生物技术通报 ›› 2025, Vol. 41 ›› Issue (11): 28-34.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0990

• 未来食品工程专题 • 上一篇    下一篇

合成生物学在母乳寡糖合成中的应用及研究进展

胡苗苗(), 秦舒放   

  1. 吉林大学食品科学与工程学院,长春 130062
  • 收稿日期:2025-09-15 出版日期:2025-11-26 发布日期:2025-12-09
  • 作者简介:胡苗苗,男,博士,副教授,研究方向 :食品合成生物学;E-mail: humiaomiao1994@jlu.edu.cn
  • 基金资助:
    国家自然科学基金青年科学基金项目C类(32502153)

Application and Research Progress of Synthetic Biology in the Synthesis of Human Milk Oligosaccharides

HU Miao-miao(), QIN Shu-fang   

  1. College of Food Science and Engineering, Jilin University, Changchun 130062
  • Received:2025-09-15 Published:2025-11-26 Online:2025-12-09

摘要:

母乳寡糖(human milk oligosaccharides, HMOs)是母乳中仅次于乳糖和脂肪的第三大固体成分,具有促进婴幼儿肠道健康、免疫发育及神经认知等多重生理功能。然而,其天然来源有限,传统化学或酶促合成方法存在步骤繁琐、成本高昂与环境负担重等问题。近年来,合成生物学为HMOs的高效、绿色制造提供了系统化解决方案。通过以大肠杆菌、谷氨酸棒杆菌和酵母等为底盘菌,研究者实现了糖供体再生、糖基转移酶优化及代谢通路模块化重构,使2′-岩藻糖基乳糖(2′-fucosyllactose, 2′-FL)和3′-唾液酸乳糖(3′-sialyllactose, 3′-SL)的发酵产量分别达到141.27 g/L和56.8 g/L,并推动了工业化应用进程。与此同时,复杂结构如乳酰-N-岩藻五糖I(lacto-N-fucopentaose I, LNFP I)的成功合成,标志着HMOs由实验室走向可工程化阶段。本文综述了合成生物学在HMOs合成中的应用现状与研究进展,深入分析了供体循环效率不足、酶稳定性差、底盘菌耐受性低及绿色制造体系不完善等关键技术瓶颈,并对未来发展作出展望。随着人工智能驱动的代谢调控、组学整合与低碳制造技术的融合,HMOs的合成研究将朝着智能化、精准化与可持续化方向发展,为功能性碳水化合物的营养应用和食品工业创新提供新契机。

关键词: 母乳寡糖, 合成生物学, 核苷酸糖供体, 糖基转移酶, 细胞工厂

Abstract:

Human milk oligosaccharides (HMOs), the third most abundant solid component in human milk after lactose and lipids, exert multiple physiological functions, including promoting infant gut health, immune development, and neurocognitive maturation. However, their natural sources are limited, and traditional chemical or enzymatic synthesis approaches suffer from complex procedures, high costs, and environmental burdens. In recent years, synthetic biology has provided a systematic solution for the efficient and sustainable production of HMOs. By employing Escherichia coli, Corynebacterium glutamicum, and Saccharomyces cerevisiae as chassis cells, researchers have achieved regeneration of sugar donors, optimization of glycosyltransferases, and modular reconstruction of metabolic pathways, resulting in fermentation titers of 141.27 g/L for 2′-fucosyllactose (2′-FL) and 56.8 g/L for 3′-sialyllactose (3′-SL), thereby accelerating industrial implementation. Meanwhile, the successful biosynthesis of structurally complex molecules such as lacto-N-fucopentaose I (LNFP I) marks the transition of HMOs research from laboratory exploration to engineering feasibility. This review summarizes the current advances and applications of synthetic biology in HMOs biosynthesis, with an emphasis on key technological bottlenecks, including insufficient donor recycling efficiency, poor enzyme stability, low host tolerance, and incomplete green manufacturing systems. Furthermore, it highlights future perspectives, suggesting that with the integration of AI-driven metabolic regulation, multi-omics analysis, and low-carbon biomanufacturing technologies, HMOs biosynthesis is poised to advance toward intelligent, precise, and sustainable production, offering new opportunities for the nutritional application of functional carbohydrates and innovation in the food industry.

Key words: human milk oligosaccharides, synthetic biology, nucleotide sugar donor, glycosyltransferase, cell factory