Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (10): 77-88.doi: 10.13560/j.cnki.biotech.bull.1985.2015.10.015
• Technique • Previous Articles Next Articles
Wang Yanxia, Liu Xiangsheng, Wang Min, Luo Jianmei
Received:
2015-01-23
Online:
2015-10-28
Published:
2015-10-28
Wang Yanxia, Liu Xiangsheng, Wang Min, Luo Jianmei. Research Advances on Molecular Techniques for Improving Microbial Tolerance to Organic Solvents[J]. Biotechnology Bulletin, 2015, 31(10): 77-88.
[1]Donova MV, Egorova OV. Microbial steroid transformations:current state and prospects[J]. Appl Microbiol Biotechnol, 2012, 94(6):1423-1447. [2] Fernandes P, Cruz A, Angelova B, et al. Microbial conversion of steroid compounds:recent developments[J]. Enzyme and Microbial Technology, 2003, 32(6):688-705. [3]Heipieper HJ, Neumann G, Cornelissen S, et al. Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems[J]. Appl Microbiol Biotechnol, 2007, 74(5):961-973. [4] Sardessai YN, Bhosle S. Industrial potential of organic solvent tolerant bacteria[J]. Biotechnol Prog, 2004, 20(3):655-660. [5]Nicolaou SA, Gaida SM, Papoutsakis ET. A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing:from biofuels and chemicals, to biocatalysis and bioremediation[J]. Metab Eng, 2010, 12(4):307-331. [6]Zahir Z, Seed KD, Dennis JJ. Isolation and characterization of novel organic solvent-tolerant bacteria[J]. Extremophiles, 2006, 10(2):129-138. [7]Gupta A, Singh R, Khare SK, et al. A solvent tolerant isolate of Enterobacter aerogenes[J]. Bioresour Technol, 2006, 97(1):99-103. [8]Fang Y, Lu Z, Lv F, et al. A newly isolated organic solvent tolerant Staphylococcus saprophyticus M36 produced organic solvent-stable lipase[J]. Current Microbiology, 2006, 53(6):510-515. [9]Lin YL, Blaschek HP. Butanol production by a butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth[J]. Applied and Environmental Microbiology, 1983, 45(3):966-973. [10]Jang YS, Malaviya A, Lee SY. Acetone-butanol-ethanol production with high productivity using Clostridium acetobutylicum BKM19[J]. Biotechnol Bioeng, 2013, 110(6):1646-1653. [11] Guo T, Tang Y, Zhang Q, et al. Clostridium beijerinckii mutant with high inhibitor tolerance obtained by low-energy ion implantation[J]. J Ind Microbiol Biotechnol, 2012, 39(3):401-407. [12]Ramos JL, Duque E, Gallegos MT, et al. Mechanisms of solvent tolerance in gram-negative bacteria[J]. Annual Reviews in Microbiology, 2002, 56(1):743-768. [13]Torres S, Pandey A, Castro GR. Organic solvent adaptation of Gram positive bacteria:applications and biotechnological potentials[J]. Biotechnol Adv, 2011, 29(4):442-452. [14]Alsaker KV, Paredes C, Papoutsakis ET. Metabolite stress and tolerance in the production of biofuels and chemicals:Gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum[J]. Biotechnology and Bioengineering, 2010, 105(6):1131-1147. [15]Dunlop MJ. Engineering microbes for tolerance to next-generation biofuels[J]. Biotechnol Biofuels, 2011, 4(1):32-40. [16]周颖, 殷长传, 张青, 等. 分子伴侣GroESL在大肠杆菌中的克隆、表达及分离纯化[J]. 微生物学报, 1997, 37(5):344-348. [17]Zingaro KA, Terry Papoutsakis E. GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1, 2, 4-butanetriol and ethanol with complex and unpredictable patterns[J]. Metabolic Engineering, 2013, 15:196-205. [18]Akiko OK, Wang Y, Sachiko K, et al. Cloning and Characterization of groESL Operon in Acetobacter aceti[J]. Journal of Bioscience and Bioengineering, 2002, 94(2):140-147. [19]Tomas CA, Welker NE, Papoutsakis ET. Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program[J]. Applied and Environmental Microbiology, 2003, 69(8):4951-4965. [20]Mann MS, Dragovic Z, Schirrmacher G, et al. Over-expression of stress protein-encoding genes helps Clostridium acetobutylicum to rapidly adapt to butanol stress[J]. Biotechnology Letters, 2012, 34(9):1643-1649. [21]Desmond C, Fitzgerald GF, Stanton C, et al. Improved stress tolerance of GroESL-overproducing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338[J]. Applied and Environmental Microbiology, 2004, 70(10):5929-5936. [22]王亚利, 洪厚胜, 张庆文, 等. 基因工程技术在醋酸菌改良中的应用[J]. 食品研究与开发, 2008, 29(3):190-194. [23]Sugimoto S, Higashi C, Matsumoto S, et al. Improvement of multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 under conditions of thermal stress by heterologous expression of Escherichia coli dnaK[J]. Applied and Environme-ntal Microbiology, 2010, 76(13):4277-4285. [24]Akiko OK, Wang Y, Masahiro F. Cloning and characterization of the dnaKJ operon in Acetobacter aceti[J]. Journal of Bioscience and Bioengneering, 2004, 97(5):339-342. [25]Kang HJ, Heo DH, Choi SW, et al. Functional characterization of Hsp33 protein from Bacillus psychrosaccharolyticus; additional function of HSP33 on resistance to solvent stress[J]. Biochem Biophys Res Commun, 2007, 358(3):743-750. [26]Zingaro KA, Papoutsakis ET. Toward a semisynthetic stress response system to engineer microbial solvent tolerance[J]. Mbio, 2012, 3(5):e00308-12. [27]Bernal P, Segura A, Ramos JL. Compensatory role of the cis-trans-isomerase and cardiolipin synthase in the membrane fluidity of Pseudomonas putida DOT-T1E[J]. Environmental Microbiology, 2007, 9(7):1658-1664. [28] Weber FJ, de Bont JA. Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes[J]. Biochi-mica et Biophysica Acta(BBA)-Reviews on Biomembranes, 1996, 1286(3):225-245. [29] Heipieper HJ, Neumann G, Cornelissen S, et al. Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems[J]. Appl Microbiol Biotechnol, 2007, 74(5):961-973. [30] Pinkart HC, White DC. Phospholipid biosynthesis and solvent tolerance in Pseudomonas putida strains[J]. Journal of Bacterial, 1997, 179(13):4219-4226. [31]Oh HY, Lee JO, Kim OB. Increase of organic solvent tolerance of Escherichia coli by the deletion of two regulator genes, fadR and marR[J]. Appl Microbiol Biotechnol, 2012, 96(6):1619-1627. [32]Luo LH, Seo PS, Seo JW, et al. Improved ethanol tolerance in Escherichia coli by changing the cellular fatty acids composition through genetic manipulation[J]. Biotechnology Letters, 2009, 31(12):1867-1871. [33]张秋美, 赵心清, 姜如娇, 等. 酿酒酵母乙醇耐性的分子机制及基因工程改造[J]. 生物工程学报, 2009, 25(4):481-487. [34]Kajiwara S, Suga K, Sone H, et al. Improved ethanol tolerance of Saccharomyces cerevisiae strains by increases in fatty acid unsaturation via metabolic engineering[J]. Biotechnology Letters, 2000, 22(23):1839-1843. [35]You KM, Rosenfield CL, Knipple DC. Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content[J]. Appl Environ Microbiol, 2003, 69(3):1499-1503. [36]Zhao Y, Hindorff LA, Chuang A, et al. Expression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in Clostridium acetobutylicum ATCC 824[J]. Applied and Environmental Microbiology, 2003, 69(5):2831-2841. [37]Okochi M, Kurimoto M, Shimizu K, et al. Increase of organic solvent tolerance by overexpression of manXYZ in Escherichia coli[J]. Appl Microbiol biotechnol, 2007, 73(6):1394-1399. [38]Dunlop MJ, Dossani ZY, Szmidt HL, et al. Engineering microbial biofuel tolerance and export using efflux pumps[J]. Molecular Systems Biology, 2011, 7:487. [39] Takatsuka Y, Chen C, Nikaido H. Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli[J]. Proc Natil Acad Sci USA, 2010, 107(15):6559-6565. [40]侯进慧. 大肠杆菌的AcrAB-TolC多药外排泵及其调控研究进展[J]. 微生物学通报, 2008, 35(12):1932-1937. [41]Asako H, Nakajima H, Kobayashi K, et al. Organic solvent tolerance and antibiotic resistance increased by overexpression of marA in Escherichia coli[J]. Applied and Environmental Microbiology, 1997, 63(4):1428-1433. [42]Nakajima H, Kobayashi K, Kobayashi M, et al. Overexpression of the robA gene increases organic solvent tolerance and multiple antibiotic and heavy metal ion resistance in Escherichia coli[J]. Appl Environm Microbiol, 1995, 61(6):2302-2307. [43]Aono R, Tsukagoshi N, Yamamoto M. Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12[J]. J Bacteriol, 1998, 180(4):938-944. [44]Paulsen IT, Brown MH, Skurray RA. Proton-dependent multidrug efflux systems[J]. Microbiol Rev, 1996, 60(4):575-608. [45]Kieboom J, Dennis JJ, de Bont JAM, et al. Identification and molecular characterization of an efflux pump involved in Pseudomo-nas putida S12 solvent tolerance[J]. Journal of Biological Chemistry, 1998, 273(1):85-91. [46]Teixeira MC, Godinho CP, Cabrito TR, et al. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation[J]. Microb Cell Fact, 2012, 11(1):1-9. [47]Yang KM, Woo JM, Lee SM, et al. Improving ethanol tolerance of Saccharomyces cerevisiae by overexpressing an ATP-binding cassette efflux pump[J]. Chemical Engineering Science, 2013, 103:74-78. [48]Kempf B, Bremer E. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments[J]. Archives of Microbiology, 1998, 170(5):319-330. [49] Wood JM, Bremer E, Csonka LN, et al. Osmosensing and osmoregulatory compatible solute accumulation by bacteria[J]. Comp Biochem Physiol A Mol Integr Physiol, 2001, 130(3):437-460. [50]Yancey PH. Compatible and counteracting solutes:protecting cells from the Dead Sea to the deep sea[J]. Science PRogress, 2004, 87(1):1-24. [51] Takagi H, Takaoka M, Kawaguchi A, et al. Effect of L-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae[J]. Appl Environ Microbiol, 2005, 71(12):8656-8662. [52]Kus-Li?kiewicz M, Górka A, Gonchar M. Simple assay of trehalose in industrial yeast[J]. Food Chemistry, 2014, 158:335-339. [53]Moon MH, Ryu J, Choeng YH, et al. Enhancement of stress tolerance and ethanol production in Saccharomyces cerevisiae by heterologous expression of a trehalose biosynthetic gene from Streptomyces albus[J]. Biotechnology and Bioprocess Engineering, 2012, 17(5):986-996. [54]Jung YJ, Park HD. Antisense-mediated inhibition of acid trehalase(ATH1)gene expression promotes ethanol fermentation and tolerance in Saccharomyces cerevisiae[J]. Biotechnol Lett, 2005, 27:1855-1859. [55]Nguyen ADQ, Kim YG, Kim SB, et al. Improved tolerance of recombinant Escherichia coli to the toxicity of crude glycerol by overexpressing trehalose biosynthetic genes(otsBA)for the production of β-carotene[J]. Bioresource Technology, 2013, 143:531-537. [56]Hirasawa T, Yoshikawa K, Nakakura Y, et al. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis[J]. Journal of Biotechnology, 2007, 131(1):34-44. [57]Murakami KS, Masuda S, Campbell EA, et al. Structural basis of transcription initiation:an RNA polymerase holoenzyme-DNA complex[J]. Science, 2002, 296(5571):1285-1290. [58]W?sten M. Eubacterial sigma-factors[J]. FEMS Microbiology Reviews, 1998, 22(3):127-150. [59]Burgess RR, Anthony L. How sigma docks to RNA polymerase and what sigma does[J]. Curr Opin Microbiol, 2001, 4(2):126-131. [60]Gruber TM, Gross CA. Multiple sigma subunits and the partitioning of bacterial transcription space[J]. Annual Reviews in Microbio-logy, 2003, 57(1):441-466. [61] Alper H, Stephanopoulos G. Global transcription machinery engin-eering:a new approach for improving cellular phenotype[J]. Metabolic Engineering, 2007, 9(3):258-267. [62] Ma Y, Yu H. Engineering of Rhodococcus cell catalysts for tolerance improvement by sigma factor mutation and active plasmid partition[J]. J Ind Microbiol Biotechnol, 2012, 39(10):1421-1430. [63] Klein-Marcuschamer D, Santos CNS, Yu H, et al. Mutagenesis of the bacterial RNA polymerase alpha subunit for improvement of complex phenotypes[J]. Applied and Environmental Microbiology, 2009, 75(9):2705-2711. [64]Alper H, Moxley J, Nevoigt E, et al. Engineering yeast transcription machinery for improved ethanol tolerance and production[J]. Science, 2006, 314(5805):1565-1568. [65]Fan X, Shi H, Lis JT. Distinct transcriptional responses of RNA polymerases I, II and III to aptamers that bind TBP[J]. Nucleic Acids Research, 2005, 33(3):838-845. [66]赵心清, 姜如娇, 李宁. 利用SPT3的定向进化提高工业酿酒酵母乙醇耐受性[J]. 生物工程学报, 2010, 26(2):159-164. [67] Hou L, Cao X, Wang C, et al. Effect of overexpression of transcrip-tion factors on the fermentation properties of Saccharomyces cerevi-siae industrial strains[J]. Letters in Applied Microbiology, 2009, 49(1):14-19. [68] 占玲俊. cAMP受体蛋白调控鼠疫耶尔森氏菌毒力的研究[D]. 北京:中国协和医科大学, 2009. [69]Basak S, Song H, Jiang R. Error-prone PCR of global transcription factor cyclic AMP receptor protein for enhanced organic solvent(toluene)tolerance[J]. Process Biochemistry, 2012, 47(12):2152-2158. [70] Zhang H, Chong H, Ching CB, et al. Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance[J]. Applied Microbiology and Biotechnology, 2012, 94(4):1107-1117. [71]Earl AM, Mohundro MM, Mian IS, et al. The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression[J]. J Bacteriol, 2002, 184(22):6216-6224. [72]Lu H, Gao G, Xu G, et al. Deinococcus radiodurans PprI switches on DNA damage response and cellular survival networks after radi-ation damage[J]. Mol Cell Proteomics, 2009, 8(3):481-494. [73]Ying Z, Ma RQ, Zhao ZL, et al. irrE, an exogenous gene from Deinococcus radiodurans, improves the growth of and ethanol production by a Zymomonas mobilis strain under ethanol and acid stresses[J]. J Microbiol Biotechnol, 2010, 20(7):1156-1162. [74]Chen T, Wang J, Yang R, et al. Laboratory-evolved mutants of an exogenous global regulator, IrrE from Deinococcus radiodurans, enhance stress tolerances of Escherichia coli[J]. PLoS One, 2011, 6(1):e16228. [75]Lee JY, Sung BH, Yu BJ, et al. Phenotypic engineering by reprogramming gene transcription using novel artificial transcription factors in Escherichia coli[J]. Nucleic Acids Research, 2008, 36(16):e102. [76]Lee JY, Yang KS, Jang SA, et al. Engineering butanol-tolerance in escherichia coli with artificial transcription factor libraries[J]. Biotechnology and Bioengineering, 2011, 108(4):742-749. [77]Dürre P, B?hringer M, Nakotte S, et al. Transcriptional regulation of solventogenesis in Clostridium acetobutylicum[J]. Journal of Mol Microbiol Biotechnol, 2002, 4(3):295-300. [78] Alsaker KV, Spitzer TR, Papoutsakis ET. Transcriptional analysis of spoOA overexpression in Clostridium acetobutylicun and its effect on the cell’s response to butanol strss[J]. Bacteriol, 2004, 186(7):1959-1971. [79] Faizal I, Dozen K, Hong CS, et al. Isolation and characterization of solvent-tolerant Pseudomonas putida strain T-57, and its application to biotransformation of toluene to cresol in a two-phase(organic-aqueous)system[J]. J Industrial Microbiology and Biotechnology, 2005, 32(11-12):542-547. [80]Suzuki Y, Doukyu N, Aono R. Lithocholic acid side-chain cleavage to produce 17-keto or 22-aldehyde steroids by Pseudomonas putida strain ST-491 grown in the presence of an organic solvent, diphenyl ether[J]. Biosci Biotechnol Biochem, 1998, 62(11):2182-2188. [81]Aono R, Doukyu N, Kobayashi H, et al. Oxidative bioconversion of cholesterol by Pseudomonas sp. strain ST-200 in a water-organic solvent two-phase system[J]. Applied and Environmental Microbiology, 1994, 60(7):2518-2523. [82]Zhu L, Dong H, Zhang Y, et al. Engineering the robustness of Clostridium acetobutylicum by introducing glutathione biosynthetic capability[J]. Metab Eng, 2011, 13(4):426-434. [83]李春荣, 王文科, 曹玉清, 等. 石油污染物的微生物降解[J]. 地球科学与环境学报, 2007, 29(2):214-216. [84]Paje MLF, Neilan BA. A Rhodococcus species that thrives on medium saturated with liquid benzene[J]. Microbiology, 1997, 143(9):2975-2981. [85]Tao F, Yu B, Xu P, et al. Biodesulfurization in biphasic systems containing organic solvents[J]. Applied and Environmental Microbiology, 2006, 72(7):4604-4609. [86]曹小龙, 田云, 卢向阳. 生物燃料生产中微生物的有机溶剂耐受机制[J]. 化学与生物工程, 2013, 30(4):4-7. [87]葛清秀, 黄祖新, 陈建平. 脂肪酶有机相催化在食品工业中的应用[J]. 福建轻纺, 2005, 2:6-11. |
[1] | MEI Huan, LI Yue, LIU Ke-meng, LIU Ji-hua. Study on the Biosynthesis of l-SLR by Efficient Prokaryotic Expression of Berberine Bridge Enzyme [J]. Biotechnology Bulletin, 2023, 39(7): 277-287. |
[2] | ZHAO Bao-ding, LV Jia, SHEN Yu-yu, GUI Ling, CHEN Zhong-xiu, CHEN Jie, LU Fu-ping, LI Ming. Efficient Transformation of Uridine by Escherichia coli Based on Signal Peptide and Molecular Chaperone Strategy [J]. Biotechnology Bulletin, 2022, 38(11): 238-249. |
[3] | LIANG Xin-xin, TANG Dan, HUO Yi-xin. Green Biotransformation of Protein-derived Biomass [J]. Biotechnology Bulletin, 2020, 36(12): 216-228. |
[4] | ZHAO Xiang-jie, YANG Wen-jun, YANG Rong-ling, WU Ting-ting, WANG Zhao-yu, XU Ning-ning, HE Jia-mei. Research Progress on Biotransformation Modification of Anthocyanins [J]. Biotechnology Bulletin, 2019, 35(10): 205-211. |
[5] | ZHU Feng-zhi, CHENG Cheng, LIU Xiang-sheng, ZHANG Kun WANG, Li-shuang ,WANG Min, LUO Jian-mei. Optimization of Biotransformation Technology for 10-DAB Production from Baccatin III Using Response Surface Methodology [J]. Biotechnology Bulletin, 2017, 33(4): 238-246. |
[6] | HE Qing-lin, BAI Yan-fen, ZHOU Wei, YIN Hua, CHEN Ning, ZHUANG Yi-bin, LIU Tao. Biocatalysis of Phenolic Glycosides Natural Products in Escherichia coli Strain Using UGT73B6 [J]. Biotechnology Bulletin, 2017, 33(11): 136-142. |
[7] | Zhang Congcong, Chen Caixia, Chen Xiao, Wen Ya, Yan Liming, Tao Yong. Advances in Production of N-acetyl-D-neuraminic Acid by #br#Whole-cell Biocatalysis [J]. Biotechnology Bulletin, 2015, 31(4): 175-183. |
[8] | Zuo Ke, Li Zhimin, Ye Qin. Production of 2-phenylpropionic Acid by Rhodococcus sp. G14 [J]. Biotechnology Bulletin, 2013, 0(12): 173-177. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||