生物技术通报 ›› 2025, Vol. 41 ›› Issue (5): 300-309.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1076
• 研究报告 • 上一篇
张慧1(
), 卢文才1(
), 王冬1, 刘倩1,2, 马连杰1
收稿日期:2024-11-06
出版日期:2025-05-26
发布日期:2025-06-05
通讯作者:
卢文才,男,博士,副研究员,研究方向 :农药毒理学及科学应用;E-mail: 253953014@qq.com作者简介:张慧,女,硕士,助理研究员,研究方向 :肥效微生物和生防微生物开发利用;E-mail: 1501380987@qq.com
基金资助:
ZHANG Hui1(
), LU Wen-cai1(
), WANG Dong1, LIU Qian1,2, MA Lian-jie1
Received:2024-11-06
Published:2025-05-26
Online:2025-06-05
摘要:
目的 分析高产吲哚乙酸的YT2-1C菌株促生抑菌潜力,为其后续开发利用提供基础。 方法 通过菌株形态特征、16S rRNA和31个看家基因比对结果对菌株进行鉴定,定量测定菌株IAA的产量,分析菌株在产铁载体、溶磷、解钾、产蛋白酶、固氮和抑菌方面的潜力。进一步通过育苗和田间试验验证菌株的促生效果,并从基因组水平初步分析了菌株与促生相关的功能基因。 结果 YT2-1C菌株鉴定为蜡样芽胞杆菌(Bacillus cereus),该菌株IAA产量高达193 μg/mL,具有产铁载体、溶磷、产蛋白酶和抑菌的能力。育苗试验结果表明,接种YT2-1C菌株的基质,显著增加黄瓜、辣椒和番茄的株高、叶绿素、茎粗和鲜重;黄瓜移栽田间后,仍有较好的促生作用。全基因组测序分析表明YT2-1C菌株具有54个与促生相关的基因,5个非核糖体肽合成相关的基因。 结论 蜡样芽胞杆菌YT2-1C是一株具有促生防病功能的菌株,对黄瓜、辣椒和番茄有显著的促生作用,含有多个与促生防病相关基因,为其微生物菌剂的研制奠定了基础。
张慧, 卢文才, 王冬, 刘倩, 马连杰. 一株高产吲哚乙酸的Bacillus cereus YT2-1C的鉴定及促生作用[J]. 生物技术通报, 2025, 41(5): 300-309.
ZHANG Hui, LU Wen-cai, WANG Dong, LIU Qian, MA Lian-jie. Identification of Bacillus cereus YT2-1C with High Indoleacetic Acid Yield and Its Growth-promoting Effect[J]. Biotechnology Bulletin, 2025, 41(5): 300-309.
菌株 Strain | 产IAA Produced IAA (μg/mL) | 产铁载体Siderophore | 溶磷能力 Phosphorus solubility | 解钾能力 Potassium capacity | 产蛋白酶 Proteinase production | 固氮 Nitrogen fixation | 抑制蚕豆葡萄孢 Inhibition of Botrytis fabiopsis/cm |
|---|---|---|---|---|---|---|---|
| YT2-1C | 193 | + | + | - | + | - | 2.1 |
表1 YT2-1C菌株的促生特性
Table 1 Growth-promoting characteristics of strain YT2-1C
菌株 Strain | 产IAA Produced IAA (μg/mL) | 产铁载体Siderophore | 溶磷能力 Phosphorus solubility | 解钾能力 Potassium capacity | 产蛋白酶 Proteinase production | 固氮 Nitrogen fixation | 抑制蚕豆葡萄孢 Inhibition of Botrytis fabiopsis/cm |
|---|---|---|---|---|---|---|---|
| YT2-1C | 193 | + | + | - | + | - | 2.1 |
图3 YT2-1C菌株抑菌能力测定左:YT2-1C菌株对蚕豆葡萄孢的抑制作用;右:对照
Fig. 3 Determination of antibacterial activity of strain YT2-1CLeft: Inhibition of strain YT2-1C to Botrytis fabiopsis;right: contrast
作物 Crop | 处理 Treatment | 株高 Plant height (cm) | 叶绿素Chlorophyll (SPAD) | 茎粗 Stem size (mm) | 鲜重 Fresh weight (g) |
|---|---|---|---|---|---|
| 辣椒 | CK | 6.20a | 33.28a | 2.02a | 0.86a |
| YT2-1C | 10.2b | 37.28b | 2.64b | 1.33b | |
| 番茄 | CK | 8.32a | 2.84a | 2.02a | 1.78a |
| YT2-1C | 19.12b | 5.21b | 2.64b | 7.49b |
表2 YT2-1C菌株对辣椒和番茄生长的影响
Table 2 Effects of strain YT2-1C on the growth of pepper and tomato
作物 Crop | 处理 Treatment | 株高 Plant height (cm) | 叶绿素Chlorophyll (SPAD) | 茎粗 Stem size (mm) | 鲜重 Fresh weight (g) |
|---|---|---|---|---|---|
| 辣椒 | CK | 6.20a | 33.28a | 2.02a | 0.86a |
| YT2-1C | 10.2b | 37.28b | 2.64b | 1.33b | |
| 番茄 | CK | 8.32a | 2.84a | 2.02a | 1.78a |
| YT2-1C | 19.12b | 5.21b | 2.64b | 7.49b |
处理 Treament | 株高 Plant height (cm) | 叶绿素 Chlorophyll (SPAD) | 茎粗 Stem size (mm) | 叶面积 Leaf area (cm2) | 鲜重 Fresh weight (g) |
|---|---|---|---|---|---|
| CK | 7.06a | 43.15a | 2.24a | 8.36a | 0.90a |
| YT2-1C | 8.49b | 48.21b | 2.50b | 15.10b | 1.16b |
表3 YT2-1C菌株对黄瓜幼苗生长的影响
Table 3 Effect of strain YT2-1C on the growth of cucumber seedlings
处理 Treament | 株高 Plant height (cm) | 叶绿素 Chlorophyll (SPAD) | 茎粗 Stem size (mm) | 叶面积 Leaf area (cm2) | 鲜重 Fresh weight (g) |
|---|---|---|---|---|---|
| CK | 7.06a | 43.15a | 2.24a | 8.36a | 0.90a |
| YT2-1C | 8.49b | 48.21b | 2.50b | 15.10b | 1.16b |
处理 Treament | 株高 Plant height (cm) | 茎粗 Stem size (mm) | 叶绿素 Chlorophyll (SPAD) | 叶面积 Leaf area (cm2) |
|---|---|---|---|---|
| CK | 10.05a | 5.47a | 78.75a | 45.74a |
| YT2-1C | 16.95b | 7.13b | 97.47b | 97.03b |
表4 YT2-1C菌株对黄瓜田间生长的影响
Table 4 Effects of strain YT2-1C on field growth of cucumber
处理 Treament | 株高 Plant height (cm) | 茎粗 Stem size (mm) | 叶绿素 Chlorophyll (SPAD) | 叶面积 Leaf area (cm2) |
|---|---|---|---|---|
| CK | 10.05a | 5.47a | 78.75a | 45.74a |
| YT2-1C | 16.95b | 7.13b | 97.47b | 97.03b |
| 功能 Function | 基因 Gene | 产物 Product |
|---|---|---|
IAA合成 IAA synthesis | trpA | 色氨酸合成酶ɑ亚基 |
| trpB | 色氨酸合成酶β亚基 | |
| trpC | 吲哚-3-甘油磷酸合成酶 | |
| trpD | 邻氨基苯甲酸磷酸核糖基转移酶 | |
| trpE | 邻氨基苯甲酸合酶 | |
| trpG | 邻氨基苯甲酸合酶 | |
| ipdC | 吲哚3-丙酮酸脱羧酶 | |
| aroA | 3-磷酸莽草酸1-羧乙烯基转移酶 | |
| sucA | 2-氧戊二酸脱氢酶E1组分 | |
| kynB | 芳基甲酰胺酶 | |
| kynU | 尿氨酸酶 | |
| atoB | 乙酰辅酶a-c-乙酰转移酶 | |
| amiE | 酰胺酶家族 | |
| aofH | 黄素单胺氧化酶 | |
铁载体 Siderophore | entA | 2,3-二氢-2,3-二羟基苯甲酸脱氢酶 |
| entB | 异分支酸酶家族蛋白 | |
| entC | 异氯酸合成酶DhbC | |
| entE | (2,3-二羟基苯甲酰)腺苷酸合酶 | |
| menF | 同氯酸酯合成酶 | |
| mbtH | MbtH家族蛋白 | |
| nuoA | NADH-醌氧化还原酶亚基NuoA | |
| nuoB | NADH-醌氧化还原酶亚基NuoB | |
| nuoC | NADH-醌氧化还原酶亚基C | |
| nuoD | NADH-醌氧化还原酶亚基NuoD | |
| nuoI | NADH-醌氧化还原酶亚基nui | |
| nuoJ | NADH-醌氧化还原酶亚基J | |
| nuoH | NADH-醌氧化还原酶亚基NuoH | |
| nuoK | NADH-醌氧化还原酶亚基NuoK | |
| nuoL | NADH-醌氧化还原酶亚基L | |
| nuoN | NADH-醌氧化还原酶亚基NuoN | |
| nuoM | NADH-醌氧化还原酶亚基M | |
| bfr | 类铁蛋白结构域含蛋白 | |
| ftnA | 铁蛋白 | |
溶磷 Phosphorus solubilization | patA | 转氨酶A |
| pstA | 磷酸ABC转运蛋白渗透酶 | |
| pstC | 磷酸ABC转运蛋白渗透酶 | |
| pyk | 丙酮酸激酶 | |
| pyc | 丙酮酸羧化酶 | |
| ackA | 醋酸激酶 | |
| gltA | 柠檬酸合酶 | |
| buk | 丁酸激酶 | |
| aroK | 莽草激酶 | |
产蛋白酶 Proteinase production | aprE | S8家族肽酶 |
| nprE | M4家族金属肽酶 | |
| nprB | 中性蛋白酶B前体 | |
| vpr | S8家族丝氨酸肽酶 | |
| mprF | 双功能赖氨酸磷脂酰甘油翻转酶/合成酶 | |
固氮 Nitrogen fixation | glnA | 谷氨酸-氨连接酶 |
| gltB | 谷氨酸合酶 | |
| narG | 硝酸盐还原酶 | |
| narH | 硝酸盐还原酶 | |
| narI | 亚硝酸盐氧化还原酶 | |
| nirA | 铁氧还蛋白-亚硝酸盐还原酶 | |
| cynT | 碳酸酐酶 | |
非核糖体肽 Non-ribosomal peptides | tycC | 非核糖体肽合成酶 |
| dhbF | 非核糖体肽合成酶 | |
| mcyA | 非核糖体肽合成酶 | |
| ituB | 非核糖体肽合成酶 | |
| bacA | 非核糖体肽合成酶 |
表5 YT2-1C菌株功能基因信息
Table 5 Functional gene information of strain YT2-1C
| 功能 Function | 基因 Gene | 产物 Product |
|---|---|---|
IAA合成 IAA synthesis | trpA | 色氨酸合成酶ɑ亚基 |
| trpB | 色氨酸合成酶β亚基 | |
| trpC | 吲哚-3-甘油磷酸合成酶 | |
| trpD | 邻氨基苯甲酸磷酸核糖基转移酶 | |
| trpE | 邻氨基苯甲酸合酶 | |
| trpG | 邻氨基苯甲酸合酶 | |
| ipdC | 吲哚3-丙酮酸脱羧酶 | |
| aroA | 3-磷酸莽草酸1-羧乙烯基转移酶 | |
| sucA | 2-氧戊二酸脱氢酶E1组分 | |
| kynB | 芳基甲酰胺酶 | |
| kynU | 尿氨酸酶 | |
| atoB | 乙酰辅酶a-c-乙酰转移酶 | |
| amiE | 酰胺酶家族 | |
| aofH | 黄素单胺氧化酶 | |
铁载体 Siderophore | entA | 2,3-二氢-2,3-二羟基苯甲酸脱氢酶 |
| entB | 异分支酸酶家族蛋白 | |
| entC | 异氯酸合成酶DhbC | |
| entE | (2,3-二羟基苯甲酰)腺苷酸合酶 | |
| menF | 同氯酸酯合成酶 | |
| mbtH | MbtH家族蛋白 | |
| nuoA | NADH-醌氧化还原酶亚基NuoA | |
| nuoB | NADH-醌氧化还原酶亚基NuoB | |
| nuoC | NADH-醌氧化还原酶亚基C | |
| nuoD | NADH-醌氧化还原酶亚基NuoD | |
| nuoI | NADH-醌氧化还原酶亚基nui | |
| nuoJ | NADH-醌氧化还原酶亚基J | |
| nuoH | NADH-醌氧化还原酶亚基NuoH | |
| nuoK | NADH-醌氧化还原酶亚基NuoK | |
| nuoL | NADH-醌氧化还原酶亚基L | |
| nuoN | NADH-醌氧化还原酶亚基NuoN | |
| nuoM | NADH-醌氧化还原酶亚基M | |
| bfr | 类铁蛋白结构域含蛋白 | |
| ftnA | 铁蛋白 | |
溶磷 Phosphorus solubilization | patA | 转氨酶A |
| pstA | 磷酸ABC转运蛋白渗透酶 | |
| pstC | 磷酸ABC转运蛋白渗透酶 | |
| pyk | 丙酮酸激酶 | |
| pyc | 丙酮酸羧化酶 | |
| ackA | 醋酸激酶 | |
| gltA | 柠檬酸合酶 | |
| buk | 丁酸激酶 | |
| aroK | 莽草激酶 | |
产蛋白酶 Proteinase production | aprE | S8家族肽酶 |
| nprE | M4家族金属肽酶 | |
| nprB | 中性蛋白酶B前体 | |
| vpr | S8家族丝氨酸肽酶 | |
| mprF | 双功能赖氨酸磷脂酰甘油翻转酶/合成酶 | |
固氮 Nitrogen fixation | glnA | 谷氨酸-氨连接酶 |
| gltB | 谷氨酸合酶 | |
| narG | 硝酸盐还原酶 | |
| narH | 硝酸盐还原酶 | |
| narI | 亚硝酸盐氧化还原酶 | |
| nirA | 铁氧还蛋白-亚硝酸盐还原酶 | |
| cynT | 碳酸酐酶 | |
非核糖体肽 Non-ribosomal peptides | tycC | 非核糖体肽合成酶 |
| dhbF | 非核糖体肽合成酶 | |
| mcyA | 非核糖体肽合成酶 | |
| ituB | 非核糖体肽合成酶 | |
| bacA | 非核糖体肽合成酶 |
| 1 | 马雪晴, 冀傲冉, 郑娇莉, 等. 植物根际促生菌促生机制及其应用研究进展 [J]. 中国农业科技导报, 2025, 27(2): 13-23. |
| Ma XQ, Ji AR, Zheng JL, et al. Research progress on growth promotion mechanism and its application in plant growth promoting rhizobacteria [J]. China Ind Econ, 2025, 27(2): 13-23. | |
| 2 | 徐明岗, 卢昌艾, 张文菊, 等. 我国耕地质量状况与提升对策 [J]. 中国农业资源与区划, 2016, 37(7): 8-14. |
| Xu MG, Lu CA, Zhang WJ, et al. Situation of the quality of arable land in China and improvement strategy [J]. Chin J Agric Resour Reg Plan, 2016, 37(7): 8-14. | |
| 3 | 沈仁芳, 王超, 孙波."藏粮于地、藏粮于技"战略实施中的土壤科学与技术问题 [J]. 中国科学院院刊, 2018, 33(2): 135-144. |
| Shen RF, Wang C, Sun B. Soil related scientific and technological problems in implementing strategy of "storing grain in land and technology" [J]. Bull Chin Acad Sci, 2018, 33(2): 135-144. | |
| 4 | 徐明岗, 段英华, 白珊珊, 等. 基于长期定位试验的土壤健康研究与展望 [J]. 植物营养与肥料学报, 2024, 30(7): 1253-1261. |
| Xu MG, Duan YH, Bai SS, et al. Research and prospects for soil health based on long-term experiments in arable land of China [J]. Plant Nutr Fert Sci, 2024, 30(7): 1253-1261. | |
| 5 | Vejan P, Abdullah R, Khadiran T, et al. Role of plant growth promoting rhizobacteria in agricultural sustainability-a review [J]. Molecules, 2016, 21(5): 573. |
| 6 | 周益帆, 王金斌, 何川, 等. 一株产吲哚乙酸的Bacillus velezensis JB0319的筛选、鉴定及其促生作用 [J]. 土壤通报, 2024, 55(1): 173-183. |
| Zhou YF, Wang JB, He C, et al. Screening, identification and growth promotion of A strain of Bacillus velezensis JB0319 producing indoleacetic acid [J]. Chin J Soil Sci, 2024, 55(1): 173-183. | |
| 7 | 徐科玉. 高产吲哚乙酸微生物菌株的筛选、发酵及其促生效果 [D]. 石家庄: 河北科技大学, 2022. |
| Xu KY. Screening, fermentation and growth-promoting effect of microbial strains with high indole acetic acid production [D]. Shijiazhuang: Hebei University of Science and Technology, 2022. | |
| 8 | da Silva MJC, Junior SFP, Junior KF, et al. IAA production of indigenous isolate of plant growth promoting rhizobacteria in the presence of tryptophan [J]. Aust J Crop Sci, 2020(14(03): 2020): 537-544. |
| 9 | de Garcia Salamone IE, Hynes RK, Nelson LM. Role of cytokinins in plant growth promotion by rhizosphere bacteria [M]//PGPR: Biocontrol and Biofertilization. Dordrecht: Springer Netherlands, 2005: 173-195. |
| 10 | James EK, Gyaneshwar P, Mathan N, et al. Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67 [J]. Mol Plant Microbe Interact, 2002, 15(9): 894-906. |
| 11 | 万雨欣, 徐伟慧, 胡云龙, 等. 玉米根际促生菌的筛选鉴定及促生效果评价 [J]. 玉米科学, 2024, 32(2): 144-153. |
| Wan YX, Xu WH, Hu YL, et al. Screening and identification of maize rhizosphere growth-promoting bacteria and evaluation of their growth-promoting effects [J]. J Maize Sci, 2024, 32(2): 144-153. | |
| 12 | 陈伟, 舒健虹, 陈莹, 等. 黑麦草根际铁载体产生菌WN-H3的分离鉴定及其产铁载体培养条件的优化 [J]. 生物技术通报, 2016, 32(10): 219-226. |
| Chen W, Shu JH, Chen Y, et al. Screening, identification and fermentation condition optimun of a siderophore-producing bacteria WN-H3 from rhizosphere of ryegrass [J]. Biotechnol Bull, 2016, 32(10): 219-226. | |
| 13 | 郇惠杰, 钟泓波, 雷芬芬, 等. 产蛋白酶海洋细菌的筛选、鉴定及发酵培养基的研究 [J]. 食品工业科技, 2013, 34(24): 181-185. |
| Huan HJ, Zhong HB, Lei FF, et al. Study on isolation and identification of protease-producing marine bacteria and optimization of fermentation medium [J]. Sci Technol Food Ind, 2013, 34(24): 181-185. | |
| 14 | 张祥胜. 发酵液有效磷含量测定方法研究 [J]. 湖州职业技术学院学报, 2008, 6(3): 1-3. |
| Zhang XS. A study of factors affecting the determined value by Mo-Sn-vc method of organic phosphobacteria [J]. J Huzhou Vocat Technol Coll, 2008, 6(3): 1-3. | |
| 15 | 李浩. 玉米、黄瓜根际促生菌组合优化及基因组测序 [D]. 泰安: 山东农业大学, 2019. |
| Li H. Optimization of rhizosphere growth-promoting bacteria combination and genome sequencing of maize and cucumber [D]. Taian: Shandong Agricultural University, 2019. | |
| 16 | 张垚, 张芝, 王志刚, 等. 辣椒根际促生菌筛选鉴定及其促生效应初探 [J]. 浙江农业科学, 2022, 63(5): 958-963. |
| Zhang Y, Zhang Z, Wang ZG, et al. J Zhejiang Agric Sci, 2022, 63(5): 958-963. | |
| 17 | 伍巧慧, 龚文坤, 刘新月, 等. 哈密瓜根际耐高温促生菌的筛选及其促生效应研究 [J]. 中国土壤与肥料, 2023(11): 221-228. |
| Wu QH, Gong WK, Liu XY, et al. Screening of high temperature resistant growth promoting bacteria in the rhizosphere of cantaloupe and its promotion effect [J]. Soils Fertil Sci China, 2023(11): 221-228. | |
| 18 | 葛淼淼, 薄永琳, 刘宸, 等. 土壤产铁载体细菌的筛选及其对铁氧化物的活化与利用 [J]. 微生物学通报, 2023, 50(3): 1062-1072. |
| Ge MM, Bo YL, Liu C, et al. Screening of soil siderophore-producing bacteria and their activation and utilization of iron oxide [J]. Microbiol China, 2023, 50(3): 1062-1072. | |
| 19 | 谢东, 汪流伟, 李宁健, 等. 一株多功能菌株的发掘、鉴定及解磷条件优化 [J]. 生物技术通报, 2023, 39(7): 241-253. |
| Xie D, Wang LW, Li NJ, et al. Exploration, identification and phosphorus-solubilizing condition optimization of a multifunctional strain [J]. Biotechnol Bull, 2023, 39(7): 241-253. | |
| 20 | 俞海平, 傅庆林, 刘俊丽, 等. 解钾细菌的分离筛选及其对水稻的促生效果 [J]. 浙江农业科学, 2022, 63(6): 1161-1164. |
| Yu HP, Fu QL, Liu JL, et al. Isolation and identification of decomposing potassium bacteria and its promoting effect on rice [J]. J Zhejiang Agric Sci, 2022, 63(6): 1161-1164. | |
| 21 | 耿芳, 杨绍青, 闫巧娟, 等. 土壤中高产蛋白酶菌株的筛选鉴定及发酵条件优化 [J]. 中国酿造, 2018, 37(4): 66-71. |
| Geng F, Yang SQ, Yan QJ, et al. Screening, identification and fermentation conditions optimization of a high yield protease strain from soil [J]. China Brew, 2018, 37(4): 66-71. | |
| 22 | Ku YL, Xu GY, Tian XH, et al. Root colonization and growth promotion of soybean, wheat and Chinese cabbage by Bacillus cereus YL6 [J]. PLoS One, 2018, 13(11): e0200181. |
| 23 | Kumar P, Pahal V, Gupta A, et al. Effect of silver nanoparticles and Bacillus cereus LPR2 on the growth of Zea mays [J]. Sci Rep, 2020, 10(1): 20409. |
| 24 | Ali AM, Awad MYM, Hegab SA, et al. Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato [J]. J Plant Nutr, 2021, 44(3): 411-420. |
| 25 | Sherpa MT, Bag N, Das S, et al. Isolation and characterization of plant growth promoting rhizobacteria isolated from organically grown high yielding pole type native pea (Pisum sativum L.) variety Dentami of Sikkim, India [J]. Curr Res Microb Sci, 2021, 2: 100068. |
| 26 | Ibrahim MS, Ikhajiagbe B. The growth response of rice (Oryza sativa L. var. FARO 44) in vitro after inoculation with bacterial isolates from a typical ferruginous ultisol [J]. Bull Natl Res Cent, 2021, 45(1): 70. |
| 27 | Li JG, Jiang ZQ, Xu LP, et al. Characterization of chitinase secreted by Bacillus cereus strain CH2 and evaluation of its efficacy against Verticillium wilt of eggplant [J]. BioControl, 2008, 53(6): 931-944. |
| 28 | Baliyan N, Dhiman S, Dheeman S, et al. Optimization of gibberellic acid production in endophytic Bacillus cereus using response surface methodology and its use as plant growth regulator in chickpea [J]. J Plant Growth Regul, 2022, 41(7): 3019-3029. |
| 29 | Adeleke BS, Ayangbenro AS, Babalola OO. Genomic analysis of endophytic Bacillus cereus T4S and its plant growth-promoting traits [J]. Plants, 2021, 10(9): 1776. |
| 30 | Zhou H, Ren ZH, Zu X, et al. Efficacy of plant growth-promoting bacteria Bacillus cereus YN917 for biocontrol of rice blast [J]. Front Microbiol, 2021, 12: 684888. |
| 31 | Maheshwari DK. Bacterial metabolites in sustainable agroecosystem [M].Springer Cham, 2015. |
| 32 | 王丽, 王剑峰, 孔鑫, 等. PGPR促进植物生长及增强植物耐镉机制研究进展 [J]. 种子, 2024, 43(6): 73-85. |
| Wang L, Wang JF, Kong X, et al. Progress on the mechanism of PGPR to promote plant growth and enhance cadmium tolerance in plants [J]. Seed, 2024, 43(6): 73-85. | |
| 33 | AHMED RAGAB HENAWY FARAG ELGABALY. 一种新型的可促进植物生长和固氮的微生物Burkholderia sp. HAN2018的基因组分析 [D]. 武汉: 华中农业大学, 2019. |
| AHMEDRAGAB HENAWY FARAG ELGABALY. Genome analysis of Burkholderia sp. HAN 2018, a new microorganism that can promote plant growth and nitrogen fixation [D]. Wuhan: Huazhong Agricultural University, 2019. | |
| 34 | Sharma A, Dev K, Sourirajan A, et al. Isolation and characterization of salt-tolerant bacteria with plant growth-promoting activities from saline agricultural fields of Haryana, India [J]. J Genet Eng Biotechnol, 2021, 19(1): 99. |
| 35 | 曹倩荣, 刘春卯, 郑翔, 等. 蛋白酶枯草芽孢杆菌工程菌株WB800N/pHT43-npr-PrsA的发酵工艺优化 [J]. 饲料研究, 2024, 47(14): 100-106. |
| Cao QR, Liu CM, Zheng X, et al. Optimization of fermentation process for Bacillus subtilis WB800N/pHT43-npr-PrsA recombinant strain with protease activity [J]. Feed Res, 2024, 47(14): 100-106. | |
| 36 | Etesami H, Maheshwari DK. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects [J]. Ecotoxicol Environ Saf, 2018, 156: 225-246. |
| 37 | Glazer AN, Kechris KJ. Conserved amino acid sequence features in the alpha subunits of MoFe, VFe, and FeFe nitrogenases [J]. PLoS One, 2009, 4(7): e6136. |
| [1] | 夏馨媛, 薛道晟, 李鑫静, 龙俊杰, 陆开形, 丁沃娜, 李梦莎. 稻油轮作土壤多功能促生菌的鉴定及其对油菜生长和根际细菌群落的影响[J]. 生物技术通报, 2025, 41(4): 289-301. |
| [2] | 马耀武, 张麒宇, 杨淼, 蒋诚, 张振宇, 张伊琳, 李梦莎, 许嘉阳, 张斌, 崔光周, 姜瑛. 烟草根际促生菌的筛选鉴定及促生性能研究[J]. 生物技术通报, 2025, 41(3): 271-281. |
| [3] | 刘克寒, 杨升辉, 黄巧云, 崔文靖. 黑龙江大豆根瘤菌及根际促共生菌株的筛选及应用[J]. 生物技术通报, 2025, 41(1): 252-262. |
| [4] | 张婷, 万雨欣, 徐伟慧, 王志刚, 陈文晶, 胡云龙. 一株玉米根际促生菌Leclercia adecarboxylata LN01促生效果研究及其基因组分析[J]. 生物技术通报, 2025, 41(1): 263-275. |
| [5] | 刘文志, 贺丹, 李鹏, 傅应林, 张译心, 温华杰, 于文清. 多粘类芽胞杆菌新菌株X-11及其对番茄和水稻的促生效应[J]. 生物技术通报, 2024, 40(9): 249-259. |
| [6] | 周江鸿, 夏菲, 仲丽, 仇兰芬, 李广, 刘倩, 张国锋, 邵金丽, 李娜, 车少臣. 黄栌枯萎病拮抗细菌CCBC3-3-1的全基因组测序及比较基因组分析[J]. 生物技术通报, 2024, 40(7): 235-246. |
| [7] | 田彤彤, 葛家振, 高鹏程, 李学瑞, 宋国栋, 郑福英, 储岳峰. 绵羊肺炎支原体GH3-3株全基因组测序及生物信息学分析[J]. 生物技术通报, 2024, 40(7): 323-334. |
| [8] | 孙亚楠, 王春雪, 王欣, 杜秉海, 刘凯, 汪城墙. 萎缩芽孢杆菌CNY01的生防特性及其对玉米的抗盐促生作用[J]. 生物技术通报, 2024, 40(5): 248-260. |
| [9] | 高志伟, 魏明, 于祖隆, 伍国强, 魏俊龙. 耐盐植物促生菌W-1鉴定及其对红豆草耐盐性的影响[J]. 生物技术通报, 2024, 40(4): 217-227. |
| [10] | 梁佳林, 赵爽, 李幸儿, 赵成周, 李萍. 尼泊尔黄堇Aux/IAA基因家族的鉴定与UVB处理下表达模式分析[J]. 生物技术通报, 2024, 40(12): 182-192. |
| [11] | 王梓, 石金川, 王永强, 孙淼, 孟令浩, 耿超, 刘锴. 牛源荚膜A型、D型多杀性巴氏杆菌的全基因组测序及基因组进化分析[J]. 生物技术通报, 2024, 40(12): 282-290. |
| [12] | 李希, 边子俊, 宁周神, 刘红雨, 曾槟, 董伟. 离子型稀土矿根际芽孢杆菌的促生作用研究[J]. 生物技术通报, 2024, 40(11): 259-268. |
| [13] | 常泸尹, 王中华, 李凤敏, 高梓源, 张辉红, 王祎, 李芳, 韩燕来, 姜瑛. 玉米根际多功能促生菌的筛选及其对冬小麦-夏玉米轮作体系产量提升效果[J]. 生物技术通报, 2024, 40(1): 231-242. |
| [14] | 王腾辉, 葛雯冬, 罗雅方, 范震宇, 王玉书. 基于极端混合池(BSA)全基因组重测序的羽衣甘蓝白色叶基因定位[J]. 生物技术通报, 2023, 39(9): 176-182. |
| [15] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||