[1] Bower R, Birch RG. Transgenic sugarcane plants via microprojectile bombardment[J]. Plant J, 1992, 2 :409-416.
[2] Snyman SJ, Meyer GM, Richards JM, et al. Refining the application of direct embryogenesis in sugarcane :Effect of the developmental phase of leaf disc explants and the timing of DNA transfer on transformation efficiency[J]. Plant Cell Rep, 2006, 25(10): 1016-1023.
[3] Weng LX, Deng HH, Xu JL, et al. Regeneration of sugarcane elite breeding lines and engineering of strong stem borer resistance[J]. Pest Manage Sci, 2006, 62 :178-187.
[4] Weng LX, Deng HH, Xu JL, et al. Transgenic sugarcane plants expressing high levels of modified cry1Ac provide effective control against stem borers in field trials[J]. Transgenic Res, 2011, 20 : 759-772.
[5] Christy LA, Aravith S, Saravanakumar M, et al. Engineering sugarcane cultivars with bovine pancreatic trypsin inhibitor(aprotinin) gene for protection against top borer(Scirpophaga excerptalis Walker) [J]. Plant Cell Rep, 2009, 28 :175-184.
[6] Manickavasagam M, Ganapathi A, Anbazhagan VR, et al. Agrobacterium- mediated genetic transformation and development of herbicide- resistant sugarcane(Saccharum species hybrids)using axi2013 年第3期7 甘仪梅等:甘蔗转基因育种研究进展 llary buds[J]. Plant Cell Rep, 2004, 23(3):134-143.
[7] Arencibia AD, Carmona ER. Sugarcane(Saccharum spp.)[J]. Methods Mol Bio, 2006, 344 :227-235.
[8] 张福丽, 陈龙, 李成伟. 农杆菌介导的植物转基因影响因素[J]. 生物技术通报, 2012(7):14-19.
[9] Basnayake SW, Moyle R, Birch RG. Embryogenic callus proliferation and regeneration conditions for genetic transformation of diverse sugarcane cultivars[J]. Plant Cell Rep, 2011, 30(3):439-448.
[10] Santosa DA, Hendroko R, Farouk A, Greiner R. A rapid and highly efficient method for transformation of sugarcane callus[J]. Mol Biotechnol, 2004, 28(2):113-119.
[11] Eldessoky DS, Ismail RM, Abdel-Hadi AH, Abdallah NA. Establishment of regeneration and transformation system of sugarcane cultivar GT54-9(C9)[J]. GM Crops, 2011, 2(2):126-134.
[12] Zhangsun DT, Luo SL, Chen RK, et al. Improved Agrobacteriummediated genetic transformation of GNA transgenic sugarcane[J]. Biologia(Bratislava), 2007, 62(4):386-393.
[13] Joyce P, Kuwahata M, Turner N, Lakshmanan P. Selection system and cocultivation medium are important determinants of Agrobacterium mediated transformation of sugarcane[J]. Plant Cell Rep, 2010, 29(2):173-183.
[14] Srikanth J, Subramonian N, Premachandran MN. Advances in transgenic research for insect resistance in sugarcane[J]. Tropical Plant Biol, 2011, 4 :52-61.
[15] Damaj MB, Beremand PD, Buenrostro-Nava MT, et al. Isolating promoters of multigene family members from the polyploid sugarcane genome by PCR-based walking in BAC DNA[J]. Genome, 2010, 53(10):840-847.
[16] 王正鹏. 甘蔗茎杆特异表达基因启动子的克隆及其植物表达 载体的构建[D]. 海口:海南大学, 2008.
[17] 马滋蔓. 甘蔗己糖转运蛋白基因启动子pPST2a 的功能研 究[D]. 海口:海南大学, 2010.
[18] Ingelbrecht IL, Irvine JE, Mirkov TE. Posttranscriptional gene silencing in transgenic sugarcane. Dissection of homology-dependent virus resistance in a monocot that has a complex polyploid genome[J]. Plant Physiol, 1999, 119(4):1187-1198.
[19] Hansom S, Bower R, Zhang L, et al. Regulation of transgene expression in sugarcane [M] // Singh V, Kumar V. Proceedings of the XXIII ISSCT Congress. New Delhi :India, 1999 :278-290.
[20] Wei HR, Wang ML, Moore PH, et al. Comparative expression analysis of two sugarcane polyubiquitin promoters and flanking sequences in transgenic plants[J]. J Plant Physiol, 2003, 160 : 1241-1251.
[21] Yang MZ, Bower R, Burow MD, et al. A rapid and direct approach to identify promoters that confer high levels of gene expression in monocots[J]. Crop Sci, 2003, 43 :1805-1813.
[22] 周岩, 游建. 植物基因工程——标记基因的安全利用[J]. 生 物技术通报, 2012(7):7-13.
[23] Jain M, Chengalrayan K, Abouzid A, Gallo M. Prospecting the utility of a PMI/mannose selection system for the recovery of transgenic sugarcane(Saccharum spp. hybrid)plants[J]. Plant Cell Rep, 2007, 26(5):581-590.
[24] Arencibia A, Vázquez RI, Prieto D, et al. Transgenic sugarcane plants resistant to stem borer attack[J]. Mol Breed, 1997, 3 : 247-255.
[25] Arencibia AD, Carmona ER, Cornide MT, et al. Somaclonal variation in insect-resistant transgenic sugarcane(Saccharum hybrid) plants produced by cell electroporation[J]. Transgenic Res, 1999, 8 :349-360.
[26] 冯翠莲, 沈林波, 赵婷婷, 等. Cry1Ab 基因转化甘蔗及转基因 抗虫植株的获得[J]. 热带农业科学, 2011, 31(9):21-26.
[27] 冯翠莲, 刘晓娜, 张树珍, 等. CryIA(c)基因植物表达载体 的构建及转基因甘蔗的获得[J]. 热带作物学报, 2010, 31(7): 1103-1108
[28] Arvinth S, Arun S, Selvakesavan RK, et al. Genetic transformation and pyramiding of aprotinin-expressing sugarcane with cry1Ab for shoot borer(Chilo infuscatellus)resistance[J]. Plant Cell Rep, 2010, 29(4):383- 395.
[29] Khan MS, Ali S, Iqbal J. Developmental and photosynthetic regulation of δ-endotoxin reveals that engineered sugarcane conferring resistance to ‘dead heart’ contains no toxins in cane juice[J]. Mol Biol Rep, 2011, 38 :2359-2369.
[30] Pompermayer P, Lopes AR, Terra WR, et al. Effects of soybean proteinase inhibitor on development, survival and reproductive potential of the sugarcane borer, Diatraea saccharalis[J]. Entomol Exp Appl, 2001, 99 :79-85.
[31] Falco MC, Silva-Filho MC. Expression of soybean proteinase inhibitors in transgenic sugarcane plants :effects on natural defense against Diatraea saccharalis[J]. Plant Physiol Biochem, 2003, 41(8):761-766.
[32] 刘晓娜, 冯翠莲, 张树珍. GNA 基因表达载体的构建及遗传转 化甘蔗[J]. 热带作物学报, 2010, 31(6):887-893.
[33] Allsopp PG, McGhie TK. Snowdrop lectin and wheatgerm lectins as antimetabolites for the control of sugarcane whitegrubs[J]. Entomol Exp Appl, 1996, 80 :409-414.
[34] Sétamou M, Bernal JS, Legaspi JC, et al. Evaluation of lectinexpressing transgenic sugarcane against stalkborers(Lepidoptera : Pyralidae):effects on life history parameters[J]. J Econ Entomo, 2002, 95 :469-477.
[35] Tomov BW, Bernal JS. Effects of GNA transgenic sugarcane on life history parameters of Parallorhogas pyralophagus(Marsh) (Hymenoptera :Braconidae), a parasitoid of Mexican rice borer[J]. J Econ Entomol, 2003, 96(3):570-576.
[36] Luo SL, Zhangsun DT, Tang K. Functional GNA expressed in Escherichia coli with high efficiency and its effect on Ceratovacuna lanigera Zehntner[J]. Appl Microbiol Biotechnol, 2005, 69 : 184-191.
[37] Birch RG, Bower R, Elliott A. Regulation of transgene expression : progress towards practical development in sugarcane, and implications for other plant species[J]. In Developments in Plant Genetics and Breeding, 2000, 5 :118-125.
[38] Zhang L, Xu J, Birch RG. Engineered detoxification confers resistance against a pathogenic bacterium[J]. Nature Biotechnology, 1999, 17(10):1021-1024.
[39] McQualter RB, Harding RM, Dale JL, Smith GR. Virus derived transgenes confer resistance to Fiji disease in transgenic sugarcane plants[M] //Hogarth DM. International Society of Sugar Cane Technologists :Proceedings of the XXIV Congress, Brisbane : Australia, 2001 :584-585.
[40] Butterfield MK, Irvine JE, Valdez Garza M, Mirkov TE. Inheritance and segregation of virus and herbicide resistance transgenes in sugarcane[J]. Theor Appl Genet, 2002, 104(5):797-803.
[41] 姚伟, 余爱丽, 徐景升, 等. 转ScMV-CP 基因甘蔗的分子生物 学分析与鉴定[J]. 分子植物育种, 2004, 2(1):13-18.
[42] 罗遵喜, 杨志才, 吕苏珊, 等. 美洲商陆抗病毒蛋白基因遗传 转化甘蔗的研究[J]. 热带作物学报, 2009, 30(11):1646- 1650.
[43] Zhu YJ, McCafferty H, Osterman G, et al. Genetic transformation with untranslatable coat protein gene of sugarcane yellow leaf virus reduces virus titers in sugarcane[J]. Transgenic Res, 2011, 20 (3):503-512.
[44] 顾丽红, 张树珍, 杨本鹏, 等. 几丁质酶和β-1, 3-葡聚糖酶基 因导入甘蔗[J]. 分子植物育种, 2008, 6(2):277-280.
[45] 孔冉. KP4 基因遗传转化甘蔗的研究[D]. 海口:海南大学, 2012.
[46] 沈林波. 紫花苜蓿防御素基因MsDef1 转化甘蔗及抗病转基因 植株的筛选[J]. 海口:海南大学, 2012.
[47] Falco MC, Tulmann NA, Ulian EC. Transformation and expression of a gene for herbicide resistant in a Brazilian sugarcane[J]. Plant Cell Rep, 2000, 19(12):301-304.
[48] Leibbrandt NB, Snyman SJ. Stability of gene expression and agronomic performance of a transgenic herbicide-resistant sugarcane line in South Africa[J]. Crop Science, 2003, 43(2): 671-677.
[49] Ma H, Albert HH, Paull R, Moore PH. Metabolic engineering of invertase activities in different subcellular compartments affects sucrose accumulation in sugarcane cells [J]. Aust J Plant Physiol, 2000, 27(11):1021-1030.
[50] Wang JG, Zhang SZ. Transgenic sugarcane plants expressing Saccharomyces cerevisiae inorganic pyrophosphatase display altered carbon partitioning in their sink stems and increased photosynthetic activity in their source leaves [C] // Castillo RO, Dookun-Saumtally A. Maceió :10th germplasm & breeding and 7th molecular biology workshop, 2011 :63.
[51] Vickers JE, Grof CPL, Bonnett GD, et al. Effects of tissue culture, biolistic transformation, and introduction of PPO and SPS gene constructs on performance of sugarcane clones in the field[J]. Aust J Agr Res, 2005, 56(1):57-68.
[52] Groenewald JH, Botha FC. Down-regulation of pyrophosphate : fructose 6-phosphate 1-phosphotransferase(PFP)activity in sugarcane enhances sucrose accumulation in immature internodes[J]. Transgenic Res, 2008, 17(1):85-92.
[53] van der Merwe MJ, Groenewald JH, Kossmann J, et al. Downregula tion of pyrophosphate :D-fructose-6-phosphate 1-phosphotransferase activity in sugarcane culms enhances sucrose accumulation due to elevated hexosephosphate levels[J]. Planta, 2010, 231(3): 595-608.
[54] Ferreira SJ, Kossmann J, Lloyd JR, Groenewald JH. The reduction of starch accumulation in transgenic sugarcane cell suspension culture lines[J]. Biotechnol J, 2008, 3(11):1398-1406. 2013年第3期9 甘仪梅等:甘蔗转基因育种研究进展
[55] Hamerli D, Birch RG. Transgenic expression of trehalulose synthase results in high concentrations of the sucrose isomer trehalulose in mature stems of field-grown sugarcane[J]. Plant Biotechnol J, 2011, 9(1):32-37.
[56] Chong BF, Bonnett GD, Glassop D, et al. Growth and metabolism in sugarcane are altered by the creation of a new hexose-phosphate sink[J]. Plant Biotechnol J, 2007, 5(2):240-253.
[57] Chong BF, Abeydeera WP, Glassop D, et al. Co-ordinated synthesis of gentiobiitol and sorbitol, evidence of sorbitol glycosylation in transgenic sugarcane[J]. Phytochemistry, 2010, 71(7):736- 741.
[58] Wang ML, Goldstein C, Su W, et al. Production of biologically active GM-CSF in sugarcane :a secure biofactory[J]. Transgenic Res, 2005, 14(2):167-178.
[59] McQualter RB, Chong BF, Meyer K, et al. Initial evaluation of sugarcane as a production platform for p-hydroxybenzoic acid[J]. Plant Biotechnol J, 2005, 3(1):29-41.
[60] Ribeiro CW, Soares-Costa A, Falco MC, et al. Production of a His-tagged canecystatin in transgenic sugarcane and subsequent purification[J]. Biotechnol Prog, 2008, 24(5):1060-1066.
[61] Purnell MP, Petrasovits LA, Nielsen LK, Brumbley SM. Spatiotemporal characterization of polyhydroxybutyrate accumulation in sugarcane[J]. Plant Biotechnol J, 2007, 5(1):173-184.
[62] Tilbrook K, Gebbie L, Schenk PM, et al. Peroxisomal polyhydroxyalkanoate biosynthesis is a promising strategy for bioplastic production in high biomass crops[J]. Plant Biotechnol J, 2011, 9(9): 958-969.
[63] Petrasovits LA, Zhao L, McQualter RB, et al. Enhanced polyhydroxybutyrate production in transgenic sugarcane[J]. Plant Biotechnol J, 2012, 10(5):569-578.
[64] Harrison MD, Geijskes J, Coleman HD, et al. Accumulation of recombinant cellobiohydrolase and endoglucanase in the leaves of mature transgenic sugar cane[J]. Plant Biotechnol J, 2011, 9(8): 884-896.
[65] Zhang SZ, Yang BP, Feng CL, et al. Expression of the grifola frondosa trehalose synthase gene and lmprovement of droughttolerance in sugarcane(Saccharum officinarum L.)[J]. J Integrative Plant Biology, 2006, 48(4):453-459.
[66] 武媛丽. 转蔗糖:蔗糖-1-果糖基转移酶基因甘蔗的抗旱性研 究[D]. 海口:海南大学, 2011. |