Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (5): 20-26.doi: 10.13560/j.cnki.biotech.bull.1985.2015.05.004
Previous Articles Next Articles
Zhang Senxiang, Yin Xiaoyan, Gong Zhiwei, Yang Zhonghua, Hou Yali, Zhou Wei
Received:
2014-08-09
Online:
2015-05-18
Published:
2015-05-18
Zhang Senxiang, Yin Xiaoyan, Gong Zhiwei, Yang Zhonghua, Hou Yali, Zhou Wei. Advances in Research of Straw Degradation with Cellulase and Its Genetic Engineering[J]. Biotechnology Bulletin, 2015, 31(5): 20-26.
[1] 娄玥芸, 张惠芳. 秸秆生物质能源的应用现状与前景[J]. 化学与生物工程, 2010, 27(9):73-76. [2] 谢敬. 纤维素酶的研究进展[J]. 化学工业与工程技术, 2010, 31(5):46-48. [3] 王禄山, 高培基, 时东霞, 张玉忠. 天然棉纤维表面超微结构及其变化的定量分析—用原子力显微镜测定超微结构的表面粗造度[J]. 山东大学学报:理学版, 2006, 41(6):132-139. [4] Alvira P, Tomás-Pejó E, Ballesteros M, et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis:a review[J]. Bioresource Technol, 2010, 101(13):4851-4861. [5] Heiss-Blanquet S, Zheng D, Ferreira NL, et al. Effect of pretreatment and enzymatic hydrolysis of wheat straw on cell wall composition, hydrophobicity and cellulase adsorption[J]. Bioresource Technol, 2011, 102(10):5938-5946. [6] Ogeda TL, Silva LB, Fidale LC, et al. Effect of cellulose physical characteristics, espically the water sorption value, on the effciency of its hydrolysis catalyzed by free or immobilized cellulase[J]. J Biotechnol, 2012, 157(1):246-252. [7] Meng XZ, Ragauskas AJ. Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates[J]. Curr Opin Biotech, 2014, 27:150-158. [8] Ding SY, Liu YS, Zeng Y, et al. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility?[J]. Science, 2012, 338(6110):1055-1060. [9] Kumar P, Barrett DM, Delwiche MJ, et al. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production[J]. Ind Eng Chem Res, 2009, 48(8):3713-3729. [10] Oliveira FMV, Pinheiro IO, Souto-Maior AM, et al. Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products[J]. Bioresource Technol, 2013, 130:168-173. [11] Sindhu R, Kuttiraja M, Preeti VE, et al. A novel surfactant-assisted ultrasound pretreatment of sugarcane tops for improved enzymatic release of sugars[J]. Bioresource Technol, 2013, 135:67-72. [12] Binod P, Satyanagalakshmi K, Sindhu R, et al. Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse[J]. Renew Energ, 2012, 37(1):109-116. [13] Avci A, Saha BC, Dien BS, et al. Response surface optimization of corn stover retreatment using dilute phosphoric acid for enzymatic hydrolysis and ethanol production[J]. Bioresource Technol, 2013, 130:603-612. [14] Saha BC, Yoshida T, Cotta MA, et al. Hydrothermal pretreatment and enzymatic saccharification of corn stover for efficient ethanol production[J]. Ind Crop Prod, 2012, 44:367-342. [15] Li HQ, Xu J. Optimization of microwave-assisted calcium chloride pretreatment of corn stover[J]. Bioresource Technol, 2013, 127:112-118. [16] You ZY, Wei TY, Cheng JJ. Improving anaerobic codigestion of corn stover using sodium hydroxide pretreatment[J]. Energ Fuel, 2013, 28:549-554. [17] Rajan K, Carrier DJ. Effect of dilute acid pretreatment conditions and washing on the production of inhibitors and on recovery of sugars during wheat straw enzymatic hydrolysis[J]. Biomass Bioenerg, 2014, 62:222-227. [18] Wu JN, Upret Si, Ein-Mozaffari F. Ozone pretreatment of wheat straw for enhanced biohydrogen production[J]. Int J Hydrogen Energ, 2013, 38(25):10270-10276. [19] Copur Y, Tozluoglu A, Ozyurek O. Sodium borohydrate(NaBH4)pretreatment for efficient enzymatic saccharification of wheat straw[J]. Bioresource Technol, 2012, 107:258-266. [20] Kim I, Lee B, Park JY, et al. Effect of nitric acid on pretreatment and fermentation for enhancing ethanol production of rice straw[J]. Carbohyd Polym, 2014, 99:563-567. [21] Amiri H, Karimi K, Zilouei H. Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production[J]. Bioresource Technol, 2014, 152:450-456. [22] Poornejad N, Karimi K, Behzad T. Improvement of saccharification and ethanol production from rice straw by NMMO and[BMIM] [OAc] pretreatments[J]. Ind Crop Prod, 2013, 41:408-413. [23] 张小梅, 李单单, 王禄山, 等. 纤维素酶家族及其催化结构域分子改造的新进展[J]. 生物工程学报, 2013, 29(4):422-433. [24] 冯飞, 王绍文, 王娟, 等. 里氏木霉GH61 家族糖苷酶的高效表达及酶学特性研究[J]. 微生物学报, 2014, 41(7):1261-1269. [25] 覃玲灵, 何钢, 陈介南. 里氏木霉及其纤维素酶高产菌株的研究进展[J]. 生物技术通报, 2011(5):43-49. [26] Cao Y, Tan H. Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffaction[J]. Enzyme Microb Tech, 2005, 36(2-3):314-317. [27] 黄彬, 耿存亮, 潘龙强, 等. 持续性催化酶类机理研究及其分子动力学模拟[J]. 中国科学:生命科学, 2012, 42(8):603-612. [28] 阎伯旭, 齐飞, 张颖舒, 等. 纤维素酶分子结构和功能研究进展[J]. 生物化学与生物物理进展, 1999, 26(3):233-237. [29] 欧阳嘉, 李鑫, 王向明, 等. 纤维素结合域的研究进展[J]. 生物加工过程, 2008, 6(2):10-16. [30] Costaouec TL, Pakarinen A, Varnai A, et al. The role of carbohyd-rate binding module(CBM)at high substrate consistency:Com-parison of Trichoderma reesei and Thermoascus aurantiacus Cel7A(CBHI)and Cel5A(EGII)[J]. Bioresource Technol, 2013, 143:196-203. [31] Lou HM, Wang MX, Lai HR, et al. Reducing non-productive adsorption of cellulase and enhancing enzymatic hydrolysis of lignocelluloses by noncovalent modification of lignin with lignosulfonate[J]. Bioresource Technol, 2013, 146:478-484. [32] Ciolacu D, Chiriac AI, Pastor FIJ, et al. The influence of supramolecular structure of cellulose allomorphs on the interactions with cellulose-binding domain, CBD3b from Paenibacillus barcinonensis[J]. Bioresource Technol, 2014, 157:14-21. [33] 杨忠华, 赵燕, 陈庚华, 等. 一种可分泌纤维素酶的菌株及其纤维素酶提取方法与应用:中国102807958[P] . 2012-12-15. [34] 赵燕, 陈庚华, 周卫, 等. 纤维素酶及其基因研究[J]. 生物技术通报, 2013(2):35-40. [35] Akcapinar GB, Gul O, Sezerman UO. From in silico to in vitro:Modelling and production of Trichoderma reesei endoglucanase 1 and its mutant in Pichia pastoris[J]. J Biotechnol, 2012, 159(1-2):61-68. [36] Liu M, Yu HW. Cocktail production of an endo-β-xylanase and a β-glucosidase from Trichoderma reesei QM 9414 in Escherichia coli[J]. Biochem Eng J, 2012, 68:1-6. [37] Li XH, Wang MX, Zhang P, et al. Heterologous expression characteristics of Trichoderma viride endoglucanase V in the silkworm, Bombyx mori L.[J]. Appl Biochem Biotechnol, 2011, 165:728-736. [38] Park CS, Kawaguchi T, Sumitani J, et al. Cloning and sequencing of an exoglucanase gene from Streptomyces sp. M 23, and its expression in Streptomyces lividans TK-24[J]. J Biosci Bioeng, 2005, 99(4):434-436. [39] Wei XM, Qin YQ, Qu YB. Molecular cloning and characterization of two major endoglucanases from Penicillium decumbens[J]. J Microbiol Biotechnol, 2010, 20(2):265-270. [40] Dan S, Marton I, Dekel M, et al. Cloning, expression, characteriza-tion, and nucleophile identification of family 3, Aspergillus niger beta-glucosidase[J]. J Biol Chem, 2000, 275(7):4973-4980. [41] Yao Q, Sun T, Chen G, et al. Heterologous expression and site-directed mutagenesis of endoglucanase CelA from Clostridium thermocellum[J]. Biotechnol Lett, 2007, 29(8):1243-1247. [42] Tokatlidis K, Dhurjati P, Millet J, et al. High activity of inclusion bodies formed in Escherichia coli overproducing Clostridium thermocellum endoglucanase D[J]. Febs Lett, 1991, 282(1):205-208. [43] Lin M, Yu H. Co-production of a whole cellulase system in Escherichia coli[J]. Biochem Eng J, 2012, 69:204-210. [44] Juturu V, Wu JC. Microbial xylanases:Engineering, production and industrial applications[J]. Biotechnol Adv, 2012, 30:1219-1230. [45] 刘杰凤, 马超, 王春, 董宏坡. 海洋微生物纤维素酶及半纤维素酶基因克隆于表达研究进展[J]. 生物技术通报, 2012(6):36-42. [46] Jun H, Bing Y, Keying Z, et al. Expression of a Trichoderma reesei b-xylanase gene in Escherichia coli and activity of the enzyme on fiber-bound substrates[J]. Protein Expres Purif, 2009, 9:1-6. [47] Le Y, Wang H. High-level soluble expression of a thermostable xylanase from thermophilic fungus Thermomyces lanuginosus in Escherichia coli via fusion with OsmY protein[J]. Protein Expres Purif, 2014, 99:1-5. [48] Okada H, Wakamatsu M, Takano Y, et al. Expression of two Trich-oderma reesei xylanases in the fission yeast Schizosaccharomyces pombe[J]. J Biosci Bioeng, 1999, 88(5):563-566. [49] Rose SH, van Zyl WH. Constitutive expression of the Trichoderma reesei β-1, 4-xylanase gene(xyn2)and the β-1, 4-endoglucanase gene(egI)in Aspergillus niger in molasses and defined glucose media[J]. Appl Microbiol Biot, 2002, 58:461-468. [50] Baek JH, Kim S, Lee K, et al. Cellulosic ethanol production by combination of cellulase-displaying yeast cells[J]. Enzyme Microb Tech, 2012, 51:366-372. [51] Heinzelman P, Snow CD, Smith MA, et al. SCHEMA recombination of a fungal cellulase uncovers a single mutation that contributes markedly to stability[J]. J Biol Chem, 2009, 284(39):26229-26233. [52] Heinzelman P, Komor R, Kanaan A, et al. Efficient screening of fun-gal cellobiohydrolase class I enzymes for thermostabilizing sequence blocks by SCHEMA structure-guided recombination[J]. Protein Eng Des Sel, 2010, 2(11):871-880. |
[1] | RAO Zi-huan, XIE Zhi-xiong. Isolation and Identification of a Cellulose-degrading Strain of Olivibacter jilunii and Analysis of Its Degradability [J]. Biotechnology Bulletin, 2023, 39(8): 283-290. |
[2] | ZHANG Jing, ZHANG Hao-rui, CAO Yun, HUANG Hong-ying, QU Ping, ZHANG Zhi-ping. Research Progress in Thermophilic Microorganisms for Cellulose Degradation [J]. Biotechnology Bulletin, 2023, 39(6): 73-87. |
[3] | MA Yu-qian, SUN Dong-hui, YUE Hao-feng, XIN Jia-yu, LIU Ning, CAO Zhi-yan. Identification, Heterologous Expression and Functional Analysis of a GH61 Family Glycoside Hydrolase from Setosphaeria turcica with the Assisting Function in Degrading Cellulose [J]. Biotechnology Bulletin, 2023, 39(4): 124-135. |
[4] | WANG Wen-tao, FENG Qi, LIU Chen-guang, BAI Feng-wu, ZHAO Xin-qing. Redox-sensitive Genetic Parts Improve the Tolerance of Yeast to Lignocellulosic Hydrolysate Inhibitors [J]. Biotechnology Bulletin, 2023, 39(11): 360-372. |
[5] | ZHANG Kai-ping, LIU Yan-li, TU Mian-liang, LI Ji-wei, WU Wen-biao. Optimization of Producing Cellulase by Aspergillus fumigatus A-16 and Its Enzymatic Properties [J]. Biotechnology Bulletin, 2022, 38(9): 215-225. |
[6] | WANG Xin-guang, TIAN Lei, WANG En-ze, ZHONG Cheng, TIAN Chun-jie. Construction of Microbial Consortium for Efficient Degradation of Corn Straw and Evaluation of Its Degradation Effect [J]. Biotechnology Bulletin, 2022, 38(4): 217-229. |
[7] | LI Zhi-hao, ZHANG Ge, MO Zhi-jie, DENG Shuai-jun, LI Jia-yi, ZHANG Hai-bo, LIU Xiao-hui, LIU Hao-bao. Effects of a Xylanase-producing Bacillus cereus on the Composition and Fermented Products of Cigar Leaves [J]. Biotechnology Bulletin, 2022, 38(2): 105-112. |
[8] | ZHANG Gong-you, WANG Yi-han, GUO Min, ZHANG Ting-ting, WANG Bing, LIU Hong-mei. Isolation and Identification of a Cellulase-producing Endophytic Fungus in Paris polyphylla var. yunnanensis [J]. Biotechnology Bulletin, 2022, 38(2): 95-104. |
[9] | WANG Bo-ya, JIANG Yong, HUANG Yan, CAO Ying, HU Shang-lian. Cloning and Functional Analysis of BeCesA4 in Bambusa emeiensis [J]. Biotechnology Bulletin, 2022, 38(11): 185-193. |
[10] | TANG Hao, SUN Can, LI Yuan-qiu, LUO Chao-bing. Screening and Genome Sequencing of Cellulytic Bacterium Raoultella ornithinolytica LL1 [J]. Biotechnology Bulletin, 2021, 37(6): 85-96. |
[11] | ZHAI Xu-hang, LI Xia, YUAN Ying-jin. Research Progress of Lignocellulose Pretreatment and Valorization Method [J]. Biotechnology Bulletin, 2021, 37(3): 162-174. |
[12] | HU Fang, DONG Xu, SHI Chang-wei, WU Xue-dong. Progress in Ultrasound Intensification for Enzymatic Hydrolysis of Lignocellulose [J]. Biotechnology Bulletin, 2021, 37(10): 234-244. |
[13] | GU Han-qi, SHAO Ling-zhi, LIU Ran, LIU Xiao-guang, LI Ling, LIU Qian, LI Jie, ZHANG Ya-li. Lipidomics Analysis of Saccharomyces cerevisiae with Tolerance to Phenolic Inhibitors [J]. Biotechnology Bulletin, 2021, 37(1): 15-23. |
[14] | LIU Deng, LIU Jun-hong. Research Progress of Thermophilic Lignocellulase in Cellulose Ethanol Production [J]. Biotechnology Bulletin, 2020, 36(8): 185-193. |
[15] | FENG Guang-zhi, SHI Hui, LIU Bo, WU Yu-ting, WANG Yue-lin, SHI Yu. Screening and Identification of Cellulase-producing Strains Isolated from Crayfish Intestine [J]. Biotechnology Bulletin, 2020, 36(2): 65-70. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||