生物技术通报 ›› 2024, Vol. 40 ›› Issue (12): 282-290.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0371
王梓1,2(), 石金川1, 王永强2,3, 孙淼1, 孟令浩1, 耿超1, 刘锴1,2(
)
收稿日期:
2024-04-18
出版日期:
2024-12-26
发布日期:
2025-01-15
通讯作者:
刘锴,男,博士,教授,研究方向:兽医微生物学及兽医免疫学;E-mail: liukai721026@163.com作者简介:
王梓,男,博士,讲师,研究方向:细菌耐药机制;E-mail: wangzi@imun.edu.cn
基金资助:
WANG Zi1,2(), SHI Jin-chuan1, WANG Yong-qiang2,3, SUN Miao1, MENG Ling-hao1, GENG Chao1, LIU Kai1,2(
)
Received:
2024-04-18
Published:
2024-12-26
Online:
2025-01-15
摘要:
【目的】对乌拉盖管理区分离的牛源巴氏杆菌进行荚膜血清分型,对不同血清型菌株进行全基因组测序及基因组进化分析。【方法】对肉牛肺脏进行病原菌分离纯化、16S rRNA鉴定、荚膜血清型分型、药敏试验和小鼠致病性实验;对不同血清型巴氏杆菌进行全基因组测序及基因组进化分析。【结果】成功分离得到两株牛源巴氏杆菌,命名为Pm-YQ与Pm-SM,其中Pm-YQ为荚膜血清A型,Pm-SM为荚膜血清D型;两株分离菌均具有较强毒力,但耐药性较弱。分离菌全基因组长度分别为2 274 102 bp与2 244 957 bp,分别编码2 070与2 007个基因。菌株Pm-YQ为ST 179型,菌株Pm-SM为ST 1型。通过构建全基因组进化树分析,Pm-YQ与德国、丹麦、美国在GenBank中登录的3株巴氏杆菌亲缘关系较近;Pm-SM株与国内重庆所分离的一株荚膜F型巴氏杆菌在同一进化分支。【结论】完成了两株不同血清型巴氏杆菌的分离鉴定及全基因组测序,Pm-YQ菌株与德国分离株亲缘关系较近,Pm-SM菌株与目前登录的牛源巴氏杆菌亲缘关系均较远。
王梓, 石金川, 王永强, 孙淼, 孟令浩, 耿超, 刘锴. 牛源荚膜A型、D型多杀性巴氏杆菌的全基因组测序及基因组进化分析[J]. 生物技术通报, 2024, 40(12): 282-290.
WANG Zi, SHI Jin-chuan, WANG Yong-qiang, SUN Miao, MENG Ling-hao, GENG Chao, LIU Kai. Whole Genome Sequencing and Genome Evolution Analysis of Capsular Serotype A and D Pasteurella multocida of Bovine[J]. Biotechnology Bulletin, 2024, 40(12): 282-290.
目的基因 Target gene | 引物序列 Primer sequence(5'-3') | 扩增长度Amplification length/bp |
---|---|---|
16S rRNA | F: AGAGTTTGATCCTGGCTCAG R: GGTTACCTTGTTACGACTT | 1 369 |
KMT1 | F:ATCCGCTATTTACCCAGTGG R:GCTGTAAACGAACTCGCCAC | 460 |
hyaD-hyaC | F:TGCCAAAATCGCAGTCAG R: TTGCCATCATTGTCAGTG | 1 044 |
bcbD | F: CATTTATCCAAGCTCCACC R: GCCCGAGAGTTTCAATCC | 760 |
dcbF | F:TTACAAAAGAAAGACTAGGAGCCC R: CATCTACCCACTCAACCATATCAG | 657 |
ecbJ | F: TCCGCAGAAAATTATTGACTC R: GCTTGCTGCTTGATTTTGTC | 511 |
fcbD | F:AATCGGAGAACGCAGAAATCAG R: TTCCGCCGTCAATTACTCTG | 851 |
表1 引物序列
Table 1 Primer sequences
目的基因 Target gene | 引物序列 Primer sequence(5'-3') | 扩增长度Amplification length/bp |
---|---|---|
16S rRNA | F: AGAGTTTGATCCTGGCTCAG R: GGTTACCTTGTTACGACTT | 1 369 |
KMT1 | F:ATCCGCTATTTACCCAGTGG R:GCTGTAAACGAACTCGCCAC | 460 |
hyaD-hyaC | F:TGCCAAAATCGCAGTCAG R: TTGCCATCATTGTCAGTG | 1 044 |
bcbD | F: CATTTATCCAAGCTCCACC R: GCCCGAGAGTTTCAATCC | 760 |
dcbF | F:TTACAAAAGAAAGACTAGGAGCCC R: CATCTACCCACTCAACCATATCAG | 657 |
ecbJ | F: TCCGCAGAAAATTATTGACTC R: GCTTGCTGCTTGATTTTGTC | 511 |
fcbD | F:AATCGGAGAACGCAGAAATCAG R: TTCCGCCGTCAATTACTCTG | 851 |
图1 菌落形态和革兰氏染色结果 A:Pm-SM培养;B:Pm-YQ培养;C:Pm-SM革兰氏染色;D:Pm-YQ革兰氏染色
Fig. 1 Colony morphology and Gram staining results A: Pm-SM culture ; B: Pm-YQ culture; C: Pm-SM Gram staining; D: Pm-YQ Gram staining
图2 PCR鉴定结果 M:DL2000 maker;1:Pm-YQ通用引物KMT1;2:Pm-YQ荚膜血清型引物hyaD-hyaC;3:Pm-SM通用引物KMT1;4:Pm-SM荚膜血清型引物dcbF
Fig. 2 PCR identification results M: DL2000 maker; 1: Pm-YQ universal primer KMT1; 2: Pm-YQ capsule serotype primer hyaD-hyaC; 3: Pm-SM universal primer KMT1; 4: Pm-SM capsule serotype primer dcbF
抗生素 Antibiotic | 菌株编号Strain No. | |
---|---|---|
Pm-YQ | Pm-SM | |
强力霉素 | S(17) | I(10) |
诺氟沙星 | R(9) | S(21) |
头孢噻肟 | S(15) | S(20) |
氟苯尼考 | S(26) | S(21) |
阿米卡星 | I(10) | S(17) |
庆大霉素 | R(9) | S(16) |
恩诺沙星 | R(7) | S(25) |
多粘菌素B | S(18) | S(13) |
环丙沙星 | S(22) | S(23) |
青霉素 | S(34) | S(34) |
氧氟沙星 | I(14) | S(21) |
卡那霉素 | R(0) | R(0) |
表2 药物敏感性检测结果
Table 2 Drug sensitivity test results
抗生素 Antibiotic | 菌株编号Strain No. | |
---|---|---|
Pm-YQ | Pm-SM | |
强力霉素 | S(17) | I(10) |
诺氟沙星 | R(9) | S(21) |
头孢噻肟 | S(15) | S(20) |
氟苯尼考 | S(26) | S(21) |
阿米卡星 | I(10) | S(17) |
庆大霉素 | R(9) | S(16) |
恩诺沙星 | R(7) | S(25) |
多粘菌素B | S(18) | S(13) |
环丙沙星 | S(22) | S(23) |
青霉素 | S(34) | S(34) |
氧氟沙星 | I(14) | S(21) |
卡那霉素 | R(0) | R(0) |
菌株名称Name of strain | 基因岛Genomic island | 位置Location | 基因位点Position | 长度Length/bp |
---|---|---|---|---|
Pm-YQ | Genomic-island-1 | 染色体Chromosome | 845109-852871 | 7763 |
Genomic-island-2 | 染色体Chromosome | 1105564-1116467 | 10904 | |
Genomic-island-3 | 染色体Chromosome | 1602281-1618085 | 15805 | |
Genomic-island-4 | 染色体Chromosome | 1876215-1889636 | 13422 | |
Pm-SM | Genomic-island-1 | 染色体Chromosome | 160470-193937 | 33468 |
Genomic-island-2 | 染色体Chromosome | 953950-964232 | 10283 | |
Genomic-island-3 | 染色体Chromosome | 1143374-1159357 | 15984 |
表3 基因岛预测结果
Table 3 Predicted results of gene island
菌株名称Name of strain | 基因岛Genomic island | 位置Location | 基因位点Position | 长度Length/bp |
---|---|---|---|---|
Pm-YQ | Genomic-island-1 | 染色体Chromosome | 845109-852871 | 7763 |
Genomic-island-2 | 染色体Chromosome | 1105564-1116467 | 10904 | |
Genomic-island-3 | 染色体Chromosome | 1602281-1618085 | 15805 | |
Genomic-island-4 | 染色体Chromosome | 1876215-1889636 | 13422 | |
Pm-SM | Genomic-island-1 | 染色体Chromosome | 160470-193937 | 33468 |
Genomic-island-2 | 染色体Chromosome | 953950-964232 | 10283 | |
Genomic-island-3 | 染色体Chromosome | 1143374-1159357 | 15984 |
等位基因 Allele | 相似度 Similarity/% | 等位基因长度 Allele length/bp | 差异 Gaps |
---|---|---|---|
mh_adk | 100 | 531 | 0 |
mh_aroA | 100 | 558 | 0 |
mh_deoD | 100 | 576 | 0 |
mh_g6pd | 100 | 513 | 0 |
mh_gdhA | 100 | 651 | 0 |
mh_mdh | 100 | 552 | 0 |
mh_pgi | 100 | 609 | 0 |
表4 MLST分析
Table 4 MLST analysis
等位基因 Allele | 相似度 Similarity/% | 等位基因长度 Allele length/bp | 差异 Gaps |
---|---|---|---|
mh_adk | 100 | 531 | 0 |
mh_aroA | 100 | 558 | 0 |
mh_deoD | 100 | 576 | 0 |
mh_g6pd | 100 | 513 | 0 |
mh_gdhA | 100 | 651 | 0 |
mh_mdh | 100 | 552 | 0 |
mh_pgi | 100 | 609 | 0 |
[1] |
Harper M, Boyce JD, Adler B. Pasteurella multocida pathogenesis: 125 years after Pasteur[J]. FEMS Microbiol Lett, 2006, 265(1): 1-10.
doi: 10.1111/j.1574-6968.2006.00442.x pmid: 17107417 |
[2] | Piorunek M, Brajer-Luftmann B, Walkowiak J. Pasteurella multocida infection in humans[J]. Pathogens, 2023, 12(10): 1210. |
[3] | Jiang JF, Zhao YS, Chen AH, et al. Efficient markerless genetic manipulation of Pasteurella multocida using lacZ and pheS m as selection markers[J]. Appl Environ Microbiol, 2024, 90(4): e0204323. |
[4] | Kasivalu JK, Omwenga GI, Aboge GO. Molecular detection and characterization of Pasteurella multocida infecting camels in marsabit and turkana counties, Kenya[J]. Int J Microbiol, 2022, 2022: 9349303. |
[5] | Peng Z, Liu JY, Liang W, et al. Development of an online tool for Pasteurella multocida genotyping and genotypes of Pasteurella multocida from different hosts[J]. Front Vet Sci, 2021, 8: 771157. |
[6] | 马文戈, 于力. 牛源荚膜血清A型多杀性巴氏杆菌的分离鉴定[J]. 中国预防兽医学报, 2008, 30(10): 747-750, 754. |
Ma WG, Yu L. Isolation and identification of bovine capsular serotype A Pasteurella mutocida[J]. Chin J Prev Vet Med, 2008, 30(10): 747-750, 754. | |
[7] | 刘朋, 陈萌, 程子龙, 等. 奶牛荚膜血清A型巴氏杆菌的分离鉴定及致病性[J]. 中国兽医学报, 2018, 38(8): 1548-1552. |
Liu P, Chen M, Cheng ZL, et al. Isolation, identification and pathogenicity of the serotype a Pasteurella multocida in cow[J]. Chin J Vet Sci, 2018, 38(8): 1548-1552. | |
[8] | 孔令聪. 牛A型多杀性巴氏杆菌耐药性分析及对部分常用药物耐药机制研究[D]. 长春: 吉林农业大学, 2016. |
Kong LC. Analysis of drug resistance of Pasteurella multocida type A in cattle and study on drug resistance mechanism of some commonly used drugs[D]. Changchun: Jilin Agricultural University, 2016. | |
[9] | 贾开文, 操义恒, 王子杰, 等. 新疆牛源溶血性曼氏杆菌和多杀性巴氏杆菌的分离鉴定及耐药性和毒力分析[J]. 中国预防兽医学报, 2023, 45(2): 201-206. |
Jia KW, Cao YH, Wang ZJ, et al. Isolation, identification, drug resistance and virulence analysis of Mannheimia haemolytica and Pasteurella multocida from a cattle farm in Xinjiang[J]. Chin J Prev Vet Med, 2023, 45(2): 201-206. | |
[10] | 范正波. 牛源A型多杀性巴氏杆菌毒力相关基因和药物敏感性分析[D]. 重庆: 西南大学, 2020. |
Fan ZB. Analysis of virulence-related genes and drug sensitivity of Pasteurella multocida type A from cattle[D]. Chongqing: Southwest University, 2020. | |
[11] | Snyder E, Credille B. Mannheimia haemolytica and Pasteurella multocida in bovine respiratory disease: how are they changing in response to efforts to control them?[J]. Vet Clin North Am Food Anim Pract, 2020, 36(2): 253-268. |
[12] | Richardson NI, Ravenscroft N, Kuttel MM. Conformational comparisons of Pasteurella multocida types B and E and structurally related capsular polysaccharides[J]. Glycobiology, 2023, 33(9): 745-754. |
[13] | Wang HJ, Xin LX, Wu Y, et al. Construction of a one-step multiplex real-time PCR assay for the detection of serogroups A, B, and E of Pasteurella multocida associated with bovine pasteurellosis[J]. Front Vet Sci, 2023, 10: 1193162. |
[14] | Calderón Bernal JM, Fernández A, Arnal JL, et al. Molecular epidemiology of Pasteurella multocida associated with bovine respiratory disease outbreaks[J]. Animals, 2022, 13(1): 75. |
[15] | 李偲, 郭双, 王永强, 等. 一株牛源都柏林沙门氏菌的全基因组测序及毒力与耐药性分析[J]. 微生物学通报, 2023, 50(6): 2569-2581. |
Li C, Guo S, Wang YQ, et al. Whole-genome sequencing, virulence, and drug resistance of a bovine-derived strain of Salmonella enterica subsp.enterica serovar Dublin[J]. Microbiol China, 2023, 50(6): 2569-2581. | |
[16] | 王永强, 李偲, 耿超, 等. 通辽地区犊牛腹泻大肠杆菌耐药性检测及一株多重耐药菌全基因组测序分析[J]. 微生物学通报, 2022, 49(12): 4964-4977. |
Wang YQ, Li C, Geng C, et al. Drug resistance of Escherichia coli strains causing calf diarrhea in Tongliao and whole-genome sequencing of a multi-drug resistant strain[J]. Microbiol China, 2022, 49(12): 4964-4977. | |
[17] |
Townsend KM, Boyce JD, Chung JY, et al. Genetic organization of Pasteurella multocida cap Loci and development of a multiplex capsular PCR typing system[J]. J Clin Microbiol, 2001, 39(3): 924-929.
doi: 10.1128/JCM.39.3.924-929.2001 pmid: 11230405 |
[18] | Humphries R, Bobenchik AM, Hindler JA, et al. Overview of changes to the clinical and laboratory standards institute Performance standards for antimicrobial susceptibility testing, M100, 31st edition[J]. J Clin Microbiol, 2021, 59(12): e0021321. |
[19] | Koren S, Walenz BP, Berlin K, et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation[J]. Genome Res, 2017, 27(5): 722-736. |
[20] |
Hyatt D, Chen GL, Locascio PF, et al. Prodigal: prokaryotic gene recognition and translation initiation site identification[J]. BMC Bioinformatics, 2010, 11: 119.
doi: 10.1186/1471-2105-11-119 pmid: 20211023 |
[21] |
Bertelli C, Brinkman FSL, Valencia A. Improved genomic island predictions with IslandPath-DIMOB[J]. Bioinformatics, 2018, 34(13): 2161-2167.
doi: 10.1093/bioinformatics/bty095 pmid: 29905770 |
[22] |
Fu LM, Niu BF, Zhu ZW, et al. CD-HIT: accelerated for clustering the next-generation sequencing data[J]. Bioinformatics, 2012, 28(23): 3150-3152.
doi: 10.1093/bioinformatics/bts565 pmid: 23060610 |
[23] |
Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium[J]. Nat Genet, 2000, 25(1): 25-29.
doi: 10.1038/75556 pmid: 10802651 |
[24] | Kanehisa M, Goto S, Kawashima S, et al. The KEGG resource for deciphering the genome[J]. Nucleic Acids Res, 2004, 32(Database issue): D277-D280. |
[25] | Jia BF, Raphenya AR, Alcock B, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database[J]. Nucleic Acids Res, 2017, 45(D1): D566-D573. |
[26] |
罗婷, 徐业芬, 韩著, 等. 西藏牦牛源牛支原体T10株全基因组测序及其序列分析[J]. 畜牧兽医学报, 2024, 55(5): 2154-2167.
doi: 10.11843/j.issn.0366-6964.2024.05.033 |
Luo T, Han Z, Xu YF, et al. Whole genome sequencing and sequence analysis of Mycoplasma bovis T10 strain from Tibetan yak[J]. Annals of Animal Husbandry and Veterinary Medicine, 2024, 55(5): 2154-2167. | |
[27] | Chen CJ, Wu Y, Li JW, et al. TBtools-II: a “one for all, all for one” bioinformatics platform for biological big-data mining[J]. Mol Plant, 2023, 16(11): 1733-1742. |
[28] | 李贵琴. 牛巴氏杆菌的分离鉴定及黄芩苷对巴氏杆菌肺炎的治疗作用[D]. 杨凌: 西北农林科技大学, 2022. |
Li GQ. Isolation and identification of Pasteurella bovis and therapeutic effect of baicalin on Pasteurella pneumonia[D]. Yangling: Northwest A & F University, 2022. | |
[29] | Alhamami T, Roy Chowdhury P, Venter H, et al. Genomic profiling of Pasteurella multocida isolated from feedlot cases of bovine respiratory disease[J]. Vet Microbiol, 2023, 283: 109773. |
[30] | 李轩宇. 牛支原体、A型巴氏杆菌二联灭活疫苗模型动物免疫保护性评价[D]. 长春: 吉林农业大学, 2023. |
Li XY. Evaluation of animal immune protection of combined inactivated vaccine model of Mycoplasma bovis and Pasteurella A[D]. Changchun: Jilin Agricultural University, 2023. | |
[31] | 王镭. 猪源多杀性巴氏杆菌A型、D型分离株病原学特性比较研究[D]. 合肥: 安徽农业大学, 2022. |
Wang L. Comparative study on pathogenic characteristics of Pasteurella multocida isolates A and D from pigs[D]. Hefei: Anhui Agricultural University, 2022. | |
[32] | 魏诗谣, 王丽扬, 张信军, 等. 3株羊源D型多杀性巴氏杆菌的生物学特性研究[J]. 扬州大学学报: 农业与生命科学版, 2021, 42(4): 12-17. |
Wei SY, Wang LY, Zhang XJ, et al. Study on biological characteristics of three strains of Pasteurella multocida serotype D from goat[J]. J Yangzhou Univ Agric Life Sci Ed, 2021, 42(4): 12-17. | |
[33] | Gharib Mombeni E, Gharibi D, Ghorbanpoor M, et al. Toxigenic and non-toxigenic Pasteurella multocida genotypes, based on capsular, LPS, and virulence profile typing, associated with pneumonic pasteurellosis in Iran[J]. Vet Microbiol, 2021, 257: 109077. |
[34] | Kim J, Kim JW, Oh SI, et al. Characterisation of Pasteurella multocida isolates from pigs with pneumonia in Korea[J]. BMC Vet Res, 2019, 15(1): 119. |
[35] | Smith E, Miller E, Aguayo JM, et al. Genomic diversity and molecular epidemiology of Pasteurella multocida[J]. PLoS One, 2021, 16(4): e0249138. |
[36] | Peng Z, Wang XR, Zhou R, et al. Pasteurella multocida: genotypes and genomics[J]. Microbiol Mol Biol Rev, 2019, 83(4): e00014-e00019. |
[37] |
Wang Z, Kong LC, Jia BY, et al. Aminoglycoside susceptibility of Pasteurella multocida isolates from bovine respiratory infections in China and mutations in ribosomal protein S5 associated with high-level induced spectinomycin resistance[J]. J Vet Med Sci, 2017, 79(10): 1678-1681.
doi: 10.1292/jvms.17-0219 pmid: 28867688 |
[1] | 张婷, 万雨欣, 徐伟慧, 王志刚, 陈文晶, 胡云龙. 一株玉米根际促生菌Leclercia adecarboxylata LN01促生效果研究及其基因组分析[J]. 生物技术通报, 2025, 41(1): 263-275. |
[2] | 周冉, 王兴平, 李彦霞, 罗仍卓么. 金黄色葡萄球菌型乳房炎奶牛乳腺组织的lncRNA差异表达分析[J]. 生物技术通报, 2024, 40(8): 320-328. |
[3] | 周江鸿, 夏菲, 仲丽, 仇兰芬, 李广, 刘倩, 张国锋, 邵金丽, 李娜, 车少臣. 黄栌枯萎病拮抗细菌CCBC3-3-1的全基因组测序及比较基因组分析[J]. 生物技术通报, 2024, 40(7): 235-246. |
[4] | 田彤彤, 葛家振, 高鹏程, 李学瑞, 宋国栋, 郑福英, 储岳峰. 绵羊肺炎支原体GH3-3株全基因组测序及生物信息学分析[J]. 生物技术通报, 2024, 40(7): 323-334. |
[5] | 秦健, 李振月, 何浪, 李俊玲, 张昊, 杜荣. 肌源性细胞分化的单细胞转录谱变化及细胞间通讯分析[J]. 生物技术通报, 2024, 40(6): 330-342. |
[6] | 孙亚楠, 王春雪, 王欣, 杜秉海, 刘凯, 汪城墙. 萎缩芽孢杆菌CNY01的生防特性及其对玉米的抗盐促生作用[J]. 生物技术通报, 2024, 40(5): 248-260. |
[7] | 张清兰, 张亚冉, 鞠志花, 王秀革, 肖遥, 王金鹏, 魏晓超, 高亚平, 白福恒, 王洪程. 牛TARDBP基因核心启动子鉴定与转录调控分析[J]. 生物技术通报, 2024, 40(4): 306-318. |
[8] | 姬中祥, 罗仍卓么, 李宇航, 王玉梅, 虎喜敏, 李彦青, 王兴平. miR-3604在牛子宫内膜上皮细胞容受性、增殖和凋亡中的作用[J]. 生物技术通报, 2024, 40(12): 291-298. |
[9] | 王腾辉, 葛雯冬, 罗雅方, 范震宇, 王玉书. 基于极端混合池(BSA)全基因组重测序的羽衣甘蓝白色叶基因定位[J]. 生物技术通报, 2023, 39(9): 176-182. |
[10] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
[11] | 郭少华, 毛会丽, 刘征权, 付美媛, 赵平原, 马文博, 李旭东, 关建义. 一株鱼源致病性嗜水气单胞菌XDMG的全基因组测序及比较基因组分析[J]. 生物技术通报, 2023, 39(8): 291-306. |
[12] | 曾虹, 曾睿琳, 付伟, 吉文汇, 兰道亮. 牛诱导多能干细胞的建立及应用研究进展[J]. 生物技术通报, 2023, 39(5): 130-141. |
[13] | 郑焕, 林冬梅, 刘峻源, 张引莲, 林标声, 林占熺, 李晶. 基于LC-QTOF-MS代谢组学解析牛樟芝子实体和菌丝体中氨基酸代谢差异[J]. 生物技术通报, 2023, 39(5): 254-266. |
[14] | 陈晓萌, 张雪静, 张欢, 张宝江, 苏艳. 重组牛乳源金黄色葡萄球菌GapC蛋白优势B细胞抗原表位的预测和筛选[J]. 生物技术通报, 2023, 39(5): 306-313. |
[15] | 张志霞, 李天培, 曾虹, 朱稀贤, 杨天雄, 马斯楠, 黄磊. 冰冷杆菌PG-2的基因组测序及生物信息学分析[J]. 生物技术通报, 2023, 39(3): 290-300. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 36
|
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||