| [1] |
Bode L. The functional biology of human milk oligosaccharides [J]. Early Hum Dev, 2015, 91(11): 619-622.
|
| [2] |
Soyyılmaz B, Mikš MH, Röhrig CH, et al. The mean of milk: a review of human milk oligosaccharide concentrations throughout lactation [J]. Nutrients, 2021, 13(8): 2737.
|
| [3] |
Sprenger N, Tytgat HLP, Binia A, et al. Biology of human milk oligosaccharides: From basic science to clinical evidence [J]. J Hum Nutr Diet, 2022, 35(2): 280-299.
|
| [4] |
Dinleyici M, Barbieur J, Dinleyici EC, et al. Functional effects of human milk oligosaccharides (HMOs) [J]. Gut Microbes, 2023, 15(1): 2186115.
|
| [5] |
Hill DR, Chow JM, Buck RH. Multifunctional benefits of prevalent HMOs: implications for infant health [J]. Nutrients, 2021, 13(10): 3364.
|
| [6] |
Xu LL, Townsend SD. Synthesis as an expanding resource in human milk science [J]. J Am Chem Soc, 2021, 143(30): 11277-11290.
|
| [7] |
Zheng J, Xu H, Fang JQ, et al. Enzymatic and chemoenzymatic synthesis of human milk oligosaccharides and derivatives [J]. Carbohydr Polym, 2022, 291: 119564.
|
| [8] |
Bensimon J, Lu XN. Human milk oligosaccharides produced by synthetic biology [J]. J Agric Food Res, 2024, 18: 101361.
|
| [9] |
Lu MY, Mosleh I, Abbaspourrad A. Engineered microbial routes for human milk oligosaccharides synthesis [J]. ACS Synth Biol, 2021, 10(5): 923-938.
|
| [10] |
Xu MY, Sun MT, Meng XF, et al. Engineering pheromone-mediated quorum sensing with enhanced response output increases fucosyllactose production in Saccharomyces cerevisiae [J]. ACS Synth Biol, 2023, 12(1): 238-248.
|
| [11] |
Li N, Yan SF, Xia HZ, et al. Metabolic engineering of Escherichia coli BL21(DE3) for 2'-fucosyllactose synthesis in a higher productivity [J]. ACS Synth Biol, 2025, 14(2): 441-452.
|
| [12] |
Lv XY, Chen XS, Liu YF, et al. Efficient production of 3'-sialyllactose using Escherichia coli [J]. J Agric Food Chem, 2024, 72(49): 27314-27325.
|
| [13] |
Fang H, Gao JL, Mund NK, et al. Recent advances in metabolic engineering strategies for the production of human milk oligosaccharides in microbial hosts [J]. ACS Synth Biol, 2025, 14(8): 2885-2905.
|
| [14] |
Hu MM, Zhang T. Expectations for employing Escherichia coli BL21 (DE3) in the synthesis of human milk oligosaccharides [J]. J Agric Food Chem, 2023, 71(16): 6211-6212.
|
| [15] |
Snoeck S, Guidi C, De Mey M. "Metabolic burden" explained: stress symptoms and its related responses induced by (over)expression of (heterologous) proteins in Escherichia coli [J]. Microb Cell Fact, 2024, 23(1): 96.
|
| [16] |
Appleton E. A design-build-test-learn tool for synthetic biology [D]. Boston: Boston University, 2016.
|
| [17] |
Liao XP, Ma HW, Tang YJ. Artificial intelligence: a solution to involution of design-build-test-learn cycle [J]. Curr Opin Biotechnol, 2022, 75: 102712.
|
| [18] |
Matzko R, Konur S. Technologies for design-build-test-learn automation and computational modelling across the synthetic biology workflow: a review [J]. Netw Model Anal Health Inform Bioinform, 2024, 13(1): 22.
|
| [19] |
Yadav VG, De Mey M, Lim CG, et al. The future of metabolic engineering and synthetic biology: Towards a systematic practice [J]. Metab Eng, 2012, 14(3): 233-241.
|
| [20] |
Rok C, Dae J, Yang D, et al. Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering [J]. Trends Biotechnol, 2019, 37(8): 817-837.
|
| [21] |
Zhao ML, Zhu YY, Wang H, et al. An overview of sugar nucleotide-dependent glycosyltransferases for human milk oligosaccharide synthesis [J]. J Agric Food Chem, 2023, 71(33): 12390-12402.
|
| [22] |
Slater AS, McDonald AG, Hickey RM, et al. Glycosyltransferases: glycoengineers in human milk oligosaccharide synthesis and manufacturing [J]. Front Mol Biosci, 2025, 12: 1587602.
|
| [23] |
Bych K, Mikš MH, Johanson T, et al. Production of HMOs using microbial hosts—from cell engineering to large scale production [J]. Curr Opin Biotechnol, 2019, 56: 130-137.
|
| [24] |
Ghavami S, Pandi A. CRISPR interference and its applications [J]. Prog Mol Biol Transl Sci, 2021, 180: 123-140.
|
| [25] |
Ghavami S, Cardiff RA P, Carothers JM, et al. Systems-level modeling for CRISPR-based metabolic engineering [J]. ACS Synthetic Biology, 2024, 13(9): 2643-2652.
|
| [26] |
Niyas AMM, Eiteman MA. Phosphatases and phosphate affect the formation of glucose from pentoses in Escherichia coli [J]. Eng Life Sci, 2017, 17(5): 579-584.
|
| [27] |
Jiang T, Li CY, Teng YX, et al. Recent advances in improving metabolic robustness of microbial cell factories [J]. Curr Opin Biotechnol, 2020, 66: 69-77.
|
| [28] |
Wang ZK, Gong JS, Qin JF, et al. Improving the intensity of integrated expression for microbial production [J]. ACS Synth Biol, 2021, 10(11): 2796-2807.
|
| [29] |
Lee YG, Jo HY, Lee DH, et al. De novo biosynthesis of 2ʹ-fucosyllactose by bioengineered Corynebacterium glutamicum [J]. Biotechnol J, 2024, 19(1): 2300461.
|
| [30] |
Xu MY, Meng XF, Zhang WX, et al. Improved production of 2'-fucosyllactose in engineered Saccharomyces cerevisiae expressing a putative α-1,2-fucosyltransferase from Bacillus cereus [J]. Microb Cell Fact, 2021, 20(1): 165.
|
| [31] |
Liu YL, Zhu YY, Wang H, et al. Strategies for enhancing microbial production of 2'-fucosyllactose, the most abundant human milk oligosaccharide [J]. J Agric Food Chem, 2022, 70(37): 11481-11499.
|
| [32] |
Schelch S, Eibinger M, Zuson J, et al. Modular bioengineering of whole-cell catalysis for sialo-oligosaccharide production: coordinated co-expression of CMP-sialic acid synthetase and sialyltransferase [J]. Microb Cell Fact, 2023, 22(1): 241.
|
| [33] |
Li ML, Li CC, Hu MM, et al. Metabolic engineering strategies of de novo pathway for enhancing 2'-fucosyllactose synthesis in Escherichia coli [J]. Microb Biotechnol, 2022, 15(5): 1561-1573.
|
| [34] |
Tao MT, Yang LH, Zhao CH, et al. Implementation of a quorum-sensing system for highly efficient biosynthesis of lacto-N-neotetraose in engineered Escherichia coli MG1655 [J]. J Agric Food Chem, 2024, 72(13): 7179-7186.
|
| [35] |
Li YY, Du GC, Chen J, et al. Glycosyltransferases in human milk oligosaccharide synthesis: structural mechanisms and rational design [J]. Curr Opin Biotechnol, 2025, 93: 103315.
|
| [36] |
Palcic MM. Glycosyltransferases as biocatalysts [J]. Curr Opin Chem Biol, 2011, 15(2): 226-233.
|
| [37] |
Hancock SM, Vaughan MD, Withers SG. Engineering of glycosidases and glycosyltransferases [J]. Curr Opin Chem Biol, 2006, 10(5): 509-519.
|
| [38] |
Fatima K, Naqvi F, Younas H. A review: molecular chaperone-mediated folding, unfolding and disaggregation of expressed recombinant proteins [J]. Cell Biochem Biophys, 2021, 79(2): 153-174.
|
| [39] |
Freudl R. Signal peptides for recombinant protein secretion in bacterial expression systems [J]. Microb Cell Fact, 2018, 17(1): 52.
|
| [40] |
Liu WX, Tang SZ, Peng J, et al. Enhancing heterologous expression of a key enzyme for the biosynthesis of 2'-fucosyllactose [J]. J Sci Food Agric, 2022, 102(12): 5162-5171.
|
| [41] |
陈庆学, 石丰毅, 赵丽娜, 等. 母乳低聚糖的体内代谢与体外合成研究进展 [J]. 食品科学, 2021, 42(19): 379-387.
|
|
Chen QX, Shi FY, Zhao LN, et al. Recent advances in in vivo metabolism and in vitro synthesis of breast milk oligosaccharides [J]. Food Sci, 2021, 42(19): 379-387.
|
| [42] |
Wang J, Lao CW, Wu JY, et al. Multimodular metabolic engineering strategy enables high-efficiency synthesis of lacto-N-fucopentaose I in engineered Escherichia coli [J]. J Agric Food Chem, 2025, 73(25): 15869-15879.
|
| [43] |
Bai YY, Yang XH, Yu H, et al. Substrate and process engineering for biocatalytic synthesis and facile purification of human milk oligosaccharides [J]. ChemSusChem, 2022, 15(9): e202102539.
|
| [44] |
Chauhan PS, Dadheech T, Saxena AS, et al. Microbial production of human milk oligosaccharides (HMOs) [J]. Microbial Nutraceuticals: Products and Processes, 2025: 197-229.
|
| [45] |
Hu MM, Li ML, Miao M, et al. Engineering Escherichia coli for the high-titer biosynthesis of lacto-N-tetraose [J]. J Agric Food Chem, 2022, 70(28): 8704-8712.
|
| [46] |
Liu LX, Ding DQ, Wang HY, et al. Balancing cell growth and product synthesis for efficient microbial cell factories [J]. Adv Sci, 2025, 12(40): e10649.
|
| [47] |
Ario de Marco LV. Native folding of aggregation-prone recombinant proteins in Escherichia coli by osmolytes, plasmid- or benzyl alcohol-overexpressed molecular chaperones [J]. Cell Stress Chaperones, 2005, 10(4): 329-339.
|
| [48] |
Duman H, Bechelany M, Karav S. Human milk oligosaccharides: decoding their structural variability, health benefits, and the evolution of infant nutrition [J]. Nutrients, 2024, 17(1): 118.
|
| [49] |
Molnar‐Gabor D, Hederos MJ, Bartsch S, et al. Emerging Field-Synthesis of complex carbohydrates. Case Study on HMOs [J]. Industrial enzyme applications, 2019: 179-201.
|
| [50] |
Buchanan D, Martindale W, Romeih E, et al. Recent advances in whey processing and valorisation: Technological and environmental perspectives [J]. Int J Dairy Technol, 2023, 76(2): 291-312.
|
| [51] |
Chen RP, Ren SY, Li S, et al. Synthetic biology for the food industry: advances and challenges [J]. Crit Rev Biotechnol, 2025, 45(1): 23-47.
|
| [52] |
Mirsalami SM, Mirsalami M. Advances in genetically engineered microorganisms: Transforming food production through precision fermentation and synthetic biology [J]. Future Foods, 2025, 11: 100601.
|
| [53] |
Boukid F, Ganeshan S, Wang YX, et al. Bioengineered enzymes and precision fermentation in the food industry [J]. Int J Mol Sci, 2023, 24(12): 10156.
|
| [54] |
Lu HZ, Xiao LC, Liao WB, et al. Cell factory design with advanced metabolic modelling empowered by artificial intelligence [J]. Metab Eng, 2024, 85: 61-72.
|
| [55] |
Williams T, Kalinka K, Sanches R, et al. Machine learning and metabolic modelling assisted implementation of a novel process analytical technology in cell and gene therapy manufacturing [J]. Sci Rep, 2023, 13: 834.
|