Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (12): 216-228.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0365
Previous Articles Next Articles
LIANG Xin-xin1(), TANG Dan1, HUO Yi-xin1,2()
Received:
2020-04-01
Online:
2020-12-26
Published:
2020-12-22
Contact:
HUO Yi-xin
E-mail:xinxinliang111@126.com;huoyixin@bit.edu.cn
LIANG Xin-xin, TANG Dan, HUO Yi-xin. Green Biotransformation of Protein-derived Biomass[J]. Biotechnology Bulletin, 2020, 36(12): 216-228.
富含蛋白质的生物质残留物/生物质种类 | 蛋白质含量(%,以干重为基准) | 市场价格(¥t-1生物质) | 潜在价值(¥ t-1 生物质) |
---|---|---|---|
含可溶物的干酒糟(DDGS) | 20-40 | 770-1160 | 3100 |
甜菜酒渣 | 15-30 | 1160-1390 | 5420 |
蓖麻粕 | 30-60 | 770-1010 | 2320 |
豆粕 | 45-55 | 2320 | 4640 |
家禽羽毛 | 80-90 | 2320 | 2710 |
富含蛋白质的生物质残留物/生物质种类 | 蛋白质含量(%,以干重为基准) | 市场价格(¥t-1生物质) | 潜在价值(¥ t-1 生物质) |
---|---|---|---|
含可溶物的干酒糟(DDGS) | 20-40 | 770-1160 | 3100 |
甜菜酒渣 | 15-30 | 1160-1390 | 5420 |
蓖麻粕 | 30-60 | 770-1010 | 2320 |
豆粕 | 45-55 | 2320 | 4640 |
家禽羽毛 | 80-90 | 2320 | 2710 |
蛋白源生物质种类 | Gly | Ala | Val | Leu | Ile | Ser | Thr | Cys | Met | Pro | Phe | Tyr | Trp | Cys | Lys | Arg | Asp/ Asn | Glu/ Gln |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
小麦酒糟(DDGS) | 4.5 | 4.3 | 4.8 | 6.6 | 3.4 | 4.5 | 3.4 | 1.1 | 1.6 | 10.3 | 4.7 | 3.3 | 0.0 | 2.2 | 2.7 | 3.2 | 5.5 | 33.8 |
木薯叶 | 7.0 | 7.7 | 0.0 | 11.6 | 6.8 | 6.2 | 0.0 | 1.3 | 2.9 | 0.0 | 7.2 | 5.7 | 2.7 | 3.2 | 8.2 | 7.2 | 8.5 | 13.9 |
甜菜酒渣 | 3.6 | 4.5 | 2.9 | 3.2 | 2.7 | 3.2 | 1.9 | 0.0 | 4.2 | 3.2 | 1.5 | 1.9 | 0.8 | 1.2 | 1.7 | 0.8 | 8.0 | 54.8 |
蓖麻粕 | 5.0 | 4.8 | 5.9 | 7.0 | 4.7 | 6.0 | 3.9 | 2.6 | 1.9 | 4.2 | 4.5 | 0.0 | / | 2.3 | 3.6 | 12.0 | 10.0 | 21.0 |
豆粕 | 4.0 | 4.3 | 5.1 | 7.5 | 5.2 | 4.9 | 3.8 | 1.6 | 1.4 | 4.5 | 4.9 | 3.3 | 1.7 | 2.3 | 6.4 | 7.8 | 11.9 | 19.7 |
家禽羽毛 | 7.3 | 5.9 | 6.6 | 8.2 | 4.9 | 10.7 | 4.2 | 4.2 | 5.6 | 8.5 | 4.8 | 2.4 | / | 1.3 | 2.3 | 6.7 | 6.6 | 9.9 |
蛋白源生物质种类 | Gly | Ala | Val | Leu | Ile | Ser | Thr | Cys | Met | Pro | Phe | Tyr | Trp | Cys | Lys | Arg | Asp/ Asn | Glu/ Gln |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
小麦酒糟(DDGS) | 4.5 | 4.3 | 4.8 | 6.6 | 3.4 | 4.5 | 3.4 | 1.1 | 1.6 | 10.3 | 4.7 | 3.3 | 0.0 | 2.2 | 2.7 | 3.2 | 5.5 | 33.8 |
木薯叶 | 7.0 | 7.7 | 0.0 | 11.6 | 6.8 | 6.2 | 0.0 | 1.3 | 2.9 | 0.0 | 7.2 | 5.7 | 2.7 | 3.2 | 8.2 | 7.2 | 8.5 | 13.9 |
甜菜酒渣 | 3.6 | 4.5 | 2.9 | 3.2 | 2.7 | 3.2 | 1.9 | 0.0 | 4.2 | 3.2 | 1.5 | 1.9 | 0.8 | 1.2 | 1.7 | 0.8 | 8.0 | 54.8 |
蓖麻粕 | 5.0 | 4.8 | 5.9 | 7.0 | 4.7 | 6.0 | 3.9 | 2.6 | 1.9 | 4.2 | 4.5 | 0.0 | / | 2.3 | 3.6 | 12.0 | 10.0 | 21.0 |
豆粕 | 4.0 | 4.3 | 5.1 | 7.5 | 5.2 | 4.9 | 3.8 | 1.6 | 1.4 | 4.5 | 4.9 | 3.3 | 1.7 | 2.3 | 6.4 | 7.8 | 11.9 | 19.7 |
家禽羽毛 | 7.3 | 5.9 | 6.6 | 8.2 | 4.9 | 10.7 | 4.2 | 4.2 | 5.6 | 8.5 | 4.8 | 2.4 | / | 1.3 | 2.3 | 6.7 | 6.6 | 9.9 |
氨基酸产品种类 | 主要生产方法 | 市场交易量(Mt) | 价格(¥ t-1) | 主要应用 |
---|---|---|---|---|
L-谷氨酸钠 | 谷氨酸棒杆菌发酵 | 3 | 约7750 | 食品增味剂 |
L-赖氨酸·盐酸盐 | 谷氨酸棒杆菌发酵 | 2.4 | 约9300 | 饲料营养 |
D,L-蛋氨酸 | 化学合成 | 1 | 约19350 | 饲料营养 |
L-苏氨酸 | 大肠杆菌发酵 | 0.6 | 约10450 | 食物和饲料营养 |
氨基酸产品种类 | 主要生产方法 | 市场交易量(Mt) | 价格(¥ t-1) | 主要应用 |
---|---|---|---|---|
L-谷氨酸钠 | 谷氨酸棒杆菌发酵 | 3 | 约7750 | 食品增味剂 |
L-赖氨酸·盐酸盐 | 谷氨酸棒杆菌发酵 | 2.4 | 约9300 | 饲料营养 |
D,L-蛋氨酸 | 化学合成 | 1 | 约19350 | 饲料营养 |
L-苏氨酸 | 大肠杆菌发酵 | 0.6 | 约10450 | 食物和饲料营养 |
微藻种类 | 蛋白含 量/% | 碳水化合 物含量/% | 脂质含 量/% |
---|---|---|---|
Arthrospira maxiuma | 60-71 | 13-16 | 6-7 |
Synechococcus sp. | 63 | 15 | 11 |
Spirulina platensis | 46-63 | 8-14 | 4-9 |
Aphanizomenon flos aquae | 62 | 23 | 3 |
Euglena gracilis | 39-61 | 14-18 | 14-20 |
Chlorella vulgaris | 51-58 | 12-17 | 14-22 |
Chlorella pyrenoidosa | 57 | 26 | 2 |
Dunaliella salina | 57 | 32 | 6 |
Scenedesmus obliquus | 50-56 | 10-17 | 12-14 |
Anabaena cylindrica | 43-56 | 25-30 | 4-7 |
Chlamydomonas rheinhardii | 48 | 17 | 21 |
Porphyridium cruentum | 28-39 | 40-57 | 9-14 |
Spirogyra sp. | 6-20 | 33-4 | 11-21 |
微藻种类 | 蛋白含 量/% | 碳水化合 物含量/% | 脂质含 量/% |
---|---|---|---|
Arthrospira maxiuma | 60-71 | 13-16 | 6-7 |
Synechococcus sp. | 63 | 15 | 11 |
Spirulina platensis | 46-63 | 8-14 | 4-9 |
Aphanizomenon flos aquae | 62 | 23 | 3 |
Euglena gracilis | 39-61 | 14-18 | 14-20 |
Chlorella vulgaris | 51-58 | 12-17 | 14-22 |
Chlorella pyrenoidosa | 57 | 26 | 2 |
Dunaliella salina | 57 | 32 | 6 |
Scenedesmus obliquus | 50-56 | 10-17 | 12-14 |
Anabaena cylindrica | 43-56 | 25-30 | 4-7 |
Chlamydomonas rheinhardii | 48 | 17 | 21 |
Porphyridium cruentum | 28-39 | 40-57 | 9-14 |
Spirogyra sp. | 6-20 | 33-4 | 11-21 |
微藻生物能源工业化生产中的瓶颈问题 | 氮循环驱动的生产方案以提升商业竞争力 | |
---|---|---|
采收成本 | (1)藻生长速度慢,生物量低 | (1)微藻生物量大,易于采集 |
(2)同液分离技术直接适用性差 | (2)同液分离技术环境友好 | |
培养成本 | (1)开放式培养,易被污染 | (1)开放式培养过程中具有生长优势,不易被污染 |
(2)封闭式培养藻株生长周期长 | (2)无需营养缺乏环境,藻株生物量积累迅速,蛋白产量高 | |
(3)生成副产物,降低转化率 | (3)脱氨后碳骨架用于生产高级醇,无其他副产物 | |
(4)蛋白质和生物量损失显著 | (4)微藻光合固碳合成的蛋白质同时用于藻生长和转化燃料 | |
(5)培养组分无法循环使用,高污染 | (5)氨基酸脱氨产生的NH3可用于微藻蛋白的合成与生长 |
微藻生物能源工业化生产中的瓶颈问题 | 氮循环驱动的生产方案以提升商业竞争力 | |
---|---|---|
采收成本 | (1)藻生长速度慢,生物量低 | (1)微藻生物量大,易于采集 |
(2)同液分离技术直接适用性差 | (2)同液分离技术环境友好 | |
培养成本 | (1)开放式培养,易被污染 | (1)开放式培养过程中具有生长优势,不易被污染 |
(2)封闭式培养藻株生长周期长 | (2)无需营养缺乏环境,藻株生物量积累迅速,蛋白产量高 | |
(3)生成副产物,降低转化率 | (3)脱氨后碳骨架用于生产高级醇,无其他副产物 | |
(4)蛋白质和生物量损失显著 | (4)微藻光合固碳合成的蛋白质同时用于藻生长和转化燃料 | |
(5)培养组分无法循环使用,高污染 | (5)氨基酸脱氨产生的NH3可用于微藻蛋白的合成与生长 |
[1] |
Scott E, Peter F, Sanders J. Biomass in the manufacture of industrial products—the use of proteins and amino acids[J]. Applied Microbiology and Biotechnology, 2007,75(4):751-762.
URL pmid: 17387469 |
[2] |
Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals[J]. Chemical Reviews, 2007,107(6):2411-2502.
doi: 10.1021/cr050989d URL pmid: 17535020 |
[3] |
Dusselier M, Mascal M, Sels BF. Top chemical opportunities from carbohydrate biomass:A chemist’s view of the biorefinery[J]. Topics in Current Chemistry, 2014,353:1-40.
doi: 10.1007/128_2014_544 URL pmid: 24842622 |
[4] |
Clarens AF, Resurreccion EP, White MA, et al. Environmental life cycle comparison of algae to other bioenergy feedstocks[J]. Environmental Science and Technology, 2010,44(5):1813-1819.
URL pmid: 20085253 |
[5] |
Brentner LB, Eckelman MJ, Zimmerman JB. Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel[J]. Environmental Science and Technology, 2011,45(16):7060-7067.
URL pmid: 21662987 |
[6] | Erisman JW, Van Grinsven H, Leip A, et al. Nitrogen and biofuels;an overview of the current state of knowledge[J]. Nutrient Cycling in Agroecosystems, 2010,86(2):211-223. |
[7] |
Ha GS, El-Dalatony MM, Kim DH, et al. Biocomponent-based microalgal transformations into biofuels during the pretreatment and fermentation process[J]. Bioresource Technology, 2020,302:122809.
URL pmid: 31981806 |
[8] | Deoliveira V, Brooks K, Nogueira L. A short introduction to the Distillers’ dried grains export market[R]. Lincoln:University of Nebraska-Lincoln, Department of Agricultural Economics, 2017. |
[9] |
Sanders J, Scott E, Weusthuis R, et al. Bio-refinery as the bio-inspired process to bulk chemicals[J]. Macromolecular Bioscience, 2007,7(2):105-117.
URL pmid: 17295397 |
[10] |
Wijffels RH, Barbosa MJ. An outlook on microalgal biofuels[J]. Science, 2010,329(5993):796-799.
URL pmid: 20705853 |
[11] | Erisman JW, Sutton MA, Galloway J, et al. How a century of ammonia synjournal changed the world[J]. Nature Geoscience, 2008,1(10):636-639. |
[12] |
Chojnacka K, Moustakas K, Witek-Krowiak A. Bio-based fertilizers:A practical approach towards circular economy[J]. Bioresource Technology, 2020,295:122223.
doi: 10.1016/j.biortech.2019.122223 URL pmid: 31623921 |
[13] |
Vaneeckhaute C, Styles D, Prade T, et al. Closing nutrient loops through decentralized anaerobic digestion of organic residues in agricultural regions:A multi-dimensional sustainability assessment[J]. Resources Conservation and Recycling, 2018,136:110-117.
doi: 10.1016/j.resconrec.2018.03.027 URL |
[14] | Huo YX, Cho KM, Rivera JGL, et al. Conversion of proteins into biofuels by engineering nitrogen flux[J]. Nature Biotechnology, 2011,29(4):346. |
[15] |
Branduardi P, Longo V, Berterame NM, et al. A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae[J]. Biotechnology for Biofuels, 2013,6(1):68.
URL pmid: 23642236 |
[16] |
Choi KY, Wernick DG, Tat CA, et al. Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis[J]. Metabolic Engineering, 2014,23:53-61.
doi: 10.1016/j.ymben.2014.02.007 URL pmid: 24566040 |
[17] |
Mikami Y, Yoneda H, Tatsukami Y, et al. Ammonia production from amino acid-based biomass-like sources by engineered Escherichia coli[J]. AMB Express, 2017,7(1):83.
URL pmid: 28429328 |
[18] | Ma L, Guo L, Yang Y, et al. Protein-based biorefining driven by nitrogen-responsive transcriptional machinery[J]. Biotechnology for Biofuels, 2020,13(1):1-14. |
[19] |
Jach ME, Baj T, Juda M, et al. Statistical evaluation of growth parameters in biofuel waste as a culture medium for improved production of single cell protein and amino acids by Yarrowia lipolytica[J]. AMB Express, 2020,10(1):35.
doi: 10.1186/s13568-020-00968-x URL pmid: 32072349 |
[20] |
Tuck CO, Pérez E, Horváth IT, et al. Valorization of biomass:deriving more value from waste[J]. Science, 2012,337(6095):695-699.
URL pmid: 22879509 |
[21] |
De-Schouwer F, Claes L, Vandekerkhove A, et al. Protein-rich biomass waste as a resource for future biorefineries:State of the art, challenges, and opportunities[J]. ChemSusChem, 2019,12(7):1272-1303.
doi: 10.1002/cssc.201802418 URL pmid: 30667150 |
[22] |
El-Dalatony MM, Saha S, Govindwar SP, et al. Biological conversion of amino acids to higher alcohols[J]. Trends in Biotechnology, 2019,37(8):855-869.
URL pmid: 30871798 |
[23] | Bozell JJ, Petersen GR. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited[J]. Green Chemistry, 2010,12(4):539-554. |
[24] |
Huber GW and Corma A. Synergies between bio-and oil refineries for the production of fuels from biomass[J]. Angewandte Chemie International Edition, 2007,46(38):7184-7201.
URL pmid: 17610226 |
[25] |
Besson ML, Gallezot P, Pinel C. Conversion of biomass into chemicals over metal catalysts[J]. Chemical Reviews, 2014,114(3):1827-1870.
URL pmid: 24083630 |
[26] |
Gallezot P. Conversion of biomass to selected chemical products[J]. Chemical Society Reviews, 2012,41(4):1538-1558.
URL pmid: 21909591 |
[27] | Huo YX, Wernick DG, Liao JC. Toward nitrogen neutral biofuel production[J]. Curr Opin Biotechnolo, 2012,23(3):406-413. |
[28] | Werpy T, Petersen G. Top value added chemicals from biomass:volume I--results of screening for potential candidates from sugars and synreport gas[R]. United States:National Renewable Energy Lab., Golden, CO (US), 2004. |
[29] |
Kumar K, Dasgupta CN, Nayak B, et al. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria[J]. Bioresource Technology, 2011,102(8):4945-4953.
URL pmid: 21334885 |
[30] |
Gong Y, Jiang M. Biodiesel production with microalgae as feedstock:from strains to biodiesel[J]. Biotechnology Letters, 2011,33(7):1269-1284.
URL pmid: 21380528 |
[31] |
Becker E. Micro-algae as a source of protein[J]. Biotechnology Advances, 2007,25(2):207-210.
doi: 10.1016/j.biotechadv.2006.11.002 URL pmid: 17196357 |
[32] |
Shen CR, Liao JC. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways[J]. Metabolic Engineering, 2008,10(6):312-320.
doi: 10.1016/j.ymben.2008.08.001 URL pmid: 18775501 |
[33] |
Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synjournal of branched-chain higher alcohols as biofuels[J]. Nature, 2008,451(7174):86.
URL pmid: 18172501 |
[34] | Wood W, Gunsalus IC. Serine and threonine deaminases of Escherichia coli:Activators for a cell-free enzyme[J]. Journal of Biological Chemistry, 1949,181(1):171-182. |
[35] | Arie BB, Sima SF, Huang LL, et al. Methods for the preparation of para-hydroxycinnamic acid and cinnamic acid at alkaline pH:US, 8003356 B2[P]. 2011-08-23. |
[36] | Brenda Database[DB/OL]. Available from: http://www.brenda. uni-koeln. de. |
[37] |
Shen CR, Lan EI, Dekishima Y, et al. Driving forces enable high-titer anaerobic 1-butanol synjournal in Escherichia coli[J]. Appl Environ Microbiol, 2011,77(9):2905-2915.
URL pmid: 21398484 |
[38] |
Choi YJ, Park JH, Kim TY, et al. Metabolic engineering of Escherichia coli for the production of 1-propanol[J]. Metabolic Engineering, 2012,14(5):477-486.
URL pmid: 22871504 |
[39] |
Wang X, Xu N, Hu S, et al. d-1, 2, 4-Butanetriol production from renewable biomass with optimization of synthetic pathway in engineered Escherichia coli[J]. Bioresource Technology, 2018,250:406-412.
doi: 10.1016/j.biortech.2017.11.062 URL pmid: 29195152 |
[40] | Li SY, Ng IS, Chen PT, et al. Biorefining of protein waste for production of sustainable fuels and chemicals[J]. Biotechnology for Biofuels, 2018,11(1):256. |
[41] |
Lee J, Jang YS, Choi SJ, et al. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation[J]. Applied and Environmental Microbiology, 2012,78(5):1416-1423.
URL pmid: 22210214 |
[42] |
Ohisa N, Yamaguchi M, Kurihara N. Lindane degradation by cell-free extracts of Clostridium rectum[J]. Archives of Microbiology, 1980,125(3):221-225.
URL pmid: 6155109 |
[43] | Zhao J, Lu C, Chen CC, et al. Biological production of butanol and higher alcohols[M]// Yang ST, El-Enshasy HA, Thongchul N. Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers. Wiley, 2013: 235-262. |
[44] | Sangavai C, Chellapandi P. Amino acid catabolism-directed biofuel production in Clostridium sticklandii:an insight into model-driven systems engineering[J]. Biotechnol Rep, 2017,16:32-43. |
[45] |
Milias-Argeitis A, Oliveira AP, Gerosa L, et al. Elucidation of genetic interactions in the yeast GATA-factor network using Bayesian model selection[J]. PLoS Computational Biology, 2016,12(3):e1004784.
doi: 10.1371/journal.pcbi.1004784 URL pmid: 26967983 |
[46] | Ogata K, Uchiyama K, Yamada H. Microbial formation of cinnamic acid from phenylalanine[J]. Agricultural and Biological Chemistry, 1966,30(3):311-312. |
[47] | Tang L. Amino acid catabolism and antibiotic synjournal:valine is a source of precursors for macrolide biosynjournal in Streptomyces ambofaciens and Streptomyces fradiae[J]. Journal of Bacteriology, 1994,16:32-43. |
[48] |
Norton JE, Sokath JR. Oxidation of D- and L-valine by enzymes of Pseudomonas aeruginosa[J]. J Bacteriol, 1966,92(1):116-120.
URL pmid: 4957429 |
[49] | Izaguirre JK, Dietrich T, Villarán MC, et al. Protein hydrolysate from organic fraction of municipal solid waste compost as nitrogen source to produce lactic acid by Lactobacillus fermentum ATCC 9338 and Lactobacillus plantarum NCIMB 8826[J]. Process Biochemistry, 2020,88:15-21. |
[50] |
Ho SH, Chen CY, Lee DJ, et al. Perspectives on microalgal CO2-emission mitigation systems—a review[J]. Biotechnology Advances, 2011,29(2):189-198.
doi: 10.1016/j.biotechadv.2010.11.001 URL pmid: 21094248 |
[51] |
Peccia J, Haznedaroglu B, Gutierrez J, et al. Nitrogen supply is an important driver of sustainable microalgae biofuel production[J]. Trends in Biotechnology, 2013,31(3):134-138.
URL pmid: 23414785 |
[52] |
Mielenz JR. Biofuels from protein[J]. Nature Biotechnology, 2011,29(4):327.
doi: 10.1038/nbt.1838 URL pmid: 21478847 |
[53] |
Wang G, Huang M, Nielsen J. Exploring the potential of Saccharo-myces cerevisiae for biopharmaceutical protein production[J]. Curr Opin Biotechnol, 2017,48:77-84.
URL pmid: 28410475 |
[54] |
Li W, Chen SJ, Wang JH, et al. Genetic engineering to alter carbon flux for various higher alcohol productions by Saccharomyces cerevisiae for Chinese Baijiu fermentation[J]. Applied Microbiology and Biotechnology, 2018,102(4):1783-1795.
doi: 10.1007/s00253-017-8715-5 URL pmid: 29305698 |
[55] |
Atsumi S, Liao JC. Directed evolution of Methanococcus jannaschii citramalate synthase for biosynjournal of 1-propanol and 1-butanol by Escherichia coli[J]. Applied and Environmental Microbiology, 2008,74(24):7802-7808.
doi: 10.1128/AEM.02046-08 URL pmid: 18952866 |
[56] |
Bond-Watts BB, Bellerose RJ, Chang MC. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways[J]. Nature Chemical Biology, 2011,7(4):222.
doi: 10.1038/nchembio.537 URL pmid: 21358636 |
[57] |
Cann AF, Liao JC. Production of 2-methyl-1-butanol in engineered Escherichia coli[J]. Applied Microbiology and Biotechnology, 2008,81(1):89-98.
doi: 10.1007/s00253-008-1631-y URL pmid: 18758769 |
[58] | Hanai T, Atsumi S, Liao J. Engineered synthetic pathway for isopropanol production in Escherichia coli[J]. Applied and Environmental Microbiology, 2007,73(24):7814-7818. |
[59] |
Connor MR, Cann AF, Liao JC. 3-Methyl-1-butanol production in Escherichia coli:random mutagenesis and two-phase fermentation[J]. Applied Microbiology and Biotechnology, 2010,86(4):1155-1164.
URL pmid: 20072783 |
[60] |
Rodolfi L, Chini Zittelli G, Bassi N, et al. Microalgae for oil:Strain selection, induction of lipid synjournal and outdoor mass cultivation in a low-cost photobioreactor[J]. Biotechnology and Bioengineering, 2009,102(1):100-112.
URL pmid: 18683258 |
[61] | 谢平. 论蓝藻水华的发生机制---从生物进化, 生物地球化学和生态学视点[M]. 北京: 科学出版社, 2007. |
Xie P. On the mechanism of cyanobacteria blooms:From the perspectives of biological evolution, biogeochemistry and ecology[M]. Beijing: Science Press, 2007. | |
[62] | Wu W, Davis R, Wu B. Improved algal biofuel yield through bioconversion of proteins to mixed alcohols and sesquiterpenes[M]. United States:National Nuclear Security Administration, 2015: 26-30. |
[63] | Sheehan J, Dunahay T, Benemann J, et al. Look back at the US department of energy’s aquatic species program:biodiesel from algae;close-out report[R]. United States:National Renewable Energy Lab., Golden, CO. (US), 1998. |
[64] | Posten C. Design principles of photo-bioreactors for cultivation of microalgae[J]. Engineering in Life Sciences, 2009,9(3):165-177. |
[65] | Xu L, Weathers PJ, Xiong XR, et al. Microalgal bioreactors:challenges and opportunities[J]. Engineering in Life Sciences, 2009,9(3):178-189. |
[66] |
Bozarth A, Maier UG, Zauner S. Diatoms in biotechnology:modern tools and applications[J]. Applied microbiology and biotechnology, 2009,82(2):195-201.
URL pmid: 19082585 |
[67] | Kumar V, Nanda M, Joshi H, et al. Production of biodiesel and bioethanol using algal biomass harvested from fresh water river[J]. Renewable Energy, 2018,116:606-612. |
[68] | Baral NR, Shah A. Techno-economic analysis of cellulosic butanol production from corn stover through acetone-butanol-ethanol fermentation[J]. Energy and Fuels, 2016,30(7):5779-5790. |
[1] | MEI Huan, LI Yue, LIU Ke-meng, LIU Ji-hua. Study on the Biosynthesis of l-SLR by Efficient Prokaryotic Expression of Berberine Bridge Enzyme [J]. Biotechnology Bulletin, 2023, 39(7): 277-287. |
[2] | ZHAO Bao-ding, LV Jia, SHEN Yu-yu, GUI Ling, CHEN Zhong-xiu, CHEN Jie, LU Fu-ping, LI Ming. Efficient Transformation of Uridine by Escherichia coli Based on Signal Peptide and Molecular Chaperone Strategy [J]. Biotechnology Bulletin, 2022, 38(11): 238-249. |
[3] | ZHAO Xiang-jie, YANG Wen-jun, YANG Rong-ling, WU Ting-ting, WANG Zhao-yu, XU Ning-ning, HE Jia-mei. Research Progress on Biotransformation Modification of Anthocyanins [J]. Biotechnology Bulletin, 2019, 35(10): 205-211. |
[4] | ZHU Feng-zhi, CHENG Cheng, LIU Xiang-sheng, ZHANG Kun WANG, Li-shuang ,WANG Min, LUO Jian-mei. Optimization of Biotransformation Technology for 10-DAB Production from Baccatin III Using Response Surface Methodology [J]. Biotechnology Bulletin, 2017, 33(4): 238-246. |
[5] | HE Qing-lin, BAI Yan-fen, ZHOU Wei, YIN Hua, CHEN Ning, ZHUANG Yi-bin, LIU Tao. Biocatalysis of Phenolic Glycosides Natural Products in Escherichia coli Strain Using UGT73B6 [J]. Biotechnology Bulletin, 2017, 33(11): 136-142. |
[6] | Zhang Congcong, Chen Caixia, Chen Xiao, Wen Ya, Yan Liming, Tao Yong. Advances in Production of N-acetyl-D-neuraminic Acid by #br#Whole-cell Biocatalysis [J]. Biotechnology Bulletin, 2015, 31(4): 175-183. |
[7] | Wang Yanxia, Liu Xiangsheng, Wang Min, Luo Jianmei. Research Advances on Molecular Techniques for Improving Microbial Tolerance to Organic Solvents [J]. Biotechnology Bulletin, 2015, 31(10): 77-88. |
[8] | Zuo Ke, Li Zhimin, Ye Qin. Production of 2-phenylpropionic Acid by Rhodococcus sp. G14 [J]. Biotechnology Bulletin, 2013, 0(12): 173-177. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||