Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (10): 16-23.doi: 10.13560/j.cnki.biotech.bull.1985.2015.10.007
• Review • Previous Articles Next Articles
Deng Shuai, Zhang Tingting, Wang Ruru, Liu Yu, Zhang Yuanhu
Received:
2015-01-23
Online:
2015-10-28
Published:
2015-10-28
Deng Shuai, Zhang Tingting, Wang Ruru, Liu Yu, Zhang Yuanhu. Advances on the Research of Non-cell-autonomous Small RNAs in Plants[J]. Biotechnology Bulletin, 2015, 31(10): 16-23.
[1]Voinnet O, Baulcombe DC. Systemic signalling in gene silencing[J]. Nature, 1997, 389(6651):553. [2]Palauqui JC, Elmayan T, Pollien JM, et al. Systemic acquired silencing:transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions[J]. The EMBO Journal, 1997, 16(15):4738-4745. [3]Fire A, Xu SQ, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998, 391(6669):806-811. [4]van Bel AJE. The phloem, a miracle of ingenuity[J]. Plant, Cell & Environment, 2003, 26(1):125-149. [5]Yoo BC, Kragler F, Varkonyi-Gasic E, et al. A systemic small RNA signaling system in plants[J]. The Plant Cell Online, 2004, 16(8):1979-2000. [6]Buhtz A, Springer F, Chappell L, et al. Identification and characterization of small RNAs from the phloem of Brassica napus[J]. The Plant Journal, 2008, 53(5):739-749. [7]Chen X. MicroRNA biogenesis and function in plants[J]. FEBS Letters, 2005, 579(26):5923-5931. [8]Pant BD, Buhtz A, Kehr J, et al. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis[J]. The Plant Journal, 2008, 53(5):731-738. [9]Lin SI, Chiang SF, Lin WY, et al. Regulatory network of microRNA399 and PHO2 by systemic signaling[J]. Plant physiology, 2008, 147(2):732-746. [10]Ding SW, Voinnet O. Antiviral immunity directed by small RNAs[J]. Cell, 2007, 130(3):413-426. [11]Schwach F, Vaistij FE, Jones L, et al. An RNA-dependent RNA polymerase prevents meristem invasion by potato virus X and is required for the activity but not the production of a systemic silencing signal[J]. Plant Physiology, 2005, 138:1842-1852. [12]Burgyán J, Havelda Z. Viral suppressors of RNA silencing[J]. Trends in Plant Science, 2011, 16(5):265-272. [13]Herr AJ, Jensen MB, Dalmay T, et al. RNA polymerase IV directs silencing of endogenous DNA[J]. Science, 2005, 308:118-120. [14]B?urle I, Smith L, Baulcombe DC, et al. Widespread role for the flowering-time regulators FCA and FPA in RNA-mediated chromatin silencing[J]. Science, 2007, 318(5847):109-112. [15]Borsani O, Zhu J, Verslues PE, et al. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis[J]. Cell, 2005, 123(7):1279-1291. [16]Melnyk CW, Molnar A, Baulcombe DC. Intercellular and systemic movement of RNA silencing signals[J]. The EMBO Journal, 2011, 30(17):3553-3563. [17]Vatén A, Dettmer J, Wu S, et al. Callose biosynthesis regulates symplastic trafficking during root development[J]. Dev Cell, 2011, 21(6):1144-1155. [18]Jones L. Revealing micro-RNAs in plants[J]. Trends in Plant Science, 2002, 7(11):473-475. [19]Ariel FD, Manavella PA, Dezar CA, et al. The true story of the HD-Zip family[J]. Trends in Plant Sci, 2007, 12(9):419-426. [20]Carlsbecker A, Lee JY, Roberts CJ, et al. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate[J]. Nature, 2010, 465(7296):316-321. [21]Furuta K, Lichtenberger R, Helariutta Y. The role of mobile small RNA species during root growth and development[J]. Current Opinion in Cell Biology, 2012, 24(2):211-216. [22]Husbands AY, Chitwood DH, Plavskin Y, et al. Signals and prepatterns:new insights into organ polarity in plants[J]. Genes & Development, 2009, 23(17):1986-1997. [23]Allen E, Xie Z, Gustafson AM, et al. microRNA-directed phasing during Trans-acting siRNA biogenesis in plants[J]. Cell, 2005, 121(2):207-221. [24]Montgomery TA, Howell MD, Cuperus JT, et al. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 Trans-acting siRNA formation[J]. Cell, 2008, 133:128-141. [25]Chitwood DH, Nogueira FTS, Howell MD, et al. Pattern formation via small RNA mobility[J]. Genes & Development, 2009, 23(5):549-554. [26]Nogueira FTS, Madi S, Chitwood DH, et al. Two small regulatory RNAs establish opposing fates of a developmental axis[J]. Genes & Development, 2007, 21(7):750-755. [27]Benkovics AH, Timmermans MCP. Developmental patterning by gradients of mobile small RNAs[J]. Current Opinion in Genetics & Development, 2014, 27:83-91. [28]Knauer S, Holt AL, Rubio-Somoza I, et al. A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem[J]. Dev Cell, 2013, 24(2):125-132. [29]Song JB, Huang SQ, Dalmay T, et al. Regulation of leaf morphology by microRNA394 and its target LEAF CURLING RESPONSIVENESS[J]. Plant and Cell Physiology, 2012, 53(7):1283-1294. [30]Mosher RA, Melnyk CW. siRNAs and DNA methylation:seedy epigenetics[J]. Trends Plant Sci, 2010, 15(4):204-210. [31]Slotkin RK, Vaughn M, Borges F, et al. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen[J]. Cell, 2009, 136(3):461-472. [32]Winston WM, Molodowitch C, Hunter CP. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1[J]. Science, 2002, 295(5564):2456-2459. [33]Winston WM, Sutherlin M, Wright AJ, et al. Caenorhabditis elegans SID-2 is required for environmental RNA interference[J]. Proc Natl Acad Sci USA, 2007, 104(25):10565-10570. [34]Hinas A, Wright AJ, Hunter CP. SID-5 is an endosome-associated protein required for efficient systemic RNAi in C. elegans[J]. Current Biology, 2012, 22(20):1938-1943. [35]Varkonyi-Gasic E, Gould N, Sandanayaka M, et al. Characterisation of microRNAs from apple(Malus domestica’Royal Gala’)vascular tissue and phloem sap[J]. BMC Plant Biology, 2010, 10(1):159. [36] Molnar A, Melnyk CW, Bassett A, et al. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells[J]. Science, 2010, 328(5980):872-875. [37] Dunoyer P, Schott G, Himber C, et al. Small RNA duplexes function as mobile silencing signals between plant cells[J]. Science, 2010, 328(5980):912-916. [38] 李苹芳, 羊杏平, 徐锦华, 等. RNA分子在植物韧皮部长距离运输的研究进展[J]. 园艺学报, 2013, 40(10):2058-2066. [39] Brosnan CA, Mitter N, Christie M, et al. Nuclear gene silencing directs reception of long-distance mRNA silencing in Arabidopsis[J]. Proc Natl Acad Sci USA, 2007, 104(37):14741-14746. [40] Juarez MT, Kui JS, Thomas J, et al. microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity[J]. Nature, 2004, 428(6978):84-88. [41] de Felippes FF, Ott F, Weigel D. Comparative analysis of non-autonomous effects of tasiRNAs and miRNAs in Arabidopsis thaliana[J]. Nucleic Acids Research, 2011, 39:2880-2889. [42] Zhai J, Zhao Y, Simon SA, et al. Plant microRNAs display differential 3' truncation and tailing modifications that are ARGONAUTE1 dependent and conserved across species[J]. The Plant Cell Online, 2013, 25(7):2417-2428. [43]Ameres SL, Horwich MD, Hung JH, et al. Target RNA-directed trimming and tailing of small silencing RNAs[J]. Science, 2010, 328(5985):1534-1539. [44]Rogers K, Chen X. Biogenesis, turnover, and mode of action of plant microRNAs[J]. Plant Cell, 2013, 25(7):2383-2399. [45]Park MY, Wu G, Gonzalez-Sulser A, et al. Nuclear processing and export of microRNAs in Arabidopsis[J]. Proc Natl Acad Sci USA, 2005, 102(10):3691-3696. [46]Zhu H, Hu F, Wang R, et al. Arabidopsis argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development[J]. Cell, 2011, 145(2):242-256. [47]Liu Q, Yao X, Pi L, et al. The ARGONAUTE10 gene modulates shoot apical meristem maintenance and establishment of leaf polarity by repressing miR165/166 in Arabidopsis[J]. The Plant Journal, 2009, 58(1):27-40. [48]Brunkard JO, Runkel AM, Zambryski PC. Plasmodesmata dynamics are coordinated by intracellular signaling pathways[J]. Current Opinion in Plant Biology, 2013, 16(5):614-620. [49]Liarzi O, Epel BL. Development of a quantitative tool for measuring changes in the coefficient of conductivity of plasmodesmata induced by developmental, biotic, and abiotic signals[J]. Protoplasma, 2005, 225(1-2):67-76. [50]Voinnet O, Vain P, Angell S, et al. Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA[J]. Cell, 1998, 95(2):177-187. [51]Guo HS, Ding SW. A viral protein inhibits the long range signaling activity of the gene silencing signal[J]. The EMBO Journal, 2002, 21(3):398-407. [52]Zhang X, Yuan YR, Pei Y, et al. Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense[J]. Genes Dev, 2006, 20:3255-3268. [53]Chitwood DH, Timmermans MCP. Small RNAs are on the move[J]. Nature, 2010, 467(7314):415-419. [54]Shapiro E, Biezuner T, Linnarsson S. Single-cell sequencing-based technologies will revolutionize whole-organism science[J]. Nature Reviews Genetics, 2013, 14(9):618-630. |
[1] | LIU Xiao-mei, WANG Dong-xin, ZHANG Chun, WEI Shuang-shi. Inhibition of AAV-mediated RNAi to SARS-CoV-2 S Gene Expression [J]. Biotechnology Bulletin, 2022, 38(3): 188-193. |
[2] | GUO Yu-fei, YAN Rong-mei, ZHANG Xiao-ru, CAO Wei, LIU Hao. Metabolic Engineering Modification of Aspergillus niger for the Production of D-glucaric Acid [J]. Biotechnology Bulletin, 2022, 38(11): 227-237. |
[3] | PAN Yin-lai, QIU Chun-hui, WANG Yi-lei, ZHANG Zi-ping. Development of RNA Drugs and Its Application in Aquaculture [J]. Biotechnology Bulletin, 2021, 37(2): 203-215. |
[4] | DENG Pu-rong, LIU Yong-bo. Review on the Synergistic Insect-resistant Application of RNAi and Bt-transgenic Technologies [J]. Biotechnology Bulletin, 2021, 37(10): 216-224. |
[5] | XU Xue-liang, WANG Fen-shan, LIU Zi-rong, FAN Lin-juan, JI Xiang-yun, JIANG Jie-xian, YAO Ying-juan. Research Progress of RNA Interference Technology in the Field of Entomology [J]. Biotechnology Bulletin, 2021, 37(1): 255-261. |
[6] | SU Jie, GUO Rong-qi, GAO Yang, YU Xiu-min, LI Guo-jing, WANG Rui-gang. Response to NaCl and ABA in Arabidopsis thaliana of the Double Silent Gene VHA-c2&c4 [J]. Biotechnology Bulletin, 2020, 36(7): 48-54. |
[7] | SONG Hua-li, SUN Xiao-ying, KONG Xiang-hui, LI Li, PEI Chao. Application of RNA Interference Technology in Antiviral and Antiparasitic Research of Aquatic Animals [J]. Biotechnology Bulletin, 2020, 36(2): 193-205. |
[8] | HAN Cui-cui, LIU Li-kun, WANG Yu-chun, YANG Ying, LIU Ji-cheng, ZHOU Zhong-guang. Construction of TOX3 Gene Lentiviral RNA Interference Vector and Effect on Proliferation of Human Breast Cancer Cells ZR-75-1 [J]. Biotechnology Bulletin, 2019, 35(7): 141-147. |
[9] | WANG Jia-yue, LIU Xiang-nan, PENG Kang-li, ZHAO Bo. Construction and Identification of Lentiviral Vector for RNA Interference of USE1 Gene [J]. Biotechnology Bulletin, 2019, 35(3): 117-122. |
[10] | Su Zijing, Li Qiaoling, Huang Cheng, Xie Chengjian, Yang Xingyong. RNAi Technology and Its Application in Fungal Gene Functional Studies [J]. Biotechnology Bulletin, 2015, 31(8): 50-58. |
[11] | Wen Xianchun, Han Cuicui, Zhao Yuesheng, Yu Haitao, Li Chengchong, Yue Liling. Construction of FUT8 Gene Lentiviral RNA Interference Vector and Regulation on Proliferation of Human Breast Cancer Cells MCF-7 [J]. Biotechnology Bulletin, 2015, 31(5): 231-236. |
[12] | Qiu Xier, Zhu Dongfa, Zhou Yanqi, Liu Zhiye, Xie Xi. Progress of Research and Application of the RNA Interference Technology in Crustacean [J]. Biotechnology Bulletin, 2015, 31(3): 57-63. |
[13] | Shi Meng, Liu Xiaoning, Ma Ji. RNA Interference of Antifreeze Protein Gene in Tenebrio molitor Mediated by Bacterially Expressed dsRNA [J]. Biotechnology Bulletin, 2014, 0(8): 113-119. |
[14] | Sun Yameng,Zhang Dongjie,Wang Liang,Zhang Xu,Yin Xue,Liu Di. FST-related Genes Expression in FST Gene Knock-down Pig Fetal Fibroblast Cells [J]. Biotechnology Bulletin, 2014, 0(6): 111-114. |
[15] | Liu Zhiqiang, Chen Jie, Qiu Gaofeng. Construction of Interference Vector of EsSox21b-like Gene from Chinese Mitten Crab(Eriocheir sinensis)and Preparation of dsRNA by Prokaryotic Expression [J]. Biotechnology Bulletin, 2014, 0(6): 134-138. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||