生物技术通报 ›› 2026, Vol. 42 ›› Issue (4): 26-37.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0791

• 综述与专论 •    下一篇

水稻非生物胁迫协同耐受机制研究进展

殷亚龙1,2(), 张明洋1,2, 王洁敏3,4, 苗雪雪3,4, 陈劲3, 王伟平2,3,4()   

  1. 1.海南大学,海口 570228
    2.三亚市国家耐盐碱水稻技术创新中心,三亚 572000
    3.杂交水稻全国重点实验室,长沙 410125
    4.湖南杂交 水稻研究中心,长沙 410125
  • 收稿日期:2025-07-23 出版日期:2026-02-09 发布日期:2026-02-09
  • 通讯作者: 王伟平,男,博士,研究员,研究方向 :水稻遗传育种;E-mail: wangweiping@hhrrc.ac.cn
  • 作者简介:殷亚龙,男,硕士,研究方向 :农艺与种业;E-mail: Yinyalong1997@outlook.com
  • 基金资助:
    海南省自然科学基金面上项目(324MS135);农业生物育种重大项目(2022ZD0400402);长沙市科技计划项目(长科发【2024】20号);国家自然科学基金青年基金项目(32301765)

Advances in Coordinated Tolerance Mechanisms to Abiotic Stresses in Rice

YIN Ya-long1,2(), ZHANG Ming-yang1,2, WANG Jie-min3,4, MIAO Xue-xue3,4, CHEN Jin3, WANG Wei-ping2,3,4()   

  1. 1.Hainan University, Haikou 570228
    2.National Technology Innovation Center for Salt-Tolerant Rice at Sanya, Sanya 572000
    3.State Key Laboratory of Hybrid Rice, Changsha 410125
    4.Hunan Hybrid Rice Research Center, Changsha 410125
  • Received:2025-07-23 Published:2026-02-09 Online:2026-02-09

摘要:

全球气候变化加剧了水稻盐-旱、旱-热、盐-热以及盐-热-旱等复合非生物胁迫风险,严重威胁全球粮食安全生产。定向改良可有效改善水稻等粮食作物单一非生物胁迫耐受性,但因遗传的复杂性与多胁迫间的非线性互作等因素,导致作物复合非生物胁迫抗性难以实现系统性提升,解析多重非生物胁迫下的植物协同耐受机制是复合胁迫下的作物耐受性提升的关键。本文系统梳理了水稻应对盐、旱、热等单一非生物胁迫,以及盐-旱、旱-热和盐-热等复合胁迫的主要响应机制;明确了离子稳态、渗透调节等单一胁迫防御基础以及通过信号传导、转录调控、代谢途径和表观遗传修饰等为基础的复合胁迫响应机制;同时指出在目前的非生物复合胁迫研究中存在田间环境适配性低、多组学数据整合标准缺失及多重胁迫非线性互作机制解析不足等问题,并提出了强化田间表型与分子机制关联的跨尺度验证、构建多组学数据标准化整合平台及优化抗逆与生长发育平衡的遗传改良等解决思路。本文为复合胁迫抗性的育种改良提供了理论框架基础,对培育广适高效抗逆水稻新品种具有重要指导意义。

关键词: 水稻, 复合非生物胁迫, 盐胁迫, 干旱胁迫, 高温胁迫, 协同耐受机制

Abstract:

Global climate change is intensifying the occurrence of compound abiotic stresses, such as salinity-drought, drought-heat, salinity-heat, and salinity-drought-heat in rice production, constituting a major threat to global food security. Although targeted genetic improvement has successfully enhanced crop tolerance to individual abiotic stresses, the inherent genetic complexity and nonlinear interactions among multiple stresses have impeded systematic increase of crop’s resistance to compound abiotic stress. Understanding the coordinated tolerance mechanisms in plants under multifaceted stress conditions is therefore key to advancing crop performance under such challenges. This review systematically summarizes the principal response mechanisms of rice (Oryza sativa) to individual abiotic stresses (salinity, drought, and heat) as well as to compound stresses (salinity-drought, drought-heat, salinity-heat, and salinity-drought-heat). This review outlines fundamental adaptation strategies to single stresses, such as ion homeostasis and osmotic adjustment and elucidates integrated response mechanisms involving signal transduction, transcriptional regulation, metabolic reprogramming, and epigenetic modifications under compound stress conditions. Furthermore, it identifies critical limitations in current compound stress research, including poor field relevance, the absence of standardized multi-omics data integration, and insufficient mechanistic insight into nonlinear stress interactions. To address these gaps, we propose future strategies such as enhancing cross-scale validation linking field phenotyping to molecular mechanisms, establishing unified platforms for multi-omics data standardization, and optimizing genetic solutions that balance stress adaptation with growth and productivity. This review provides a conceptual framework for breeding rice with enhanced compound stress tolerance and offers valuable insights for developing resilient cultivars suited to increasingly variable and stressful climates.

Key words: rice, compound abiotic stress, salinity stress, drought stress, heat stress, coordinated tolerance mechanism