Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (4): 25-33.doi: 10.13560/j.cnki.biotech.bull.1985.2015.03.016
• Review • Previous Articles Next Articles
Cheng Xi Wang Wenyi Qiu Jinlong
Received:
2015-03-08
Online:
2015-04-22
Published:
2015-04-22
Cheng Xi, Wang Wenyi, Qiu Jinlong. Genome Editing:the Opportunities and Challenges for Plant Biotechnology[J]. Biotechnology Bulletin, 2015, 31(4): 25-33.
[1]Kilby NJ, Snaith MR, Murray JA. Site-specific recombinases:tools for genome engineering[J]. Trends Genet, 1993, 9(12):413-421. [2]Chen YT, Hou PS, Ku AT, et al. PiggyBac transposon mediated, reversible gene transfer in human embryonic stem cells[J]. Stem Cells Dev, 2010, 19(6):763-671. [3]Groth AC, Fish M, Nusse R, et al. Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31[J]. Genetics, 2004, 166(4):1775-1782. [4]Monetti C, Nishino K, Zhang P, et al. PhiC31 integrase facilitates genetic approaches combining multiple recombinases[J]. Methods, 2011, 53(4):380-385. [5]Mahfouz MM, Li LX, Shamimuzzaman M, et al. De novo-engineered transcription activator-like effector(TALE)hybrid nuclease with novel DNA binding specificity creates double-strand breaks[J]. Proc Natl Acad Sci USA, 2011, 108(6):2623-2628. [6] Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes:zinc finger fusions to Fok I cleavage domain[J]. Proc Natl Acad Sci USA, 1996, 93(3):1156-1160. [7]Bibikova M, Beumer K, Trautman JK, et al. Enhancing gene targeting with designed zinc finger nucleases[J]. Science, 2003, 300(5620):764-764. [8]Durai S, Mani M, Kandavelou K, et al. Zinc finger nucleases:Custom-designed molecular scissors for genome engineering of plant and mammalian cells[J]. Nucleic Acids Res, 2005, 33(18):5978-5990. [9] Boch J, Scholze H, Schornack S, et al. Breaking the code of DNA bin- ding specificity of TAL-type Ⅲ effectors[J]. Science, 2009, 326(5959):1509-1512. [10] Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors[J]. Science, 2009, 326(5959):1501-1501. [11]Deng D, Yan C, Pan X, et al. Structural basis for sequence-specific recognition of DNA by TAL effectors[J]. Science, 2012, 335:720-723. [12]Mahfouz MM, Li L, Shamimuzzaman M, et al. De novo-engineered transcription activator-like effector(TALE)hybrid nuclease with novel DNA binding specificity creates double-strand breaks[J]. Proc Natl Acad Sci USA, 2011, 108:2623-2628. [13]Godde JS, Bickerton A. The repetitive DNA elements called CRI-SPRs and their associated genes:evidence of horizontal transfer among prokaryotes[J]. Journal of Molecular Evolution, 2006, 62:718-729. [14] Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats[J]. BMC Bioinformatics, 2007, 8(1):172. [15]Sapranauskas R, Gasiunas G, Fremaux C, et al. The Streptococcus thermophiles CRISPR/Cas system provides immunity in Escherichia coli[J]. Nucleic Acids Res, 2011, 39(21):9275-9282. [16] Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proc Natl Acad Sci USA, 2012, 109:2579-2586. [17]Lloyd A, Plaisier C L, Carroll D, et al. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis[J]. Proc Natl Acad Sci USA, 2005, 102:2232-2237. [18]Zhang F, Maeder ML, Unger-Wallace E, et al. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases[J]. Proc Natl AcadSci USA, 2010, 107:12028-12033. [19]Osakabe K, Osakabe Y, Toki S. Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases[J]. Proc Natl Acad Sci USA, 2010, 107(26):12034-12039. [20]Curtin SJ, Zhang F, Sander JD, et al. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases[J]. Plant Physiol, 2011, 156(2):466-473. [21]Shukla VK, Doyon Y, Miller JC, et al. Precise genome modification in the crop species Zea mays using zinc-finger nucleases[J]. Nature, 2009, 459(7245):437-441. [22]Cermak T, Doyle EL, Christian M, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting[J]. Nucleic Acids Res, 2011, 39(12):e82 [23]Li T, Liu B, Spalding M H, et al. High-efficiency TALEN-based gene editing produces disease-resistant rice[J]. Nat Biotechnol, 2012, 30:390-392. [24]Shan Q, Wang Y, Chen K, et al. Rapid and efficient gene modification in rice and Brachypodium using TALENs[J]. Mol Plant, 2013, 6(4):1365-1368. [25]Haun W, Coffman A, Clasen BM, et al. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family[J]. Plant Biotechnol J, 2014, 12(7):934-940. [26]Liang Z, Zhang K, Chen K, et al. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system[J]. J Genet Genom, 2014, 41(2):63-68. [27]Wang Y, Cheng X, Shan Q, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew[J]. Nat Biotechnol, 2014, 32(9):947-951. [28]Li J F, Norville JE, Aach J, et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9[J]. Nat Biotechnol, 2013, 31(8):688-691. [29]Nekrasov V, Staskawicz B, Weigel D, et al. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease[J]. Nat Biotechnol, 2013, 31(8):691-693. [30]Shan Q, Wang Y, Li J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system[J]. Nat Biotechnol, 2013, 31(8):686-688. [31]Mao Y, Zhang H, Xu N, et al. Application of the CRISPR-Cas system for efficient genome engineering in plants[J]. Mol Plant, 2013, 6(6):2008-2011. [32]Brooks C, Nekrasov V, Lippman ZB, et al. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system[J]. Plant Physiol, 2014, 166(3):1292-1297. [33]Sugano SS, Shirakawa M, Takagi J, et al. CRISPR/Cas9 mediated targeted mutagenesis in the liverwort Marchantia polymorpha L[J]. Plant Cell Physiol, 2014, 55(3):475-481. [34]Upadhyay SK, Kumar J, Alok A, et al. RNA guided genome editing for target gene mutations in wheat[J]. G3(Bethesda), 2013, 3(12):2233-2238. [35]Jia H, Wang N. Targeted genome editing of sweet orange using Cas9/sgRNA[J]. PloS One, 2014, 9(4):e93806. [36]Shan Q, Zhang Y, Chen K, et al. Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology[J]. Plant Biotechnol J, 2015. doi:10. 1111/pbi. 12312. [37]Xing HL, Dong L, Wang ZP, et al. Chen QJ. A CRISPR/Cas9 toolkit for multiplex genome editing in plants[J]. BMC Plant Biol, 2014. 14:327. [38]Xie K, Minkenberg B, Yang Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system[J]. Proc Natl Acad Sci USA, 2015, 112(11):3570-3575. [39]Qi Y, Li X, Zhang Y, et al. Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases[J]. G3(Bethesda), 2013, 3(10):1707-1715. [40]Osakabe K, Endo M, Toki S. Chapter I-1. 6:DNA double-strand breaks and homologous recombination in higher plants[M]//Quingyao. Plant Mutagenesis - Principles and Applications. Greece:The Smiling Hippo, 2012:71-80. [41]Townsend JA, Wright DA, Winfrey RJ, et al. High-frequency modification of plant genes using engineered zinc-finger nucleases[J]. Nature, 2009, 459(7245):442-445. [42]Zhang Y, Zhang F, Li X, et al. TALENs enable efficient plant genome engineering[J]. Plant Physiol, 2013, 161(1):20-27. [43]Weinthal DM, Taylor RA, Tzfira T. Nonhomologous end joining-mediated gene replacement in plant cells[J]. Plant Physiol, 2013, 162(1):390-400. [44]Wright DA, Townsend JA, Winfrey RJ, et al. High-frequency homologous recombination in plants mediated by zinc-finger nucleases[J]. Plant J, 2005, 44(4):693-705. [45]Cai CQ, Doyon Y, Ainley WM, et al. Targeted transgene integration in plant cells using designed zinc finger nucleases[J]. Plant Mol Biol, 2009, 69(6):699-709. [46]Morbitzer R, R?mer P, Boch J, et al. Regulation of selected genome loci using de novo-engineered transcription activator-like effector(TALE)-type transcription factors[J]. Proc Natl Acad Sci USA, 2010, 107(50):21617-21622. [47]Liu W, Rudis MR, Peng Y, et al. Synthetic TAL effectors for targeted enhancement of transgene expression in plants[J]. Plant Biotechnol J, 2013, 12(4):436-446. [48]Piatek A, Ali Z, Baazim H, et al. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors[J]. Plant Biotechnol J, 2014. doi:10. 1111/pbi. 12284. [49] Jones HD. Regulatory uncertainty over genome editing[J]. Nature Plants, 2015, 1(1). doi:10. 1038/nplants. 2014. 11. [50]Curtin SJ, Voytas DF, Stupar RM. Genome engineering of crops with designer nucleases[J]. Plant Genome, 2012, 5(2):42-50. [51]Goodman RE, Tetteh AO. Suggested improvements for the allergenicity assessment of genetically modified plants used in foods[J]. Curr Allergy Asthma Rep, 2011, 11(4):317-324. [52]Doyon Y, Vo TD, Mendel MC, et al. Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures[J]. Nat Methods, 2011, 8(1):74-79. [53]Fu Y, Sander JD, Reyon D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nat Biotechnol, 2014, 32(3):279-284. [54]Gaj T, Guo J, Kato Y, et al. Targeted gene knockout by direct delivery of zinc-finger nuclease proteins[J]. Nat Methods, 2012, 9(8):805-807. [55] Cai Y, Bak RO, Mikkelsen JG. Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases[J]. ELife, 2014, 3. e01911. [56]Ledford H. US regulation misses some GM crops[J]. Nature, 2013, 500(7463):389-390. [57]Waltz E. Tiptoeing around transgenics[J]. Nature Biotechnology, 2012, 30(3):215-217. |
[1] | LI Xue-qi, ZHANG Su-jie, YU Man, HUANG Jin-guang, ZHOU Huan-bin. Establishment of CRISPR/CasX-based Genome Editing Technology in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 40-48. |
[2] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
[3] | SHI Jia-xin, LIU Kai, ZHU Jin-jie, QI Xian-tao, XIE Chuan-xiao, LIU Chang-lin. Gene Editing Reshaping Maize Plant Type for Increasing Hybrid Yield [J]. Biotechnology Bulletin, 2023, 39(8): 62-69. |
[4] | ZHOU Xiao-jie, YANG Si-qi, ZHANG Yi-wen, XU Jia-qi, YANG Sheng. CRISPR-associated Transposases and Their Applications in Bacterial Genome Editing [J]. Biotechnology Bulletin, 2023, 39(4): 49-58. |
[5] | LIU Xiao-tian, QIU Hao, TIAN Li, REN Ang, ZHAO Ming-wen. Research Progress in CRISPR/Cas9 Genome Editing System in Edible and Medicinal Fungi [J]. Biotechnology Bulletin, 2021, 37(11): 4-13. |
[6] | GAO Wei-fang, ZHANG Li-ping, ZHU Peng. Recent Progress on Isothermal Amplification Technology and Its Combination with CRISPR in Rapid Detection of Microorganisms [J]. Biotechnology Bulletin, 2020, 36(5): 22-31. |
[7] | YE Ming-wang, LI Can-hui, GONG Ming. Applications and Prospect of Genome Editing Techniques in Precise Potato Molecular Breeding [J]. Biotechnology Bulletin, 2020, 36(3): 9-17. |
[8] | ZHOU Yan, GUO Jia, HU Yu-feng, WEI Jian, LI Yi-dan. Editing of Fragrant Rice Related Gene OsBADH2 in‘Jijing 88’ [J]. Biotechnology Bulletin, 2020, 36(3): 88-94. |
[9] | QIAO Long-liang, PANG Jian-hu, DANG Chen-yang, HUANG Hai-long, ZHU Peng. CRISPR/Cas9 Genome Editing Technology and Its Application in Streptomyces [J]. Biotechnology Bulletin, 2018, 34(5): 32-40. |
[10] | YAO Heng, YANG Da-hai, BAI Ge, XIE He. CRISPR/Cas9-mediated Targeted Knockout of Polyphenol Oxidase NtPPO1 Gene in Nicotiana tabacum [J]. Biotechnology Bulletin, 2018, 34(11): 97-102. |
[11] | YIN Chao-min, FAN Xiu-zhi, SHI De-fang, GAO Hong. CRISPR/Cas Genome Editing Technology and Its Application in Fungi [J]. Biotechnology Bulletin, 2017, 33(3): 58-65. |
[12] | LIU Ni, LU Qin, LIU Juan, CHEN Hang. The Latest Research Progress on CRISPR/Cas System [J]. Biotechnology Bulletin, 2017, 33(2): 53-58. |
[13] | YANG Ju, DENG Yu. Key Technologies and Applications of Synthetic Biology [J]. Biotechnology Bulletin, 2017, 33(1): 12-23. |
[14] | ZHANG Kai-li,LI Rui,HU Tong-tong,XU Yong-jie. The Development of CRISPR/Cas9 Technique and Its Applications in Genome Editing [J]. Biotechnology Bulletin, 2016, 32(5): 47-60. |
[15] | LI Wei-jie, YANG Jiao, HE Gao-ming, WANG Li-min, PI Wen-hui, ZHOU Ping. The Comparison of Three Methods of Monitoring Endogenous Gene Modification [J]. Biotechnology Bulletin, 2016, 32(2): 76-83. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||