[1]Jones-Rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA[J]. Molecular Cell, 2004, 14(6): 787-799. [2] Schwab R, Palatnik JF, Riester M, et al. Specific effects of microRNAs on the plant transcriptome[J]. Development Cell, 2005, 8(4): 517-527. [3]Palatnik JF, Allen E, Wu XL, et al. Control of leaf morphogenesis by microRNAs[J]. Nature, 2003, 425(6955): 257-263. [4]Bartlett ME, Specht CD. Changes in expression pattern of the teosinte branched l-like genes in the Zingiberales provide a mechanism for evolutionary shifts in symmetry across the order[J]. American Journal of Botany, 2011, 98(2): 227-243. [5]Schommer C, Palatnik JF, Aggarwal P, et al. Control of jasmonate biosynthesis and senescence by miR319 targets[J]. PLoS Biology, 2008, 6(9): e230. [6]Nag A, King S, Jack T. miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis[J]. Proc Natl Acad Sci USA, 2009, 106(52): 22534-22539. [7]Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J]. Plant Cell, 2004, 16(8): 2001-2019. [8]贾蓓. 水稻miR319的耐冷功能分析与分子机制研究[D]. 哈尔滨: 东北农业大学, 2012. [9]WangST, Sun XL, Hoshino Y, et al. MicroRNA319 positively regulates cold tolerance by targeting OsPCF6andOsTCP21in rice(Oryza sativaL. )[J]. PLoS One, 2014, 9(3): e91357. [10]Wang X. A PCR-based platform for microRNA expression profiling studies[J]. RNA, 2009, 15(4): 716-723. [11]周玉飞, 曾长英, 陈新, 等. 低温驯化对木薯耐寒性形态、生理特性的影响[J]. 热带农业科学, 2011, 31(6): 1-6. [12] 罗茂, 张志明, 高健, 等. miR319在植物器官发育中的调控作用[J]. 遗传, 2011, 33(11): 1203-1211. [13]Zeng CY, Chen Z, Xia J, et al. Chilling acclimation provides immunity to stress by altering regulatory networks and inducing genes with protective functions in cassava[J]. BMC Plant Biology, 2014, 14: 207. [14]Millar AA, Gubler F. The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development[J]. Plant Cell, 2005, 17(3): 705-721. |