Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (6): 13-19.doi: 10.13560/j.cnki.biotech.bull.1985.2015.06.002
• Review • Previous Articles Next Articles
An Liyu1, Wang Zhimin1, Tang Qinglin1, Wang Yongqing2, Yang Yang2, Tian Shibing2, Song Ming1
Received:
2014-09-18
Online:
2015-06-19
Published:
2015-06-20
An Liyu, Wang Zhimin, Tang Qinglin, Wang Yongqing, Yang Yang, Tian Shibing, Song Ming. Research Progress of Transcription Factors in Solanaceae Plants[J]. Biotechnology Bulletin, 2015, 31(6): 13-19.
[1]张椿雨, 龙艳, 冯吉, 等. 植物基因在转录水平上的调控及其生物学意义[J]. 遗传, 2007, 29(7):793-799. [2]Riechmann JL, Heard J, Martin G, et al. Arabidopsis transcription factors:genome wide comparative analysis mong eukaryotes[J]. Science, 2000, 290(5499):2105-2110. [3]Dubos C, Stracke R, Grotewold E, et al. MYB transcription factors in Arabidopsis[J]. Cell, 2010, 15(10):573-581. [4]Rose A, Meier I, Wienand U. The tomato I-box binding factor LeMYBI is a member of anovel class of myb-like proteins[J]. Plant J, 1999, 20(6):41-52. [5]Mathews H, Clendennen SK, Caldwell CG, et al. Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport[J]. Plant Cell, 2003, 15:1689-1703. [6]Mahjoub A, Hernould M, Joubes J, et al. Overexpression of a grapevine r2r3-myb factor in tomato affects vegetative development, flower morphology and flavonoid and terpenoid metabolism[J]. Plant Physiol Biochem, 2009, 47:551-561. [7]Li JG, Li HL, Peng SQ. Three r2r3-myb transcription factor genes from capsicum annuum showing differential expression during fruit ripening[J]. African Journal of Biotechnology, 2011, 10:8267-8274. [8]张欣, 程治军, 林启冰, 等. 番茄冷诱导基因S1CMYB1的克隆及其在水稻中异源表达研究[J]. 作物学报, 2011, 37(4):587-594. [9]Meng X, Yin B, Feng HL, et al. Overexpression of r2r3-myb gene leads to accumulation of anthocyanin and enhanced resistance to chilling and oxidative stress[J]. Biologia Plantarum, 2014, 58:121-130. [10]Araki S, Ito M, Soyano T, et al. Mitotic cyclins stimulate the activity of c-Myb-like factors for transactivation of G2/M phase-specific genes in tobacco[J]. J Biol Chem, 2004, 279(31):32979-32985. [11]邵文婷, 刘杨, 韩洪强, 等. 茄子花青素合成相关基因SmMYB的克隆与表达分析[J]. 园艺学报, 2013, 40(3):467-478. [12]Olsen AN, Erns HA, Leggio LL, et al. NAC transcription factors:strucrally distinct, functionally diverse[J]. Trends in Plant Scinence, 2005, 10:79-87. [13]Puranik S, Sahu PP, Srivastava PS, et al. NAC proteins:reregulation and role in stress tolerance[J]. Trends in Plant Science, 2012, 17(6):369-381. [14]Rushton PJ, Bokowiec MT, Han SC, et al. Tobacco transcription factors:novel insights into transcriptional regulation in the Solanaceae[J]. Plant Physiol, 2008, 147(1):280-295. [15]Oh SK, Lee S, Yu SH, Choi D. Expression of a novel NAC domain-containing transcription factor(CaNAC1)is preferentiall-yassociated with incompatible interactions between chili pepper and pathogens[J]. Planta, 2005, 222(5):876-887. [16]Selth LA, Dogra SC, Rasheed MS, et al. A NAC domain protein interacts with tomato learcurl virus replication accessory protein and enhances viral replication[J]. Plant Cell, 2005, 17(1):311-325. [17]Mao XG, Zhang HY, Qian XY, et al. TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis[J]. J Exp Bot, 2012, 63(8):2933-2946. [18] Kou X, Wang S, Wu M, et al. Molecular characterization and expression analysis of nac family transcription factors in tomato[J]. Plant Molecular Biology Reporter, 2014, 32:501-516. [19] Zhu M, Chen G, Zhou S, et al. A new tomato nac(nam/ataf1/2/cuc2)transcription factor, slnac4, functions as a positive regulator of fruit ripening and carotenoid accumulation[J]. Plant Cell Physiol, 2014, 55:119-135. [20] Wu KL, Guo ZJ, Wang HH. The WRKY family of transcription factors in rice and Arabidopsis and their origins[J]. DNA Res, 2005, 12(1):9-26. [21]Ishiguro S, Nakamura K. Characterization of a cDNA encoding anovel DNA-binding protein, SPF1, that recognizes SP8 sequencesin the 5’upstream regions of genes coding for sporamin and β-amy-lase from sweet potato[J]. Mol Gen Genet, 1994, 244:563-571. [22]Eulgem T, Somssich IE. Network of WRKY transcription factors in defense signaling[J]. Current Opinion in Plant Biology, 2007, 10(4):366-371. [23]Dong T, Hu Z, Deng L, et al. A tomato MADS-box transcription factor, SlMADS1, acts as a negative regulator of fruit ripeni-ng[J]. Plant Physiol, 2013, 163:1026-1036. [24]Huang L, Durnan JG. Cloning and characterization of a thermal hysteresis(antifreeze)protein with DNA-binding activity from winter bittersweet nightshade, Solanum dulcamara[J]. Plant Mol Biol, 2002, 48:339-350. [25]王丽芳, 杜希华, 于涌鲲, 等. 番茄WRKY转录因子基因片段的克隆及序列分析[J]. 中国农学通报, 2009, 25(23):70-73. [26] Oh SK, Baek KH, Park JM, et al. Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense[J]. New Phytol, 2008, 177(4):977-989. [27] Oh SK, Yi SY, Yu SH, et al. CaWRKY2, a chili pepper transcription factor, is rapidly induced by incompatible plant pathogens[J]. Mol Cells. 2006, 22(1):58-64. [28]万红建, 俞锞, 袁伟, 等. 番茄WRKY转录因子in silico鉴定及表达分析[J]. 分子植物育种, 2013, 11(1):90-98. [29]胡丽芳, 金志强, 徐碧玉. MADS-box基因在果实发育成熟过程中的作用[J]. 分子植物育种, 2005, 3(3):415-420. [30]Irish VF, Litt A. Flower development and evolution:gene duplication, diversification and redeployment[J]. Current Opinion in Genetics Development, 2005, 15(4):452-460. [31]Vrebalov J, Ruezinsky D, Padmanabhan V, et al. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor(rin)locus[J]. Science, 2002, 296(5566):343-346. [32]Mazzucato A, Olimpieri I, Siligato F, et al. Characterization of genes controlling stamen identity and development in a parthenocarpic tomato mutant indicates a role for the DEFICIENS ortholog in the control of fruit set[J]. Physiol Plant, 2008, 132(4):526-537. [33]郭爽, 马宁, 杨文才, 等. 辣椒花器官发育MADS-box基因的克隆与表达分析[J]. 园艺学报, 2010, 37(10):1591-1597. [34]Dong T, Hu Z, Deng L, et al. A tomato mads-box transcription factor, slmads1, acts as a negative regulator of fruit ripening[J]. Plant Physiol, 2013, 163:1026-1036. [35]Fujisawa M, Nakano T, Shima Y, et al. A large-scale identification of direct targets of the tomato mads-box transcription factor ripening inhibitor reveals the regulation of fruit ripening[J]. Plant Cell, 2013, 25:71-386. [36]Liu D, Wang D, Qin Z, et al. The sepallata mads-box protein slmbp21 forms protein complexes with jointless and macrocalyx as a transcription activator for development of the tomato flower abscission zone[J]. Plant J, 2014, 77:284-296. [37] Riechmann JL, Heard J, Yu GL, et al. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290:2105-2110. [38]Bartley GE, Ishida BK. Digital fruit ripening:data mining in the TIGR tomato gene index[J]. Plant Mol Biol Rep, 2002, 20(2):115-130. [39] Chung MY, Vrebalov J, Alba R, et al. A tomato(Solanum lycoper-sicum)APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening[J]. Plant J, 2010, 64(6):936-947. [40] Zhang G, Chen M, Li LC, et al. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in trans tobacco[J]. J Exp Bot, 2009, 60(13):3781-3796. [41] Pan Y, Seymour GB, Lu C, et al. An ethylene response factor(erf5)promoting adaptation to drought and salt tolerance in tomato[J]. Plant Cell Rep, 2012, 31:349-360. [42]张秋平, 杨宇红, 茆振川, 等. 辣椒乙烯反应转录因子基因CaJERF1的克隆及诱导表达[J]. 园艺学报, 2012, 39(4):705-712. [43] Wu L, Chen X, Ren H, et al. ERF protein JERF1 that transcriptio-nally modulates the expression of abscisic acid biosynthesis-related gene enhances the tolerance under salinity and cold in tobacco[J]. Planta, 2007, 226:815-825. [44]Yu BK, Lee JH, Shin SJ, et al. Molecular characterization of cold stress-related transcription factors, caerebp-c1,-c2,-c3, and cawrky1a from capsicum annuum[J]. Journal of Plant Biology, 2013, 56:106-114. [45] Nakano T, Fujisawa M, Shima Y, Ito Y. The ap2/erf transcription factor slerf52 functions in flower pedicel abscission in tomato[J]. J Exp Bot, 2014, 65:3111-3119. |
[1] | YANG Zhi-xiao, HOU Qian, LIU Guo-quan, LU Zhi-gang, CAO Yi, GOU Jian-yu, WANG Yi, LIN Ying-chao. Responses of Rubisco and Rubisco Activase in Different Resistant Tobacco Strains to Brown Spot Stress [J]. Biotechnology Bulletin, 2023, 39(9): 202-212. |
[2] | CHEN Zhong-yuan, WANG Yu-hong, DAI Wei-jun, ZHANG Yan-min, YE Qian, LIU Xu-ping, TAN Wen-Song, ZHAO Liang. Mechanism Investigation of Ferric Ammonium Citrate on Transfection for Suspended HEK293 Cells [J]. Biotechnology Bulletin, 2023, 39(9): 311-318. |
[3] | CHEN Xiao, YU Ming-lan, WU Long-kun, ZHENG Xiao-ming, PANG Hong-bo. Research Progress in lncRNA and Their Responses to Low Temperature Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 1-12. |
[4] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[5] | LI Zhi-qi, YUAN Yue, MIAO Rong-qing, PANG Qiu-ying, ZHANG Ai-qin. Melatonin Contents in Eutrema salsugineum and Arabidopsis thaliana Under Salt Stress, and Expression Pattern Analysis of Synthesis Related Genes [J]. Biotechnology Bulletin, 2023, 39(5): 142-151. |
[6] | LIU Kui, LI Xing-fen, YANG Pei-xin, ZHONG Zhao-chen, CAO Yi-bo, ZHANG Ling-yun. Functional Study and Validation of Transcriptional Coactivator PwMBF1c in Picea wilsonii [J]. Biotechnology Bulletin, 2023, 39(5): 205-216. |
[7] | LAI Rui-lian, FENG Xin, GAO Min-xia, LU Yu-dan, LIU Xiao-chi, WU Ru-jian, CHEN Yi-ting. Genome-wide Identification of Catalase Family Genes and Expression Analysis in Kiwifruit [J]. Biotechnology Bulletin, 2023, 39(4): 136-147. |
[8] | GUO San-bao, SONG Mei-ling, LI Ling-xin, YAO Zi-zhao, GUI Ming-ming, HUANG Sheng-he. Cloning and Analysis of Chalcone Synthase Gene and Its Promoter from Euphorbia maculata [J]. Biotechnology Bulletin, 2023, 39(4): 148-156. |
[9] | ZHANG Xin-bo, CUI Hao-liang, SHI Pei-hua, GAO Jin-chun, ZHAO Shun-ran, TAO Chen-yu. Research Progress in Low-input Chromatin Immunoprecipitation Assay [J]. Biotechnology Bulletin, 2023, 39(4): 227-235. |
[10] | CHEN Qiang, ZHOU Ming-kang, SONG Jia-min, ZHANG Chong, WU Long-kun. Identification and Analysis of LBD Gene Family and Expression Analysis of Fruit Development in Cucumis melo [J]. Biotechnology Bulletin, 2023, 39(3): 176-183. |
[11] | ZHAO Meng-liang, GUO Yi-ting, REN Yan-jing. Identification and Analysis of WRKY Transcription Factor Family Genes in Helianthus tuberosus [J]. Biotechnology Bulletin, 2023, 39(2): 116-125. |
[12] | YAO Xiao-wen, LIANG Xiao, CHEN Qing, WU Chun-ling, LIU Ying, LIU Xiao-qiang, SHUI Jun, QIAO Yang, MAO Yi-ming, CHEN Yin-hua, ZHANG Yin-dong. Study on the Expression Pattern of Genes in Lignin Biosynthesis Pathway of Cassava Resisting to Tetranychus urticae [J]. Biotechnology Bulletin, 2023, 39(2): 161-171. |
[13] | LI Yan-xia, WANG Jin-peng, FENG Fen, BAO Bin-wu, DONG Yi-wen, WANG Xing-ping, LUORENG Zhuo-ma. Effects of Escherichia coli Dairy Cow Mastitis on the Expressions of Milk-producing Trait Related Genes [J]. Biotechnology Bulletin, 2023, 39(2): 274-282. |
[14] | HAN Fang-ying, HU Xin, WANG Nan-nan, XIE Yu-hong, WANG Xiao-yan, ZHU Qiang. Research Progress in Response of DREBs to Abiotic Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(11): 86-98. |
[15] | FENG Ce-ting, JIANG Lyu, LIU Xing-ying, LUO Le, PAN Hui-tang, ZHANG Qi-xiang, YU Chao. Identification of the NAC Gene Family in Rosa persica and Response Analysis Under Drought Stress [J]. Biotechnology Bulletin, 2023, 39(11): 283-296. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||