Biotechnology Bulletin ›› 2014, Vol. 0 ›› Issue (12): 33-39.doi: 10.13560/j.cnki.biotech.bull.1985.2014.12.006
• Review • Previous Articles Next Articles
1Wang Fawei,3Wang Qi,1,2Deng Yu,2Dong Jinye,1Wan Nan, 1Li Xiaowei, 1Li Haiyan
Received:
2014-04-25
Online:
2014-12-08
Published:
2014-12-12
Wang Fawei,Wang Qi,Deng Yu,Dong Jinye,Wan Nan, Li Xiaowei, Li Haiyan. Advance in the Research of Phospholipase C Gene Family[J]. Biotechnology Bulletin, 2014, 0(12): 33-39.
[1] Zheng SZ, Liu YL, Li B, et al. Phosphoinositide-specific phospholip-ase C9 is involved in the thermotolerance of Arabidopsis[J]. Plant J, 2012, 69(4):689-700. [2] Singh A, Kanwar P, Pandey A, et al. Comprehensive genomic analysis and expression profiling of phospholipase C gene family during abiotic stresses and development in Rice[J]. PLoS One, 2013, 8(4):e62494. [3] Melin PM, Sommarin M, Sandelius AS, et al. Identification of Ca2+-stimulated polyphosphoinositide phospholipase C in isolated plant plasma membranes[J]. FEBS Letters, 1987, 223(1):87-91. [4] Yamamoto YT, Conkling MA, Sussex IM, et al. An Arabidopsis cDNA related to animol phoshpoinositide-specific phospholipase C genes[J]. Plant Physiol, 1995, 107(3):1029-1030. [5] Shi JR, Gonzales RA, Bhattacharyya MK. Characterization of a plas-ma membrane-associated phosphoinositide-specific phospholipase C from soybean[J]. Plant J, 1995, 8(3):381-390. [6] Hirayama T, Mitsukawa N, Shibata D, et al. AtPLC2, a gene encoding phosphoinositide-specific phospholipase C, is constitutively express-ed in vegetative and floral tissues in Arabidopsis thaliana[J]. Plant Mol Biol, 1997, 34(1):175-180. [7] Zhai SM, Sui ZH, Yang A, et al. Charaterization of a novel phospho-inositide-specific phospholipase C from Zea may sans its expression in Escherichia coli[J]. Biotech Lett, 2005, 27(11):799-804. [8] Vossen JH, Haliem AA, Fradin EF, et al. Identification of tomato phosphatidylinositol-specific phospholipase-C(PI-PLC)family members and the role of PLC4 and PLC6 in HR and disease resistance[J]. Plant J, 2010, 62(2):224-239. [9] Peters C, Li M, Narasimhan R, et al. Nonspecific phospholipase C NPC4 promotes responses to abscisic Acid and tolerance to hyperosmotic stress in Arabidopsis[J]. Plant Cell, 2010, 22(8):26422659. [10] Nakamura Y, Awai K, Masuda T, et al. A novel phosphatidycholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis[J]. J Biol Chem, 2005, 280(9):7469-7476. [11] Pokotylo I, Pejchar P, Potocky M, et al. The plant non-specific phospholipase C gene family. Novel competitors in lipid signaling [J]. Prog Lipid Res, 2013, 52(1):62-79. [12] Suh P, Park J, Manzoli L, et al. Mutiple roles of phosphoinositide-specific phospholipase C isozyme[s J]. BMB Report, 2008, 41(6): 415-434. [13] Tasma I, Brendel V, Whitham SA, et al. Expression and evolution of the phosphoinositide-specific phospholipase C gene family in Arabidopsis thaliana[J]. Plant Physiol Bioch, 2008, 46(7): 627-637. [14] Paterson H, Savopoulos J, Perisic O, et al. Phospholipase C delta 1 requires a pleckstrin homology domain for interaction with the plasma membrane[J]. Biochem J, 1995, 312(3):661-666. [15] Wang T, Dowal L, EI-Maghrabi MR, et al. The pleckstrin homology domain of phospholipase C beta(2)links the binding of gbeta-gamma to activation of the catalytic core[J]. J Biol Chem, 2000, 275(11):7466-7469. [16] Falasca M, Logan S, Lehto VP, et al. Activation of phospholipase C gamma by PI 3-kinase-induced PH domain-mediated membrane targeting[J]. EMBO J, 1998, 17(2):414-422. [17] Cai J, Guo S, Lomasney JW, et al. Ca2+-independent binding of anionic phospholipids by phospholipase C δ1 EF-hand domain[J]. J Biol Chem, 2013, 288(52):37277-37288. [18] Nakashima S, Banno Y, Watanabe T, et al. Deletion and site-directed mutagenesis of EF-hand domain of phospholipase C-delta 1: effects on its activity[J]. Biochem Biophys Res Commun, 1995, 211(2):365-369. [19] Otterhag L, Sommarin M, Pical C. N-terminal EF-hand-like domain is required for phosphoinositide-specific phospholipase C activity in Arabidopsis thaliana[J]. FEBS Lett, 2001, 497: 165-170. [20] Essen L, Perisic O, Cheung R, et al. Crystal structure of a mammalian phosphoinositide-specific phospholipase C delta[J]. Nature, 1996, 380(6575):595-602. [21] Kuroda K, Ito M, Shikano T, et al. The role of X/Y linker region and N-terminal EF-hand domain in nuclear translocation and Ca2+ oscillation-inducing activities of phospholipase Cζ, a mammalian egg-activating factor[J]. J Biol Chem, 2006, 281: 27794-27805. [22] Wang LP, Lim C, Kuan Y, et al. Positive charge at position 549 is essential for phosphatidylinositol 4, 5-bisphosphate-hydrolyzing but not phosphatidylinositol-hydrolyzing activities of human phospholipase Cδ1[J]. J Biol Chem, 1996, 271: 24505-24516. [23] Rupwate SD, Rajasekharan R. C2 domain is responsible for targeting rice phosphoinositide specific phospholipase C[J]. Plant Mol Biol, 2012, 78(3):247-258. [24] Helling D, Possart A, Cottier S. Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling[J]. Plant Cell, 2006, 18(12): 3519-3534. [25] Munnik T,Testerink C. Plant phospholipid signaling: “in a nutshell”[J]. Journal of Lipid Research, 2009, 50 Suppl: S260-265. [26] Baluch P, Koeneman B, Hatch K, et al. PKC isotypes in post-activated and fertilized mouse eggs: association with the meiotic spindle[J]. Dev Biol, 2004, 274(1):45-55. [27] Yu Y, Halet G, Lai FA, et al. Regulation of diacylglycerol production and protein kinase C stimulation during sperm-and PLCζ-mediated mouse egg activation[J]. Biol Cell, 2008, 100(11):633-643. [28] Tatone C, Dell M, Francione A, et al. Ca2+-independent protein kinase C signaling in mouse eggs during the early phase of fertilization[J]. Int J Dev Biol, 2003, 47(5):327-333. [29] Halet G. PKC signalling at fertilization in mammalian eggs[J]. Biochim Biophys Acta, 2004, 1742(1-3):185-189. [30] Gaude N, Nakamura Y, Scheible WR, et al. Phospholipase C5(NPC5)is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis[J]. Plant J, 2008, 56: 28-39. [31] Prentki M, Biden T, Janjic D, et al. Rapid mobilization of Ca2+ from rat insulinoma microsomes by inositol 1, 4, 5-triphosphate[J]. Nature, 1984, 309(5968):562-564. [32] Streb H, Irvine R, Berridge MJ, et al. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol 1, 4, 5-triphosphate[J]. Nature, 1983, 306: 67-69. [33] Biden T, Prentki M, Irvine R, et al. Inositol 1, 4, 5-triphosphate mobilizes intracellular Ca2+ from permeabilized insulin-secreting cells[J]. Biochem, 1984, J 223(2):467-473. [34] Fein A, Payne R, Corson D, et al. Photoreceptor excitation and adaption by inositol 1, 4, 5-triphosphate[J]. Nature, 1984, 311: 157-160. [35] Berridge M. Inositol triphosphate and diacyglycerol as second messengers[J]. Biochem J, 1984, 220: 345-360. [36] Berridge M, Irvine R. Inositol triphosphate, a novel second messenger in cellular signal transducion[J]. Nature, 1984, 312: 315-321. [37] Berridge M. Inositol triphosphate and calcium signalling[J]. Nature, 1993, 361: 315-325. [38] Miyazaki S, Hashimoto N, Yoshimoto Y, et al. Temporal and spatial dynamics of the periodic increase in intracellular free calcium at fertilization of golden hamster eggs[J]. Dev Biol, 1986, 118(1): 259-267. [39] Berridge M. Smooth muscle cell calcium activation mechanisms [J]. J Physiol, 2008, 586(21):5047-5061. [40] Sanders K, Koy S, Ward S. Interstitial cells of Cajal as pacemakers in the gastrointestinal tract[J]. Annu Rev Physiol, 2006, 68: 307-343. [41] Park M, Petersen O, Tepikin A. The endoplasmic reticulum as one continuous Ca2+ pool: visualization of rapid Ca2+ movements and equilibration[J]. EMBO J, 2000, 19(21):5729-5739. [42] Chlieh F, MacRobbie E, Webb A, et al. Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells[J]. Proc Natl Acad Sci USA, 2003, 100(17):10091-10095. [43] Michell R. Inositol derivatives: evolution and functions[J]. Nat Rev Mol Cell Biol, 2008, 9(2):151-161. [44] Gallicano G, McGaughey, Capco D. Activation of protein kinase C after fertilization is required for remodeling the mouse egg into the zygote[J]. Mol Report Dev, 1997, 46(4):587-601. [45] Wang X, Devaiah S, Zhang W, et al. Signaling functions of phosphatidic acid[J]. Prog Lipid Res, 2006, 45(3):250-278. [46] Zhang Y, Zhu H, Zhang Q, et al. Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis[J]. Plant Cell, 2009, 21(8):2357-2377. [47] Yu L, Nie J, Cao C, et al. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana[J]. New Phytol, 2010, 188(3):762-773. [48] Wheeler G, Brownlee C. Ca2+ signalling in plants and green algae-changing channels[J]. Trends Plant Sci, 2008, 13: 506-514. [49] Cocco L, Faenza I, Fiume R, et al. Phosphoinositide-speicifc phospholipase C(PI-PLC)β1 and nuclear lipid-dependent signaling[J]. Biochim Biophy Acta, 2006, 1761: 509-521. [50] Misra S, Wu Y, Venkataraman G, et al. Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume(Pisum sativum):role in salinity and heat stress and cross-talk with phspholipase C[J]. Plant J, 2007, 51(4):656-669. [51] Xu ZP, Song Y, Yang K, et al. M3 mAChR-mediated IL-8 expression through PKC/NF-KB signaling pathways[J]. Inflamm Res, 2014, 63(6):463-473. [52] Ruelland E, Cantrel C, Gawer M, et al. Activation of phospholipase C and D is an early response to a cold exposure in Arabidopsis suspension cells[J]. Plant Physiol, 2002, 130(2):999-1007. [53] Xue H, Chen X, Mei Y. Function and regulation of phospholipid signalling in plants[J]. Biochem J, 2009, 421(2):145-156. [54] Meijer H, Munnik T. Phospholipid-based signaling in plants[J]. Annu Rev Plan Biol, 2003, 54: 265-306. [55] Qin C, Wang X.The Arabidopsis phospholipase D family: characerization of a calcium-independent and phosphatidylcholineselective PLDζ1 with distinct regulatory domains[J]. Plant Physiol, 2002, 128(3):1057-1068. [56] Li G, Lin F, Xue H. Genome-wide analysis of the phospholipase D family in Oryza sativa and functional characterization of PLDβ1 in seed germination[J]. Cell Res, 2007, 17(10):881-894. [57] DeWald D, Torabinejad J, Jones C, et al. Rapid accumulation of phosphatidylinositol 4, 5-bisphosphate and inosiol 1, 4, 5-triphosphate correlates with calcium mobilization in salt-stressed Arabidopsis[J]. Plant Physiol, 2001, 126(2):759-769. [58] Williams M, Torabinejad J, Cohick E, et al. Mutations in the Arabidopsis phosphoinositide phosphatase gene SAC9 lead to overaccumulation of PtdIns(4, 5)P2 and constiutive expression of the stress-response pathway[J]. Plant Physiol, 2005, 138(2): 686-700. [59] Konig S, Hoffmann M, Mosblech A, et al. Determination of content and fatty acid composition of unlabeled phosphoinositide species by thin-layer chromatography and gas chromatography[J]. Anal Biochem, 2008, 378(2):197-201. [60] Leshem Y, Seri L, Levine A. Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance[J]. Plant J, 2007, 51(2):185-197. |
[1] | ZHANG Man, ZHANG Ye-zhuo, HE Qi-zou-hong, E Yi-lan, LI Ye. Advances in Plant Cell Wall Structure and Imaging Technology [J]. Biotechnology Bulletin, 2023, 39(7): 113-122. |
[2] | CUI Xue-qiang, HUANG Chang-yan, DENG Jie-ling, LI Xian-min, LI Xiu-ling, ZHANG Zi-bin. SNP Markers Development and Genetic Relationship Analysis of Dendrobium Germplasms Using SLAF-seq Technology [J]. Biotechnology Bulletin, 2023, 39(6): 141-148. |
[3] | LI Tuo, LI Long-ping, QU Lei. Research Progress in the Structure of Tailed Bacteriophage and Its Receptors [J]. Biotechnology Bulletin, 2023, 39(6): 88-101. |
[4] | YANG Jun-zhao, ZHANG Xin-rui, ZHAO Guo-zhu, ZHENG Fei. Structure and Function Analysis of Novel GH5 Multi-domain Cellulase [J]. Biotechnology Bulletin, 2023, 39(4): 71-80. |
[5] | CUI Jun-mei, WEI Jia-ping, DONG Xiao-yun, WANG Ying, ZHENG Guo-qiang, LIU Zi-gang. PIP/PIPL: A Kind of Endogenous Plant Peptide Regulating Plant Stress Response and Development [J]. Biotechnology Bulletin, 2023, 39(3): 35-42. |
[6] | ZHOU Xi-wen, CHENG Ke, ZHU Hong-liang. Research Progress in the Approaches to in vivo RNA Secondary Structure Profiling in Plants [J]. Biotechnology Bulletin, 2023, 39(2): 51-62. |
[7] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[8] | CHEN Guang-xia, LI Xiu-jie, JIANG Xi-long, SHAN Lei, ZHANG Zhi-chang, LI Bo. Research Progress in Plant Small Signaling Peptides Involved in Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(11): 61-73. |
[9] | SHI Cheng-long, WANG Xi-wu, LI An-qi, QIAN Sen-he, WANG Zhou, ZHAO Shi-guang, LIU Yan, XUE Zheng-lian. Effect of ε-Polylysine on the Cell Structure and Biofilm Formation of Cronobacter sakazakii [J]. Biotechnology Bulletin, 2022, 38(9): 147-157. |
[10] | LI Ying, LONG Chang-mei, JIANG Biao, HAN Li-zhen. Colonization on the Peanuts of Two Plant-growth Promoting Rhizobacteria Strains and Effects on the Bacterial Community Structure of Rhizosphere [J]. Biotechnology Bulletin, 2022, 38(9): 237-247. |
[11] | WANG Zi-ye, WANG Zhi-gang, YAN Ai-hua. Diversity of Soil Protist Community in the Rhizosphere of Morus alba L. at Different Tree Ages [J]. Biotechnology Bulletin, 2022, 38(8): 206-215. |
[12] | WANG Zi-yin, LIU Bing-ru, LI Zi-hao, ZHAO Xiao-yu. Characteristics of Soil Bacterial Community Structure in the Different Developmental Stages of Desert Grassland Caragana korshinskii Kom. Nebkhas [J]. Biotechnology Bulletin, 2022, 38(7): 205-214. |
[13] | WANG Xiao-fang, WAN Jin-xin, WEI Zhong, XU Yang-chun, SHEN Qi-rong. Succession of Microbial Communities During Livestock Manure Composting [J]. Biotechnology Bulletin, 2022, 38(5): 13-21. |
[14] | ZHOU Xiao-nan, XU Jin-qing, LEI Yu-qing, WANG Hai-qing. Development of SNP Markers in Medicago archiducis-nicolai Based on GBS-seq [J]. Biotechnology Bulletin, 2022, 38(4): 303-310. |
[15] | LEI Chun-xia, LI Can-hui, CHEN Yong-kun, GONG Ming. Physiological and Biochemical Basis and Molecular Mechanism of Solanum tuberosum Tuberization [J]. Biotechnology Bulletin, 2022, 38(4): 44-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||