Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (5): 27-31.doi: 10.13560/j.cnki.biotech.bull.1985.2015.05.005
Previous Articles Next Articles
Qi Renli, Huang Jinxiu, Long Dingbiao, Huang Ping
Received:
2014-08-01
Online:
2015-05-18
Published:
2015-05-18
Qi Renli, Huang Jinxiu, Long Dingbiao, Huang Ping. The Role of MicroRNA in the Cell Apoptosis Mediated by NF-κB[J]. Biotechnology Bulletin, 2015, 31(5): 27-31.
[1] Sen R, Baltimore D. lnducibility of κ immunoglobulin enhancer-binding protein NF-κB by a post translational mechanism[J]. Cell, 1986, 46:705-716. [2] Gilmore TD. Introduction to NF-κB:players, pathways, perspectives[J]. Oncogene, 2006, 25:6680-6684. [3] Beg AA, Baltimore D. An essential role for NF-B in preventing TNFα induced cell death[J]. Science, 1996, 274:782-784. [4] O’Neilla LAJ, Kaltschmidtb C. NF-kB:a crucial transcription fac-tor for glial and neuronal cell function[J]. Trends in Neuroscien-ces, 1997, 20(6):252-258. [5] Bonizzi G, Karin M. The two NF-KappaB activation pathways and their role in innate and adaptive immunity[J]. Trends Immunol, 2004, 25:280-288. [6] Karin M. Nuclear factor-kappa B in cancer development and progression[J]. Nature, 2006, 441(7092):431-436. [7] Alberts B, Johnson A, Lewis J, et al. "Chapter 18 Apoptosis:programmed cell death eliminates unwanted cells"[C] //Molecular Biology of the Cell(textbook). 5th ed. New York:Garland Science, 2008:1115. [8] Mitchell TC, Hildeman D, Kedl RM, et al. Immunological adjuvants promote activated T cell survival via induction of Bcl-3[J]. Nat Immunol, 2001, 2:397-402. [9] Van Antwerp DJ, Martin SJ, Kafri T, et al. Suppression of TNFα induced apoptosis by NF-κB[J]. Science, 1996, 274:787-789. [10] Wang CY, Mayo W, Baldwin AS. TNFα and cancer therapyinduced apoptosis potentiation by inhibition of NF-κB[J]. Science, 1996, 274:784-787. [11] Alcamo E, Mizgerd JP, Horwitz BH, et al. Targeted mutation of TNF receptor I rescues the RelA-deficient mouse and reveals a critical role for NF-kB in leukocyte recruitment[J]. J Immunol, 2001, 167:1592-1600. [12] Baichwal VR, Baeuerle PA. Apoptosis:Activate NF-kB or die?[J]. Curr Biol, 1997, 7(2):94-96. [13] Zong WX, Edelstein LC, Chen C, et al. The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-κB that blocks TNFα induced apoptosis[J]. Genes Dev, 1999, 13:382-387. [14] Khoshnan AC, Tindell I, Laux D, et al. The NF-κB cascade is important in Bcl-xL expression and for the antiapoptotic effects of the CD28 receptor in primary human CD4 lymphocytes[J]. J Immunol, 2000, 165:1743-1754. [15] Grumont RJ, Rourke IJ, Gerondakis S. Rel-dependent induction of A1 transcription is required to protect B cells from antigen receptor ligation-induced apoptosis[J]. Genes Dev, 1999, 13:400-411. [17] Wu MX, Ao Z, Prasad KVS, et al. IEX-1L, an apoptosis inhibitor involved in NF-κB-mediated cell survival[J]. Science, 1998, 281:998-1001. [17] Wang CY, Mayo W, Korneluk RG, et al. NF-κB anti-apoptosis:induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation[J]. Science, 1998, 281:1680-1683. [18] Beg A, Sha W, Bronson R, et al. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB[J]. Nature, 1995, 376:167-170. [19] Doi TS, Marino MW, Takahashi T, et al. Absence of tumor necrosis factor rescues RelA-deficient mice from embryonic lethality[J]. Proc Natl Acad Sci USA, 1999, 96:2994-2999. [20] Stefan G, Bauer MKA, Patrick A, et al. Bcl-2 Down-regulates the activity of transcription factor NF-κB induced upon apoptosis[J]. The Journal of Cell Biology, 1996, 134(1):13-23. [21] Ryan KM, Ernst MK, Rice NR, et al. Role of NF-k B in p53-mediated programmed cell death[J]. Nature, 2000, 404(20):892-897. [22] Kaltschmidt B, Kaltschmidt C, Hofmann TG. The pro-or anti-apoptotic function of NF-kappa B is determined by the nature of the apoptotic stimulus[J]. Eur J Biochem, 2000, 267(12):3828-3835. [23] Liu FY, Bardhan KK, Yang DF, et al. NF-?B directly regulates Fas transcription to modulate Fas-mediated apoptosis and tumor suppression[J]. J Biol Chem, 2012, 287(30):25530-25540. [24] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5):843-854. [25] Corce CM. Causes and consequences of microRNA dysregulation in cancer[J]. Nat Rev Genet, 2009, 10(10):704-714. [26] Zeng Y, Yi R, Cullen BR. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms[J]. Proc Natl Acad Sci USA, 2003, 100:9779-9784. [27] Friedman RC, Farh KK, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs[J]. Genome Res, 2009, 19(1):92-105. [28] Angelats MG, Cidlowski JA. Cell volume control and signal transduction in apoptosis[J]. Toxicologic Pathology, 2002, 30(5):541-551. [29] Zeng Y. Principles of micro-RNA production and maturation[J].Oncoqene, 2006, 25(46):6156-6162. [30] George AO, Anton L, Hwang YC, et al. A functional genomics screen for microRNA regulators of NF-kappaB signaling[J]. BMC Biology, 2013, 11:19. [31] Ma XD, Buscaglia LEB, Barker JR, et al. MicroRNAs in NF-kB signaling[J]. Journal of Molecular Cell Biology, 2011, 3:159-166. [32] Taganov KD, Boldin MP, Chang KJ, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses[J]. Proc Natl Acad Sci USA, 2006, 103(33):12481-12486. [33] Paik JH, Jang JY, Jeon YK. MicroRNA-146a downregulates NF-κB activity via targeting TRAF6 and functions as a tumor suppressor having strong prognostic implications in NK/T cell lymphoma[J]. Clin Cancer Res, 2011, 17(14):1-11. [34] Kim SW, Ramasamy K, Bouamar H, et al. MicroRNAs miR-125a and miR-125b constitutively activate the NF-κB pathway by targeting the tumor necrosis factor alpha-induced protein 3(TNFAIP3, A20)[J]. Proc Natl Acad Sci USA, 2012, 109:7865-7870. [35] Iliopoulos D, Jaeger SA, Hirsch HA, et al. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer[J]. Mol Cell, 2010, 39:493-506. [36] Lindesy EB, Yong L. Apoptosis and the targets genes of miR-21[J]. Chinese Journal of Cancer, 2011, 30(6):371-380. [37] Shin VY, Jin H, Ng EK. NF-κB targets miR-16and miR-21in gastric cancer:involvement of prostaglandin E receptors[J]. Carcinogenesis, 2011, 32:240-245. [38] Mott JL, Kobayashi S, Bronk SF, Gores GJ. mir-29 regulates Mcl-1 protein expression and apoptosis[J]. Oncogene, 2007, 26:6133-6140. [39] Xiong YJ, Fang JH, Yun JP, et al. Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma[J]. Hepatology, 2010, 51(3):836-845. [40] Satoshi S, Tetsuo T, Hayato H, et al. The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human[J]. Journal of Hepatology, 2010, 52(5):698-704. |
[1] | MA Yu-jing, DUAN Chun-hui, HE Ming-yang, ZHANG Ying-jie, YANG Ruo-chen, WANG Yong, LIU Yue-qin. Effects of Knockout of G0S2 Gene in Ovarian Granulosa Cell Proliferation, Steroids Hormones and Related Gene Expression [J]. Biotechnology Bulletin, 2023, 39(6): 325-334. |
[2] | GE Yan-rui, ZHAO Ran, XU Jing, LI Ruo-fan, HU Yun-tao, LI Rui-li. Advances in the Development and Regulation of Vascular Cambium [J]. Biotechnology Bulletin, 2023, 39(3): 13-25. |
[3] | WANG Meng-ting, CAO Jie-yu, WANG Zhong-xin, WANG Ya-yu, YANG Da-zuo, ZHOU Yi-bing, ZHAO Huan. Research Progress of MicroRNA Involvement in the Stress Responses of Aquatic Animals to Envirnmental Pollutants [J]. Biotechnology Bulletin, 2021, 37(6): 272-278. |
[4] | ZHANG Ting-huan, LONG Xi, GUO Zong-yi, CHAI Jie. miR-378 Promoting Lipogenesis and Identification of Target Genes [J]. Biotechnology Bulletin, 2021, 37(2): 80-87. |
[5] | TANG De-ping, YAO Hui-hui, TANG Jin-zhou, MAO Ai-hong. Mutual Regulation of microRNAs and Epigenetics in Human Cancers [J]. Biotechnology Bulletin, 2020, 36(8): 194-200. |
[6] | YIN Xiao-meng, CAO Xue-wei, WANG Fu-jun, ZHAO Jian, ZHANG Hui-zhan. Celastrol and Apoptin Mutant Exert Synergistic Anti-tumor Effects by Enhancing Nur77-induced Apoptosis Pathway [J]. Biotechnology Bulletin, 2020, 36(7): 119-129. |
[7] | ZOU Kun, LU Li-li, Collins Asiamah Amponsah, XUE Yuan, ZHANG Shao-wei, SU Ying, ZHAO Zhi-hui. Research Progress on Mechanism of Poultry Follicular Atresia [J]. Biotechnology Bulletin, 2020, 36(4): 185-191. |
[8] | SUN Rui-ping, WANG Feng, CHAO Zhe, LIU Hai-long, XING Man-ping, LIU Quan-wei, ZHENG Xin-li, HUANG Li-li, WEI Li-min. Comparative Analysis on miRNA Transcriptome of Skeletal Muscle Between Wuzhishan Pig and Landrace [J]. Biotechnology Bulletin, 2020, 36(10): 40-48. |
[9] | ZHU Ping, DU Li-jie, MENG Kun, XUE Juan, YANG Jin, LI Shan. Research Progress on the Effects of T3SS Effectors on Apoptosis and Pyroptosis of Host Cells [J]. Biotechnology Bulletin, 2019, 35(4): 178-187. |
[10] | HU Jian-ran, LI Ping, TIE Jun, JIN Shan. Study on Antioxidant and Antitumor Activity of Essential Oil from Flowers of Syringa oblata [J]. Biotechnology Bulletin, 2019, 35(12): 16-23. |
[11] | LI Yan-wei, SONG Xing-hui, WANG Jia-jia, LIU Li, HUANG Ying-ying, GUO Chun. Establishment of the Real-time and Label-free Screening System for Tumor Cell Apoptosis [J]. Biotechnology Bulletin, 2019, 35(10): 220-226. |
[12] | ZHAO Yan, CAO Xiao-ying, ZHOU Hao-tian, SONG Ling-yuan, TU Han-qing, HUANG Si-ying, ZHAO Jin-liang. Analysis of miRNA Transcriptome in Early Developmental Stage and Identification of Growth-related miRNA of Siniperca chuatsi [J]. Biotechnology Bulletin, 2018, 34(8): 181-189. |
[13] | XIE Jie ,WANG Ming ,LI Qing ,PAN Fei ,XIONG Xing-yao ,QIN Yu-zhi. Research Progress on Plant miR390 [J]. Biotechnology Bulletin, 2018, 34(6): 1-10. |
[14] | ZHAI Yi-zhou ,LU Mei-ya ,ZHAO Jian ,WANG Fu-jun. Screening of a Gelonin Fusion Protein with High Cell-penetrating Efficiency and Its Anti-tumor Activity and Apoptosis Pathway [J]. Biotechnology Bulletin, 2018, 34(6): 204-212. |
[15] | GUO Hong-yan, GAO Han, WU Qi, SUN Xiao-jie, LIU Xiu-cai, ZHAO Li-qun. Construction of SGK3 Gene Lentiviral RNA Interference Vector and Effects on Cell proliferation and Apoptosis of Breast Cancer Cell Line MB-474 [J]. Biotechnology Bulletin, 2018, 34(1): 247-252. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||