10): 136-147. |
[12] | 周家燕, 邹建, 陈卫英, 吴一超, 陈奚潼, 王倩, 曾文静, 胡楠, 杨军. 植物多基因干扰载体体系构建与效用分析[J]. 生物技术通报, 2023, 39(1): 115-126. |
[13] | 申恒, 刘思慧, 李跃, 李敬涛, 梁文星. 一种用于PCR的番茄DNA快速粗提方法[J]. 生物技术通报, 2022, 38(6): 74-80. |
[14] | 马馨馨, 许洋, 赵欢欢, 火兆燕, 王树彬, 钟凤林. 番茄4CL基因家族鉴定和氮素处理下的表达分析[J]. 生物技术通报, 2022, 38(4): 163-173. |
[15] | 张鸿雁, 林国莉, 李如莲, 纪晓琦. 番茄果腐病拮抗菌的筛选及对番茄的防腐保鲜作用[J]. 生物技术通报, 2022, 38(3): 69-78. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 138
|
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||