生物技术通报 ›› 2025, Vol. 41 ›› Issue (5): 14-22.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1006
• 综述与专论 • 下一篇
王伟伟1,2(
), 赵振杰2, 王志2, 邹景伟2, 罗政辉2, 张玉杰2, 钮力亚2, 于亮2, 杨学举1(
)
收稿日期:2024-10-15
出版日期:2025-05-26
发布日期:2025-06-05
通讯作者:
杨学举,男,教授,研究方向 :作物遗传育种;E-mail: shmyxj@hebau.edu.cn作者简介:王伟伟,男,博士,副研究员,研究方向 :作物遗传育种;E-mail: wangww1002@163.com
基金资助:
WANG Wei-wei1,2(
), ZHAO Zhen-jie2, WANG Zhi2, ZOU Jing-wei2, LUO Zheng-hui2, ZHANG Yu-jie2, NIU Li-ya2, YU Liang2, YANG Xue-ju1(
)
Received:2024-10-15
Published:2025-05-26
Online:2025-06-05
摘要:
盐胁迫是主要的非生物胁迫之一,严重威胁小麦的生长发育,而且小麦耐盐性是一个复杂的数量性状,是由多基因协同控制的,这些基因直接或间接参与离子积累和排斥、氧化还原反应和特定渗透调节物质的积累。了解小麦耐盐基因的研究现状,有利于科学、高效地选育耐盐品种。本文从盐胁迫下耐盐基因调控渗透调节、离子平衡、ROS稳态、激素调节4个方面阐述作物的耐盐性,综述了耐盐基因在小麦适应盐胁迫过程中的作用,为小麦复杂的耐受盐胁迫的机制研究奠定基础。利用现代分子生物学手段挖掘耐盐基因资源并将其导入小麦,是获得高产优质耐盐小麦品种的有效途径。研究与耐盐胁迫相关的基因,对阐明应对盐胁迫的分子机制和途径具有重要作用,对培育具有耐盐胁迫能力的优异种质和研发小麦耐盐栽培技术具有重要的指导意义。
王伟伟, 赵振杰, 王志, 邹景伟, 罗政辉, 张玉杰, 钮力亚, 于亮, 杨学举. 盐胁迫下与小麦生理响应相关的耐盐基因研究进展[J]. 生物技术通报, 2025, 41(5): 14-22.
WANG Wei-wei, ZHAO Zhen-jie, WANG Zhi, ZOU Jing-wei, LUO Zheng-hui, ZHANG Yu-jie, NIU Li-ya, YU Liang, YANG Xue-ju. Research Progress in Salt-tolerant Genes Related to Physiological Response of Wheat to Salt Stress[J]. Biotechnology Bulletin, 2025, 41(5): 14-22.
图1 盐胁迫下与小麦生理响应相关的耐盐基因在盐胁迫下,根系周围盐浓度会快速升高引发渗透胁迫,使作物高渗感受器被激活,引发钙离子信号,导致一系列CDPK、CBLs和CIPKs的响应,Ca2+结合SOS3和SOS2,激活SOS1后并磷酸化,活化的SOS1能够将Na+外排到木质部质外体或土壤中;已鉴定出多个HKT类转运体,一些转运蛋白介导Na+选择性转运(HKT-I),其他转运蛋白表现出Na+/K+共同转运活性(HKT-Ⅱ);盐胁迫下小麦的主要农艺性状因子TaSRO1对ROS清除能力增强,ROS清除利用SOD、CAT和POD等抗氧化酶,可以去除多余的活性氧并减轻氧化应激;液泡是Na+隔离的理想位置,因为它不仅可以降低胞质毒性,还可以作为渗透物,从而促进盐胁迫下水分的吸收,NHX(Na+/H+反转运蛋白)家族在Na+向液泡的区隔中起重要作用;ABA、ET、BR和MT等激素对盐胁迫具有调节作用
Fig. 1 Salt-tolerant genes associated with the physiological response of wheat under salt stressUnder salt stress conditions, the salt concentration in the vicinity of the root system escalates rapidly, thereby inducing osmotic stress and activating hypersensitive receptors in crops. This activation triggers calcium ion signals, which subsequently lead to a cascade of responses mediated by CDPK, CBLs, and CIPKs. Ca2+ binds to SOS3 and SOS2, facilitating the activation and phosphorylation of SOS1. The activated SOS1 is then capable of transporting Na+ into the xylem extracellular matrix or the soil. Multiple HKT transporters have been identified, with some of them being involved in Na+ selective transport (HKT-I), while others show Na+/K+ co-transport activity (HKT-Ⅱ). The key agronomic trait factor TaSRO1 in wheat under salt stress augments its capacity to scavenge ROS. The scavenging of ROS is accomplished through antioxidant enzymes such as SOD, CAT, and POD, which can effectively eliminate excessive reactive oxygen species and mitigate oxidative stress. Vacuoles serve as an optimal site for Na+ sequestration, as they not only diminish cytoplasmic toxicity but also function as osmolytes, enhancing water absorption under salt stress. The NHX (Na+/H+ antiporter) family plays a crucial role in the translocation of Na+ into vacuoles. Hormones including ABA, ET, BR, and MT also possess regulatory functions in response to salt stress
| 1 | Ashraf M, Munns R. Evolution of approaches to increase the salt tolerance of crops [J]. Crit Rev Plant Sci, 2022, 41(2): 128-160. |
| 2 | Rozema J, Ecology Flowers T.. Crops for a salinized world [J]. Science, 2008, 322(5907): 1478-1480. |
| 3 | Yang YQ, Guo Y. Unraveling salt stress signaling in plants [J]. J Integr Plant Biol, 2018, 60(9): 796-804. |
| 4 | Yang YQ, Guo Y. Elucidating the molecular mechanisms mediating plant salt-stress responses [J]. New Phytol, 2018, 217(2): 523-539. |
| 5 | Fichman Y, Miller G, Mittler R. Whole-plant live imaging of reactive oxygen species [J]. Mol Plant, 2019, 12(9): 1203-1210. |
| 6 | van Zelm E, Zhang YX, Testerink C. Salt tolerance mechanisms of plants [J]. Annu Rev Plant Biol, 2020, 71: 403-433. |
| 7 | Golin S, Negroni YL, Bennewitz B, et al. WHIRLY2 plays a key role in mitochondria morphology, dynamics, and functionality in Arabidopsis thaliana [J]. Plant Direct, 2020, 4(5): e00229. |
| 8 | Wang WL, Wang WQ, Wu YZ, et al. The involvement of wheat U-box E3 ubiquitin ligase TaPUB1 in salt stress tolerance [J]. J Integr Plant Biol, 2020, 62(5): 631-651. |
| 9 | Arif Y, Singh P, Siddiqui H, et al. Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance [J]. Plant Physiol Biochem, 2020, 156: 64-77. |
| 10 | Yu Y, Huang WG, Chen HY, et al. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression [J]. Gene, 2014, 549(1): 113-122. |
| 11 | Zhu JK. Salt and drought stress signal transduction in plants [J]. Annu Rev Plant Biol, 2002, 53: 247-273. |
| 12 | Mishra A, Tanna B. Halophytes: potential resources for salt stress tolerance genes and promoters [J]. Front Plant Sci, 2017, 8: 829. |
| 13 | Zhu JK. Abiotic stress signaling and responses in plants [J]. Cell, 2016, 167(2): 313-324. |
| 14 | Hanin M, Ebel C, Ngom M, et al. New insights on plant salt tolerance mechanisms and their potential use for breeding [J]. Front Plant Sci, 2016, 7: 1787. |
| 15 | Liang WJ, Ma XL, Wan P, et al. Plant salt-tolerance mechanism: a review [J]. Biochem Biophys Res Commun, 2018, 495(1): 286-291. |
| 16 | Boudsocq M, Sheen J. CDPKs in immune and stress signaling [J]. Trends Plant Sci, 2013, 18(1): 30-40. |
| 17 | Cai HY, Cheng JB, Yan Y, et al. Genome-wide identification and expression analysis of calcium-dependent protein kinase and its closely related kinase genes in Capsicum annuum [J]. Front Plant Sci, 2015, 6: 737. |
| 18 | Sun T, Wang Y, Wang M, et al. Identification and comprehensive analyses of the CBL and CIPK gene families in wheat (Triticum aestivum L.) [J]. BMC Plant Biol, 2015, 15: 269. |
| 19 | Liu YW, Chen WY, Liu LB, et al. Genome-wide identification and expression analysis of calmodulin and calmodulin-like genes in wheat (Triticum aestivum L.) [J]. Plant Signal Behav, 2022, 17(1): 2013646. |
| 20 | Li YQ, Zhang HD, Dong FY, et al. Multiple roles of wheat calmodulin genes during stress treatment and TaCAM2-D as a positive regulator in response to drought and salt tolerance [J]. Int J Biol Macromol, 2022, 220: 985-997. |
| 21 | Yue JY, Jiao JL, Wang WW, et al. The calcium-dependent protein kinase TaCDPK27 positively regulates salt tolerance in wheat [J]. Int J Mol Sci, 2022, 23(13): 7341. |
| 22 | 汪丽婷. 小麦CDPK激酶调控TabZIP60转录因子响应盐胁迫的分子机理研究 [D]. 兰州: 西北师范大学, 2022. |
| Wang LT. Molecular mechanism of wheat CDPK kinase regulating of TabZIP60 transcription factor in response to salt stress [D]. Lanzhou: Northwest Normal University, 2022. | |
| 23 | Zhao CZ, Zhang H, Song CP, et al. Mechanisms of plant responses and adaptation to soil salinity [J]. Innovation, 2020, 1(1): 100017. |
| 24 | Chourasia KN, Lal MK, Tiwari RK, et al. Salinity stress in potato: understanding physiological, biochemical and molecular responses [J]. Life, 2021, 11(6): 545. |
| 25 | Hoque MA, Okuma E, Banu MNA, et al. Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities [J]. J Plant Physiol, 2007, 164(5): 553-561. |
| 26 | Hnilickova H, Kraus K, Vachova P, et al. Salinity stress affects photosynthesis, malondialdehyde formation, and proline content in Portulaca oleracea L [J]. Plants, 2021, 10(5): 845. |
| 27 | 耿强, 张亮亮, 王亮明, 等. 附加华山新麦草不同Ns染色体对小麦耐盐性的影响及其生理机制分析 [J]. 麦类作物学报, 2023, 43(9): 1155-1164. |
| Geng Q, Zhang LL, Wang LM, et al. Effect of different Psathyrostachys huashanica Keng Ns chromosome addition on wheat salt tolerance and physiological mechanisms analysis [J]. J Triticeae Crops, 2023, 43(9): 1155-1164. | |
| 28 | Aycan M, Baslam M, Mitsui T, et al. The TaGSK1, TaSRG, TaPTF1, and TaP5CS gene transcripts confirm salinity tolerance by increasing proline production in wheat (Triticum aestivum L.) [J]. Plants, 2022, 11(23): 3401. |
| 29 | Huang X, Zhang Y, Jiao B, et al. Overexpression of the wheat salt tolerance-related gene TaSC enhances salt tolerance in Arabidopsis [J]. J Exp Bot, 2012, 63(15): 5463-5473. |
| 30 | 姜淑欣, 刘党校, 庞红喜, 等. PEG胁迫及复水对不同抗旱性小麦幼苗脯氨酸代谢关键酶活性的影响 [J]. 西北植物学报, 2014, 34(8): 1581-1587. |
| Jiang SX, Liu DX, Pang HX, et al. Effects of PEG stress and recovery on activities of key enzymes involved in proline metabolism in wheat cultivars with difference in drought tolerance [J]. Acta Bot Boreali Occidentalia Sin, 2014, 34(8): 1581-1587. | |
| 31 | He XL, Hou XN, Shen YZ, et al. TaSRG, a wheat transcription factor, significantly affects salt tolerance in transgenic rice and Arabidopsis [J]. FEBS Lett, 2011, 585(8): 1231-1237. |
| 32 | Huang JY, Ma SJ, Zhang KY, et al. Genome-wide identification of Gramineae brassinosteroid-related genes and their roles in plant architecture and salt stress adaptation [J]. Int J Mol Sci, 2022, 23(10): 5551. |
| 33 | Rahaie M, Xue GP, Naghavi MR, et al. A MYB gene from wheat (Triticum aestivum L.) is up-regulated during salt and drought stresses and differentially regulated between salt-tolerant and sensitive genotypes [J]. Plant Cell Rep, 2010, 29(8): 835-844. |
| 34 | Yang A, Dai XY, Zhang WH. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice [J]. J Exp Bot, 2012, 63(7): 2541-2556. |
| 35 | Zhang ZY, Liu X, Wang XD, et al. An R2R3 MYB transcription factor in wheat, TaPIMP1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense- and stress-related genes [J]. New Phytol, 2012, 196(4): 1155-1170. |
| 36 | Zhou J, Li F, Wang JL, et al. Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt- and osmotic stress in Arabidopsis [J]. J Plant Physiol, 2009, 166(12): 1296-1306. |
| 37 | 霍达, 张恒, 戴绍军. 盐生植物盐碱胁迫应答转录组学分析 [J]. 现代农业科技, 2011(5): 11-12. |
| Huo D, Zhang H, Dai SJ. Salt and alkali-responsive transcriptomics in halophyte [J]. Mod Agric Sci Technol, 2011(5): 11-12. | |
| 38 | Feng HM, Tang Q, Cai J, et al. Rice OsHAK16 functions in potassium uptake and translocation in shoot, maintaining potassium homeostasis and salt tolerance [J]. Planta, 2019, 250(2): 549-561. |
| 39 | Riedelsberger J, Miller JK, Valdebenito-Maturana B, et al. Plant HKT channels: an updated view on structure, function and gene regulation [J]. Int J Mol Sci, 2021, 22(4): 1892. |
| 40 | Byrt CS, Xu B, Krishnan M, et al. The Na+ transporter, TaHKT1;5-D, limits shoot Na+ accumulation in bread wheat [J]. Plant J, 2014, 80(3): 516-526. |
| 41 | Kumar S, Beena AS, Awana M, et al. Salt-induced tissue-specific cytosine methylation downregulates expression of HKT genes in contrasting wheat (Triticum aestivum L.) genotypes [J]. DNA Cell Biol, 2017, 36(4): 283-294. |
| 42 | Wang M, Cheng J, Wu JH, et al. Variation in TaSPL6-D confers salinity tolerance in bread wheat by activating TaHKT1;5-D while preserving yield-related traits [J]. Nat Genet, 2024, 56(6): 1257-1269. |
| 43 | Gong ZZ, Xiong LM, Shi HZ, et al. Plant abiotic stress response and nutrient use efficiency [J]. Sci China Life Sci, 2020, 63(5): 635-674. |
| 44 | Yang YQ, Wu YJ, Ma L, et al. The Ca2+ sensor SCaBP3/CBL7 modulates plasma membrane H+-ATPase activity and promotes alkali tolerance in Arabidopsis [J]. Plant Cell, 2019, 31(6): 1367-1384. |
| 45 | Kim JS, Jeon BW, Kim J. Signaling peptides regulating abiotic stress responses in plants [J]. Front Plant Sci, 2021, 12: 704490. |
| 46 | Jiang W, Pan R, Buitrago S, et al. Conservation and divergence of the TaSOS1 gene family in salt stress response in wheat (Triticum aestivum L.) [J]. Physiol Mol Biol Plants, 2021, 27(6): 1245-1260. |
| 47 | Xu HX, Jiang XY, Zhan KH, et al. Functional characterization of a wheat plasma membrane Na+/H+ antiporter in yeast [J]. Arch Biochem Biophys, 2008, 473(1): 8-15. |
| 48 | Zhou Y, Lai ZS, Yin XC, et al. Hyperactive mutant of a wheat plasma membrane Na+/H+ antiporter improves the growth and salt tolerance of transgenic tobacco [J]. Plant Sci, 2016, 253: 176-186. |
| 49 | Duan XG, Yang AF, Gao F, et al. Heterologous expression of vacuolar H(+)-PPase enhances the electrochemical gradient across the vacuolar membrane and improves tobacco cell salt tolerance [J]. Protoplasma, 2007, 232(1/2): 87-95. |
| 50 | Brini F, Hanin M, Mezghani I, et al. Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants [J]. J Exp Bot, 2007, 58(2): 301-308. |
| 51 | Xu YY, Zhou Y, Hong S, et al. Functional characterization of a wheat NHX antiporter gene TaNHX2 that encodes a K+/H+ exchanger [J]. PLoS One, 2013, 8(11): e78098. |
| 52 | Zhang YM, Zhang HM, Liu ZH, et al. The wheat NHX antiporter gene TaNHX2 confers salt tolerance in transgenic alfalfa by increasing the retention capacity of intracellular potassium [J]. Plant Mol Biol, 2015, 87(3): 317-327. |
| 53 | Yu JN, Huang J, Wang ZN, et al. An Na+/H+ antiporter gene from wheat plays an important role in stress tolerance [J]. J Biosci, 2007, 32(6): 1153-1161. |
| 54 | Lu WJ, Guo CJ, Li XJ, et al. Overexpression of TaNHX3, a vacuolar Na+/H+ antiporter gene in wheat, enhances salt stress tolerance in tobacco by improving related physiological processes [J]. Plant Physiol Biochem, 2014, 76: 17-28. |
| 55 | You J, Chan ZL. ROS regulation during abiotic stress responses in crop plants [J]. Front Plant Sci, 2015, 6: 1092. |
| 56 | Mittler R. Oxidative stress, antioxidants and stress tolerance [J]. Trends Plant Sci, 2002, 7(9): 405-410. |
| 57 | Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants [J]. Trends Plant Sci, 2004, 9(10): 490-498. |
| 58 | Cheng XR, Wang YJ, Xiong R, et al. A Moso bamboo gene VQ28 confers salt tolerance to transgenic Arabidopsis plants [J]. Planta, 2020, 251(5): 99. |
| 59 | Cheng XR, Gao C, Liu X, et al. Characterization of the wheat VQ protein family and expression of candidate genes associated with seed dormancy and germination [J]. BMC Plant Biol, 2022, 22(1): 119. |
| 60 | Cheng XR, Yao H, Cheng ZM, et al. The wheat gene TaVQ14 confers salt and drought tolerance in transgenic Arabidopsis thaliana plants [J]. Front Plant Sci, 2022, 13: 870586. |
| 61 | Xiong XX, Liu Y, Zhang LL, et al. G-protein β-subunit gene TaGB1-B enhances drought and salt resistance in wheat [J]. Int J Mol Sci, 2023, 24(8): 7337. |
| 62 | 郭嘉贵. 小麦棉子糖合成酶基因家族分析TaRS15-3B的抗旱耐盐功能鉴定 [D]. 杨凌: 西北农林科技大学, 2023. |
| Guo JG. Analysis of raffinose synthase gene family in wheat and identification of drought resistance and salt tolerance function of TaRS15-3B [D]. Yangling: Northwest A & F University, 2023. | |
| 63 | Zhang Y, Wang Y, Wen W, et al. Hydrogen peroxide mediates spermidine-induced autophagy to alleviate salt stress in cucumber [J]. Autophagy, 2021, 17(10): 2876-2890. |
| 64 | Zheng M, Lin JC, Liu XB, et al. Histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat [J]. Plant Physiol, 2021, 186(4): 1951-1969. |
| 65 | Wang M, Wang M, Zhao M, et al. TaSRO1 plays a dual role in suppressing TaSIP1 to fine tune mitochondrial retrograde signalling and enhance salinity stress tolerance [J]. New Phytol, 2022, 236(2): 495-511. |
| 66 | Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance [J]. J Exp Bot, 2007, 58(2): 221-227. |
| 67 | Kim MS, Kim JH, Amoah JN, et al. Wheat (Triticum aestivum. L) plant U-box E3 ligases TaPUB2 and TaPUB3 enhance ABA response and salt stress resistance in Arabidopsis [J]. FEBS Lett, 2022, 596(23): 3037-3050. |
| 68 | Wang K, Zhai MJ, Cui DZ, et al. Genome-wide analysis of the amino acid permeases gene family in wheat and TaAAP1 enhanced salt tolerance by accumulating ethylene [J]. Int J Mol Sci, 2023, 24(18): 13800. |
| 69 | Nolan T, Chen JN, Yin YH. Cross-talk of Brassinosteroid signaling in controlling growth and stress responses [J]. Biochem J, 2017, 474(16): 2641-2661. |
| 70 | Yang RZ, Yang ZY, Xing M, et al. TaBZR1 enhances wheat salt tolerance via promoting ABA biosynthesis and ROS scavenging [J]. J Genet Genomics, 2023, 50(11): 861-871. |
| 71 | Shamloo-Dashtpagerdi R, Aliakbari M, Lindlöf A, et al. A systems biology study unveils the association between a melatonin biosynthesis gene, O-methyl transferase 1 (OMT1) and wheat (Triticum aestivum L.) combined drought and salinity stress tolerance [J]. Planta, 2022, 255(5): 99. |
| [1] | 马耀武, 张麒宇, 杨淼, 蒋诚, 张振宇, 张伊琳, 李梦莎, 许嘉阳, 张斌, 崔光周, 姜瑛. 烟草根际促生菌的筛选鉴定及促生性能研究[J]. 生物技术通报, 2025, 41(3): 271-281. |
| [2] | 刘洁, 王飞, 陶婷, 张玉静, 陈浩婷, 张瑞星, 石玉, 张毅. 过表达SlWRKY41提高番茄幼苗抗旱性[J]. 生物技术通报, 2025, 41(2): 107-118. |
| [3] | 葛仕杰, 刘怡德, 张华东, 宁强, 朱展望, 王书平, 刘易科. 小麦蛋白质二硫键异构酶基因家族的鉴定与表达[J]. 生物技术通报, 2025, 41(2): 85-96. |
| [4] | 张晓英, 毛咪, 王洪凤, 丁新华, 朱树伟, 石磊. 免疫诱抗剂ZNC对小麦赤霉病防治和产量的影响[J]. 生物技术通报, 2024, 40(8): 95-105. |
| [5] | 张娜, 刘梦楠, 屈展帆, 崔祎平, 倪嘉瑶, 王华忠. 小麦烯醇化酶基因ENO2的可变翻译分析和原核表达[J]. 生物技术通报, 2024, 40(5): 112-119. |
| [6] | 周宏丹, 罗晓萍, 涂米雪, 李忠光. 植物褪黑素:植物应答非生物胁迫的新兴信号分子[J]. 生物技术通报, 2024, 40(3): 41-51. |
| [7] | 牛德, 何跃辉. 季节性因素调控小麦开花时间的分子与表观遗传机制[J]. 生物技术通报, 2024, 40(10): 30-40. |
| [8] | 张怡, 张心如, 张金珂, 胡利宗, 上官欣欣, 郑晓红, 胡娟娟, 张聪聪, 穆桂清, 李成伟. 小麦镉胁迫响应基因TaMYB1的功能分析[J]. 生物技术通报, 2024, 40(1): 194-206. |
| [9] | 焦进兰, 王文文, 介欣芮, 王华忠, 岳洁瑜. 外源钙缓解小麦幼苗盐胁迫的作用机制[J]. 生物技术通报, 2024, 40(1): 207-221. |
| [10] | 常泸尹, 王中华, 李凤敏, 高梓源, 张辉红, 王祎, 李芳, 韩燕来, 姜瑛. 玉米根际多功能促生菌的筛选及其对冬小麦-夏玉米轮作体系产量提升效果[J]. 生物技术通报, 2024, 40(1): 231-242. |
| [11] | 温晓蕾, 李建嫄, 李娜, 张娜, 杨文香. 小麦叶锈菌与小麦互作的酵母双杂交cDNA文库构建与应用[J]. 生物技术通报, 2023, 39(9): 136-146. |
| [12] | 韩志阳, 贾子苗, 梁秋菊, 王轲, 唐华丽, 叶兴国, 张双喜. 二套小麦-簇毛麦染色体附加系苗期耐盐性及籽粒硒和叶酸的含量[J]. 生物技术通报, 2023, 39(8): 185-193. |
| [13] | 魏茜雅, 秦中维, 梁腊梅, 林欣琪, 李映志. 褪黑素种子引发处理提高朝天椒耐盐性的作用机制[J]. 生物技术通报, 2023, 39(7): 160-172. |
| [14] | 张玉娟, 黎冬华, 宫慧慧, 崔新晓, 高春华, 张秀荣, 游均, 赵军胜. 芝麻NAC转录因子基因SiNAC77的克隆及耐盐功能分析[J]. 生物技术通报, 2023, 39(11): 308-317. |
| [15] | 孔德真, 聂迎彬, 崔凤娟, 桑伟, 徐红军, 田笑明. 杂交小麦制种研究现状及展望[J]. 生物技术通报, 2023, 39(1): 95-103. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||