生物技术通报 ›› 2025, Vol. 41 ›› Issue (3): 83-89.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0813
薛瑞莹1,2(), 刘永菊1,2, 姜燕燕2,3, 彭欣雅1,2, 曹东1,3, 李云2(
), 刘宝龙1,2,3(
), 包雪梅1(
)
收稿日期:
2024-08-23
出版日期:
2025-03-26
发布日期:
2025-03-20
通讯作者:
刘宝龙,研究员,研究方向 :植物分子育种;E-mail: liyun@nwipb.cas.cn作者简介:
薛瑞莹,硕士研究生,研究方向 :植物分子育种;E-mail: xry198@foxmail.com
基金资助:
XUE Rui-ying1,2(), LIU Yong-ju1,2, JIANG Yan-yan2,3, PENG Xin-ya1,2, CAO Dong1,3, LI Yun2(
), LIU Bao-long1,2,3(
), BAO Xue-mei1(
)
Received:
2024-08-23
Published:
2025-03-26
Online:
2025-03-20
摘要:
目的 大麦是第四大粮食作物,其籽粒总淀粉含量以及直链淀粉和支链淀粉的比例是决定大麦品质和特性的关键因素之一,直链淀粉含量的精细调控对于大麦面粉品质改良具有重要意义。 方法 本研究以大麦Cas9过表达株系为受体,通过BSMV-sg介导的基因编辑系统,对GBSSI基因的5′非编码区域(5′UTR)进行靶向编辑,实现GBSSI基因表达的精细调控。 结果 14株M0代5′UTR植株的第5分蘖叶片均发生了体细胞编辑,编辑效率为1.22%-84.49%,收获体细胞编辑效率最高的第5分蘖的种子,并在其23株M1代单株中鉴定到6株编辑系,编辑植株比例达26.08%。RT-qPCR检测GBSSI基因的表达,编辑系的表达量比对照下降了40%-82%。 结论 通过编辑5′UTR区可以调控GBSSⅠ基因的表达,为直链淀粉合成的精细调控提供新思路。
薛瑞莹, 刘永菊, 姜燕燕, 彭欣雅, 曹东, 李云, 刘宝龙, 包雪梅. 5′UTR区的编辑降低大麦GBSSI基因表达[J]. 生物技术通报, 2025, 41(3): 83-89.
XUE Rui-ying, LIU Yong-ju, JIANG Yan-yan, PENG Xin-ya, CAO Dong, LI Yun, LIU Bao-long, BAO Xue-mei. Reducing the Expression of GBSSI Gene in Barley via the Editing in the 5′UTR Region[J]. Biotechnology Bulletin, 2025, 41(3): 83-89.
基因名称 Gene name | 引物序列 Primer sequence(5′-3′) | 备注 Remark |
---|---|---|
HvUTR-cta-F | GCTGCCTCTCGCACGGTC | 载体构建 Vector construction |
HvUTR-aac-R | GCAAAGGAACCTCAGGGC | |
BS8 | CAACTGCCGATGATCTGTCGTGTAG | 阳性克隆检测 Detection of positive clones |
BS9 | CCGACGCGGAAATTCGTCAAGC | |
BS11 | GGTAGAACTGATGTGAGAGATGTAGAAG | |
BS32 | TGGTCTTCCCTTGGGGGACCGAA | |
UTR-TOM-F | ggagtgagtacggtgtgcGCTGCCTCTCGCACGGTC | 高通量测序 High-throughput sequencing |
UTR-TOM-R | gagttggatgctggatggCGGGACTCCAAGGAAACG | |
WXQF1 | CCAGTCCAATGGCATCTACA | RT-qPCR |
WXQR1 | GGCTCACCGTCAGCACCT | |
Tubulin-F | CAAGGAGGTGGACGAGCAGATG | RT-qPCR |
Tubulin-R | GACTTGACGTTGTTGGGGATCCA |
表1 实验所用引物
Table 1 The primer sequences
基因名称 Gene name | 引物序列 Primer sequence(5′-3′) | 备注 Remark |
---|---|---|
HvUTR-cta-F | GCTGCCTCTCGCACGGTC | 载体构建 Vector construction |
HvUTR-aac-R | GCAAAGGAACCTCAGGGC | |
BS8 | CAACTGCCGATGATCTGTCGTGTAG | 阳性克隆检测 Detection of positive clones |
BS9 | CCGACGCGGAAATTCGTCAAGC | |
BS11 | GGTAGAACTGATGTGAGAGATGTAGAAG | |
BS32 | TGGTCTTCCCTTGGGGGACCGAA | |
UTR-TOM-F | ggagtgagtacggtgtgcGCTGCCTCTCGCACGGTC | 高通量测序 High-throughput sequencing |
UTR-TOM-R | gagttggatgctggatggCGGGACTCCAAGGAAACG | |
WXQF1 | CCAGTCCAATGGCATCTACA | RT-qPCR |
WXQR1 | GGCTCACCGTCAGCACCT | |
Tubulin-F | CAAGGAGGTGGACGAGCAGATG | RT-qPCR |
Tubulin-R | GACTTGACGTTGTTGGGGATCCA |
图1 BSMV载体及阳性菌株鉴定A:靶点位置;B:BSMV-α、BSMV-β、BSMV-γ-sgUTR载体示意图;C:菌落PCR的电泳图,泳道1-3:BSMV-α;泳道4-6:BSMV-β;泳道7-9:BSMV-γ-sgUTR
Fig. 1 BSMV vector and identification of positive strainsA: Target position. B: Schematic diagram of BSMV-α, BSMV-β, and BSMV-γ-sgUTR carriers. C: Electrophoretic map of colony PCR; lane 1-3: BSMV-α; lane 4-6: BSMV-β; lane 7-9: BSMV-γ-sgUTR
Edit type | Sequence (5′-3′) | UTR-1 | UTR-2 | UTR-3 | UTR-4 | UTR-5 | UTR-6 | UTR-7 |
---|---|---|---|---|---|---|---|---|
WT | G | 7.01 | 25.55 | 98.87 | 96.89 | 19.5 | 98.26 | 98.94 |
+A | G | 65.26 | 48.83 | / | / | 48.72 | / | / |
+T | G | 13.42 | 7.56 | / | / | 11.48 | / | / |
+AA | G | 1.44 | / | / | / | 1.96 | / | / |
A→G | G | / | 2.70 | 1.13 | 1.53 | 4.20 | / | / |
-GGT | G | / | 1.32 | / | / | / | / | / |
+C | G | / | 2.46 | / | / | 2.62 | / | / |
-T | G | 1.49 | 2.19 | / | / | 4.36 | / | / |
-AT | G | 4.29 | 1.08 | / | / | 1.31 | / | / |
-TAT | G | 1.39 | 3.72 | / | / | / | / | 1.06 |
-GC | G | 3.87 | / | / | / | / | / | / |
-GT | G | / | 1.62 | / | / | 2.26 | / | / |
-GGTATT | G | 1.83 | / | / | / | / | / | / |
-ATT | G | / | 3.02 | / | / | 1.71 | / | / |
T→G | G | / | / | / | / | 1.88 | / | / |
T→C | G | / | / | / | 1.58 | / | 1.74 | / |
Edit type | Sequence (5′-3′) | UTR-8 | UTR-9 | UTR-10 | UTR-11 | UTR-12 | UTR-13 | UTR-14 |
WT | G | 98.81 | 98.11 | 19.77 | 12.81 | 11.48 | 7.93 | 92.81 |
+A | G | / | / | 52.05 | 56.66 | 49.91 | 40.35 | 4.00 |
+T | G | / | / | 7.68 | 13.62 | 17.86 | 25.89 | 1.23 |
+C | G | / | / | 6.08 | 3.32 | / | 4.78 | / |
+AT | G | / | / | / | 4.68 | / | 2.47 | / |
+G | G | / | / | / | 3.03 | 6.27 | 5.23 | / |
-GT | G | / | / | 1.19 | / | / | / | / |
-CG | G | 1.19 | / | 3.08 | / | / | / | / |
-TAT | G | / | / | 3.24 | / | / | / | / |
T→C | G | / | / | 1.59 | / | / | 6.12 | / |
T→G | G | / | / | 4.18 | / | 7.60 | / | / |
+GG | G | / | / | / | 5.89 | / | / | / |
T→A | G | / | / | 1.14 | / | / | 7.23 | / |
A→G | G | / | 1.89 | / | / | 6.87 | / | 1.96 |
表2 BSMV: UTR植株M0代编辑效率及突变类型
Table 2 M0 generation editing efficiency and mutation types in BSMV:UTR plants
Edit type | Sequence (5′-3′) | UTR-1 | UTR-2 | UTR-3 | UTR-4 | UTR-5 | UTR-6 | UTR-7 |
---|---|---|---|---|---|---|---|---|
WT | G | 7.01 | 25.55 | 98.87 | 96.89 | 19.5 | 98.26 | 98.94 |
+A | G | 65.26 | 48.83 | / | / | 48.72 | / | / |
+T | G | 13.42 | 7.56 | / | / | 11.48 | / | / |
+AA | G | 1.44 | / | / | / | 1.96 | / | / |
A→G | G | / | 2.70 | 1.13 | 1.53 | 4.20 | / | / |
-GGT | G | / | 1.32 | / | / | / | / | / |
+C | G | / | 2.46 | / | / | 2.62 | / | / |
-T | G | 1.49 | 2.19 | / | / | 4.36 | / | / |
-AT | G | 4.29 | 1.08 | / | / | 1.31 | / | / |
-TAT | G | 1.39 | 3.72 | / | / | / | / | 1.06 |
-GC | G | 3.87 | / | / | / | / | / | / |
-GT | G | / | 1.62 | / | / | 2.26 | / | / |
-GGTATT | G | 1.83 | / | / | / | / | / | / |
-ATT | G | / | 3.02 | / | / | 1.71 | / | / |
T→G | G | / | / | / | / | 1.88 | / | / |
T→C | G | / | / | / | 1.58 | / | 1.74 | / |
Edit type | Sequence (5′-3′) | UTR-8 | UTR-9 | UTR-10 | UTR-11 | UTR-12 | UTR-13 | UTR-14 |
WT | G | 98.81 | 98.11 | 19.77 | 12.81 | 11.48 | 7.93 | 92.81 |
+A | G | / | / | 52.05 | 56.66 | 49.91 | 40.35 | 4.00 |
+T | G | / | / | 7.68 | 13.62 | 17.86 | 25.89 | 1.23 |
+C | G | / | / | 6.08 | 3.32 | / | 4.78 | / |
+AT | G | / | / | / | 4.68 | / | 2.47 | / |
+G | G | / | / | / | 3.03 | 6.27 | 5.23 | / |
-GT | G | / | / | 1.19 | / | / | / | / |
-CG | G | 1.19 | / | 3.08 | / | / | / | / |
-TAT | G | / | / | 3.24 | / | / | / | / |
T→C | G | / | / | 1.59 | / | / | 6.12 | / |
T→G | G | / | / | 4.18 | / | 7.60 | / | / |
+GG | G | / | / | / | 5.89 | / | / | / |
T→A | G | / | / | 1.14 | / | / | 7.23 | / |
A→G | G | / | 1.89 | / | / | 6.87 | / | 1.96 |
图3 M1植株GBSSI基因RNA相对表达量不同小写字母表示不同处理间差异显著(P<0.05)
Fig. 3 Relative expressions of GBSSI gene RNA in M1 plantsDifferent lowercase letters indicate significant difference among different treatments (P<0.05)
1 | Vaezi B, Pour-Aboughadareh A, Mohammadi R, et al. Integrating different stability models to investigate genotype × environment interactions and identify stable and high-yielding barley genotypes [J]. Euphytica, 2019, 215(4): 63. |
2 | 龚谨. 我国大麦进口增长的原因、冲击及贸易政策研究 [D]. 北京: 中国农业科学院, 2020. |
Gong J. Study on the reasons, impact and trade policy of the increase of barley import in China [D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. | |
3 | Moreno Ravelo RC, Gastl M, Becker T. Influence of dextrins and β-glucans on palate fullness and mouthfeel of beer [J]. Eur Food Res Technol, 2024, 250(2): 495-509. |
4 | Rani H, Bhardwaj RD, Sen R, et al. Deciphering the potential of diverse barley genotypes for improving the malt quality [J]. J Stored Prod Res, 2024, 105: 102247. |
5 | Steiner E., Auer, A, et al. Comparison of beer quality attributes between beers brewed with 100% barley malt and 100% barley raw material [J]. Journal of the Science of Food and Agriculture. 2012 92(4):803-13 |
6 | Chen ZW, Li LL, Halford NG, et al. Advances in barley breeding for improving nitrogen use efficiency [J]. Agronomy, 2022, 12(7): 1682. |
7 | Aljahdali N, Gadonna-Widehem P, Anton PM, et al. Gut microbiota modulation by dietary barley malt melanoidins [J]. Nutrients, 2020, 12(1): 241. |
8 | Gebre BA, Liu XN, Zhang CC, et al. Exploring the therapeutic potential of barley grain in type 2 diabetes management: a review [J]. Int J Food Sci Tech, 2024, 59(7): 4393-4402. |
9 | Simkin AJ. Genetic engineering for global food security: photosynthesis and biofortification [J]. Plants (Basel), 2019, 8(12): 586. |
10 | Yang Q, Ral JP, Wei YM, et al. Genome editing of five starch synthesis genes produces highly resistant starch and dietary fibre in barley grains [J]. Plant Biotechnol J, 2024, 22(7): 2051-2053. |
11 | Tang HJ, Mitsunaga T, Kawamura Y. Relationship between functionality and structure in barley starches [J]. Carbohydr Polym, 2004, 57(2): 145-152. |
12 | Punia S. Barley starch: Structure, properties and in vitro digestibility - A review [J]. Int J Biol Macromol, 2020, 155: 868-875. |
13 | Yang Q, Zhong XJ, Li Q, et al. Mutation of the d-hordein gene by RNA-guided Cas9 targeted editing reducing the grain size and changing grain compositions in barley [J]. Food Chem, 2020, 311: 125892. |
14 | Chen XY, Shao SS, Chen MX, et al. Morphology and physicochemical properties of starch from waxy and non-waxy barley [J]. Starch Stärke, 2020, 72(5-6): 1900206. |
15 | Hellemans T, Nekhudzhiga H, Van Bockstaele F, et al. Variation in amylose concentration to enhance wheat flour extrudability [J]. J Cereal Sci, 2020, 95: 102992. |
16 | Fan XY, Sun YD, Zhu J, et al. A 191-bp insertion/deletion in GBSS1 region is responsible for the changes in grain amylose content in barley (Hordeum vulgare L.) [J]. Mol Breed, 2017, 37(6): 81. |
17 | Li Q, Pan ZF, Liu J, et al. A mutation in Waxy gene affects amylose content, starch granules and kernel characteristics of barley (Hordeum vulgare) [J]. Plant Breed, 2019, 138(5): 513-523. |
18 | Hinnebusch AG, Ivanov IP, Sonenberg N. Translational control by 5'-untranslated regions of eukaryotic mRNAs [J]. Science, 2016, 352(6292): 1413-1416. |
19 | Theil K, Herzog M, Rajewsky N. Post-transcriptional regulation by 3' UTRs can be masked by regulatory elements in 5' UTRs [J]. Cell Rep, 2018, 22(12): 3217-3226. |
20 | Li Q, Pan ZF, Deng GB, et al. Effect of wide variation of the Waxy gene on starch properties in hull-less barley from Qinghai-Tibet plateau in China [J]. J Agric Food Chem, 2014, 62(47): 11369-11385. |
21 | Kluth A, Sprunck S, Becker D, et al. 5' deletion of a gbss1 promoter region from wheat leads to changes in tissue and developmental specificities [J]. Plant Mol Biol, 2002, 49(6): 669-682. |
22 | Huang LC, Li QF, Zhang CQ, et al. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system [J]. Plant Biotechnol J, 2020, 18(11): 2164-2166. |
23 | Zeng DC, Liu TL, Ma XL, et al. Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5'UTR-intron editing improves grain quality in rice [J]. Plant Biotechnol J, 2020, 18(12): 2385-2387. |
24 | Panwar V, McCallum B, Bakkeren G. Host-induced gene silencing of wheat leaf rust fungus Puccinia triticina pathogenicity genes mediated by the Barley stripe mosaic virus [J]. Plant Mol Biol, 2013, 81(6): 595-608. |
25 | Prado GS, Rocha DC, Dos Santos LN, et al. CRISPR technology towards genome editing of the perennial and semi-perennial crops Citrus, coffee and sugarcane [J]. Front Plant Sci, 2024, 14: 1331258. |
26 | Li TD, Hu JC, Sun Y, et al. Highly efficient heritable genome editing in wheat using an RNA virus and bypassing tissue culture [J]. Mol Plant, 2021, 14(11): 1787-1798. |
27 | 刘永菊, 姜燕燕, 薛瑞莹, 等. BSMV-sg系统介导的大麦基因编辑体系的建立 [J]. 麦类作物学报, 2024, 44(3): 281-288. |
Liu YJ, Jiang YY, Xue RY, et al. Heritable genome editing in barley using BSMV-sg system [J]. J Triticeae Crops, 2024, 44(3): 281-288. | |
28 | 黄学娟, 张金迪, 张壮, 等. 一种优化的大肠杆菌感受态细胞制备及转化方法 [J]. 基因组学与应用生物学, 2017, 36(12): 5199-5204. |
Huang XJ, Zhang JD, Zhang Z, et al. An optimized method for preparation and transformation of Escherichia coli competent cells [J]. Genom Appl Biol, 2017, 36(12): 5199-5204. | |
29 | Hoekema A, Roelvink PW, Hooykaas PJ, et al. Delivery of T-DNA from the Agrobacterium tumefaciens chromosome into plant cells [J]. EMBO J, 1984, 3(11): 2485-2490. |
30 | Yuan C, Li C, Yan LJ, et al. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots [J]. PLoS One, 2011, 6(10): e26468. |
31 | Chen H, Su ZQ, Tian B, et al. Development and optimization of a Barley stripe mosaic virus-mediated gene editing system to improve Fusarium head blight resistance in wheat [J]. Plant Biotechnol J, 2022, 20(6): 1018-1020. |
32 | 徐志民, 鄢梦雨, 兰海燕. 5'UTR在植物基因表达调控中的功能研究进展 [J]. 植物生理学报, 2024, 60(1): 9-19. |
Xu ZM, Yan MY, Lan HY. Progress on the effect of 5' UTR on gene expression and regulation in plants [J]. Plant Physiol J, 2024, 60(1): 9-19. | |
33 | Lakshmi Jayaraj K, Thulasidharan N, Antony A, et al. Targeted editing of tomato carotenoid isomerase reveals the role of 5' UTR region in gene expression regulation [J]. Plant Cell Rep, 2021, 40(4): 621-635. |
34 | Xue CX, Qiu FT, Wang YX, et al. Tuning plant phenotypes by precise, graded downregulation of gene expression [J]. Nat Biotechnol, 2023, 41(12): 1758-1764. |
35 | Wei X, Liu Q, Sun TT, et al. Manipulation of genetic recombination by editing the transcriptional regulatory regions of a meiotic gene in hybrid rice [J]. Plant Commun, 2023, 4(2): 100474. |
[1] | 张文斐, 杨菲, 刘旭霞. 基因编辑食品标识制度的理论证成、国际比较及中国方案[J]. 生物技术通报, 2025, 41(3): 25-34. |
[2] | 梁丽存, 王克芬, 宋祖洹, 刘梦婷, 李佳玉, 罗会颖, 姚斌, 杨浩萌. 优化sgRNA提高塔宾曲霉基因编辑效率[J]. 生物技术通报, 2025, 41(3): 62-70. |
[3] | 童玮婧, 罗数, 陆新露, 沈建福, 陆柏益, 李开绵, 马秋香, 张鹏. CRISPR/Cas9编辑MeHNL基因创制低生氰糖苷木薯[J]. 生物技术通报, 2024, 40(9): 11-19. |
[4] | 崔原瑗, 王昭懿, 白双宇, 任毓昭, 豆飞飞, 刘彩霞, 刘凤楼, 王掌军, 李清峰. 大麦非特异性磷脂酶C基因家族全基因组鉴定及苗期胁迫表达分析[J]. 生物技术通报, 2024, 40(8): 74-82. |
[5] | 侯文婷, 孙琳, 张艳军, 董合忠. 基因编辑技术在棉花种质创新和遗传改良中的应用[J]. 生物技术通报, 2024, 40(7): 68-77. |
[6] | 隆静, 陈婧敏, 刘霄, 张一凡, 周利斌, 杜艳. 植物DNA双链断裂修复机制及其在重离子诱变和基因编辑中的作用[J]. 生物技术通报, 2024, 40(7): 55-67. |
[7] | 王凤婷, 赵福顺, 乔凯彬, 徐珣, 刘金亮. 蔬菜嫁接砧穗互作分子机制研究进展[J]. 生物技术通报, 2024, 40(10): 149-159. |
[8] | 周家伟, 武志强. mitoTALENs植物线粒体基因编辑载体的构建方法[J]. 生物技术通报, 2024, 40(10): 172-180. |
[9] | 李欣格, 王美霞, 王晨阳, 马桂根, 周常勇, 王亚南, 周焕斌. 基于CRISPR/LanCas9的水稻基因编辑系统的开发和优化[J]. 生物技术通报, 2024, 40(10): 233-242. |
[10] | 李明坤, 毕美营, 张天航, 吴翔宇, 杨培儒, 应明. UgRNA/Cas9多基因编辑法恢复根际细菌农用功能的研究[J]. 生物技术通报, 2024, 40(10): 275-287. |
[11] | 张硕, 阚俊虎, 周家伟, 武志强. 植物线粒体基因组编辑研究进展[J]. 生物技术通报, 2024, 40(10): 41-52. |
[12] | 杨帅朋, 屈子啸, 朱向星, 唐冬生. DNA碱基编辑技术的研究进展及在猪基因修饰中的应用[J]. 生物技术通报, 2024, 40(1): 127-144. |
[13] | 陈小玲, 廖东庆, 黄尚飞, 陈英, 芦志龙, 陈东. 利用CRISPR/Cas9系统改造酿酒酵母的研究进展[J]. 生物技术通报, 2023, 39(8): 148-158. |
[14] | 石佳鑫, 刘凯, 朱金洁, 祁显涛, 谢传晓, 刘昌林. 基因编辑技术改良玉米株型增加杂交种产量[J]. 生物技术通报, 2023, 39(8): 62-69. |
[15] | 史建磊, 宰文珊, 苏世闻, 付存念, 熊自立. 番茄青枯病抗性相关miRNA的鉴定与表达分析[J]. 生物技术通报, 2023, 39(5): 233-242. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 38
|
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||