Biotechnology Bulletin ›› 2016, Vol. 32 ›› Issue (4): 6-15.doi: 10.13560/j.cnki.biotech.bull.1985.2016.04.001
Previous Articles Next Articles
LIU Wei-can ,ZHOU Yong-gang, WANG Xing-chao, WANG Fa-wei, WANG Nan, DONG Yuan-yuan, LI Xiao-wei, LI Hai-yan
Received:
2015-08-24
Online:
2016-04-25
Published:
2016-04-26
LIU Wei-can ,ZHOU Yong-gang, WANG Xing-chao, WANG Fa-wei, WANG Nan, DONG Yuan-yuan, LI Xiao-wei, LI Hai-yan. The Potential Application of microRNA-mediated Gene Regulation in Crop Improvement[J]. Biotechnology Bulletin, 2016, 32(4): 6-15.
[1]农业部农业转基因生物安全管理办公室. 农业转基因技术与生物安全问答[J]. 科学咨询(决策管理), 2010, 4:68-69. [2]吕帝瑾, 赵佳媛, 陈婧, 等. 植物microRNA的研究进展[J]. 植物生理学报, 2013, 9:847-854. [3]Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5):843-854. [4]Zhang B. MicroRNA:a new target for improving plant tolerance to abiotic stress[J]. J Exp Bot, 66(7):1749-1761. [5]Ferdous JHS, Shi BJ. Role of microRNAs in plant drought tolerance[J]. Plant Biotechnol J, 2015, 13(3):293-305. [6]Kumar R. Role of microRNAs in biotic and abiotic stress responses in crop plants[J]. Appl Biochem Biotechnol, 174(1):93-115. [7]Khraiwesh B ZJ, Zhu J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants[J]. Biochim Biophys Acta, 2012, 1819(2):137-148. [8] 王维, 张玉娟, 陈洁, 等. 植物逆境胁迫相关miRNA研究进展[J]. 生物技术通报, 2015(1):1-10. [9] Zhou M, Luo H. MicroRNA-mediated gene regulation:potential applications for plant genetic engineering[J]. Plant Mol Biol, 2013, 83(1-2):59-75. [10]Du P, Wu J, Zhang J, et al. Viral infection induces expression of novel phased microRNAs from conserved cellular microRNA precursors[J]. PLoS Pathog, 2011, 7(8):e1002176. [11]陈英, 谭碧玥, 黄敏仁. 植物天然免疫系统研究进展[J]. 南京林业大学学报:自然科学版, 2012, 1:129-136. [12]Navarro L, Dunoyer P, Jay F, et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling[J]. Science, 2006, 312(5772):436-439. [13]Navarro L, Jay F, Nomura K, et al. Suppression of the microRNA pathway by bacterial effector proteins[J]. Science, 2008, 321(5891):964-967. [14]Zhu QH, Fan L, Liu Y, et al. miR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton[J]. PLoS One, 2013, 8(12):e84390. [15]Agrawal A, Rajamani V, Reddy VS, et al. Transgenic plants over-expressing insect-specific microRNA acquire insecticidal activity against Helicoverpa armigera:an alternative to Bt-toxin technology[J]. Transgenic Res, 2015, 24(5):791-801. [16]Li X, Wang X, Zhang S, et al. Identification of soybean microRNAs involved in soybean cyst nematode infection by deep sequencing[J]. PLoS One, 2012, 7(6):e39650. [17]Li H, Dong Y, Yin H, et al. Characterization of the stress associated microRNAs in Glycine max by deep sequencing[J]. BMC Plant Biol, 2011, 11:170. [18]Li MY, Wang F, Xu ZS, et al. High throughput sequencing of two celery varieties small RNAs identifies microRNAs involved in temperature stress response[J]. BMC Genomics, 2014, 15:242. [19] Panda SK, Sunkar R. Nutrient- and other stress-responsive microRNAs in plants:Role for thiol-based redox signaling[J]. Plant Signal Behav, 2015, 10(4):e1010916. [20]Wang B, Sun YF, Song N, et al. Identification of UV-B-induced microRNAs in wheat[J]. Genet Mol Res, 2013, 12(4):4213-4221. [21]Zhang YC, Yu Y, Wang CY, et al. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching[J]. Nat Biotechnol, 2013, 31(9):848-852. [22]Yang L, Mu X, Liu C, et al. Overexpression of potato miR482e enhanced plant sensitivity to Verticillium dahliae infection[J]. J Integr Plant Biol, 2015, 57(12):1078-1088. [23]Campo S, Peris-Peris C, Sire C, et al. Identification of a novel microRNA(miRNA)from rice that targets an alternatively spliced transcript of the Nramp6(Natural resistance-associated macrophage protein 6)gene involved in pathogen resistance[J]. New Phytol, 2013, 199(1):212-227. [24]Pinweha N, Asvarak T, Viboonjun U, et al. Involvement of miR160/miR393 and their targets in cassava responses to anthracnose disease[J]. J Plant Physiol, 2015, 174:26-35. [25]Wang Y, Wang L, Zou Y, et al. Soybean miR172c targets the repressive AP2 transcription factor NNC1 to activate ENOD40 expression and regulate nodule initiation[J]. Plant Cell, 2014, 26(12):4782-4801. [26] 郭西贵. 水稻miR172基因遗传转化及其功能分析[D]. 金华:浙江师范大学, 2012. [27]徐艳. 人工miR159介导的番茄抗黄瓜花叶病毒遗传转化研究[D]. 杭州:浙江理工大学, 2011. [28]Yang J, Zhang N, Mi X, et al. Identification of miR159s and their target genes and expression analysis under drought stress in potato[J]. Comput Biol Chem, 2014, 53:204-213. [29]Jovanovic Z, Stanisavljevic N, Mikic A, et al. Water deficit down-regulates miR398 and miR408 in pea(Pisum sativum L. )[J]. Plant Physiol Biochem, 2014, 83:26-31. [30]杨凤玺. MiR396在烟草中的功能分析[D]. 昆明:中国科学院研究生院(西双版纳热带植物园), 2009. [31]Kinoshita N, Wang H, Kasahara H, et al. IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress[J]. Plant Cell, 2012, 24(9):3590-3602. [32]Ni ZY, Hu Z, Jiang QY, et al. GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress[J]. Plant Mol Biol, 2013, 82(1-2):113-129. [33]Luan MD, Xu MY, Lu YM, et al. Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves[J]. Gene, 2015, 555(2):178-185. [34]尹海龙. 大豆miR169d的表达分析及功能验证[D]. 长春:吉林农业大学, 2013. [35]倪志勇. 大豆抗逆相关miR169c及其靶位点GmNFYA3和miR394a的功能研究[D]. 北京:中国农业科学院, 2013. [36]Xia K, Wang R, Ou X, et al. OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice[J]. PLoS One, 2012, 7(1):e30039. [37]Wang Y, Sun F, Cao H, et al. TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response[J]. PLoS One, 2012, 7(11):e48445. [38]Wang ST, Sun XL, Hoshino Y, et al. MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice(Oryza sativa L. )[J]. PLoS One, 2014, 9(3):e91357. [39]Yang C, Li D, Mao D, et al. Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice(Oryza sativa L. )[J]. Plant Cell Environ, 2013, 36(12):2207-2218. [40]贾蓓. 水稻miR319的耐冷功能分析与分子机制研究[D]. 齐齐哈尔:东北农业大学, 2012. [41]Lu X, Guan Q, Zhu J. Downregulation of CSD2 by a heat-inducible miR398 is required for thermotolerance in Arabidopsis[J]. Plant Signal Behav, 2013, 8(8). pii:e24952. [42]鲁玉柱, 封振, 边黎颖, 等. 过表达抗miR398的OsmCSD2基因提高水稻的重金属抗性[J]. 植物生理学报, 2011, 11:1064-1068. [43]Naya L, Paul S, Valdes-Lopez O, et al. Regulation of copper homeostasis and biotic interactions by microRNA 398b in common bean[J]. PLoS One, 2014, 9(1):e84416. [44]Feng H, Zhang Q, Wang Q, et al. Target of tae-miR408, a chemocyanin-like protein gene(TaCLP1), plays positive roles in wheat response to high-salinity, heavy cupric stress and stripe rust[J]. Plant Mol Biol, 2013, 83(4-5):433-443. [45]Zhang LW, Song JB, Shu XX, et al. miR395 is involved in detoxification of cadmium in Brassica napus[J]. J Hazard Mater, 2013, 250-251:204-211. [46] 张柳伟. miR395调节油菜(Brassica napus)耐镉功能的研究[D]. 南京:南京农业大学, 2012. [47]Kawashima CG, Matthewman CA, Huang S, et al. Interplay of SLIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis[J]. Plant J, 2011, 66(5):863-876. [48]Casadevall R, Rodriguez RE, Debernardi JM, et al. Repression of growth regulating factors by the microRNA396 inhibits cell proliferation by UV-B radiation in Arabidopsis leaves[J]. Plant Cell, 2013, 25(9):3570-3583. [49]Liu Q, Shen G, Peng K, et al. A T-DNA insertion mutant Osmtd1 was altered in architecture by upregulating MicroRNA156f in rice[J]. J Integr Plant Biol, 2015, 57(10):819-829. [50]Xian Z, Huang W, Yang Y, et al. miR168 influences phase transition, leaf epinasty, and fruit development via SlAGO1s in tomato[J]. J Exp Bot, 2014, 65(22):6655-6666. [51]Zhang T, Wang J, Zhou C. The role of miR156 in developmental transitions in Nicotiana tabacum[J]. Sci China Life Sci, 2015, 58(3):253-260. [52]解亚坤. 水稻miR393基因家族的表达模式及其对植株生长发育的影响[D]. 杭州:浙江大学, 2011. [53]马圣运. Os-miR408的表达模式及其在水稻种子发育中的功能[D]. 杭州:浙江大学, 2012. [54]Liu Q, Chen YQ. A new mechanism in plant engineering:the potential roles of microRNAs in molecular breeding for crop improvement[J]. Biotechnol Adv, 2010, 28(3):301-307. [55]Duan CG, Wang CH, Fang RX, et al. Artificial MicroRNAs highly accessible to targets confer efficient virus resistance in plants[J]. J Virol, 2008, 82(22):11084-11095. [56]Khraiwesh B, Ossowski S, Weigel D, et al. Specific gene silencing by artificial MicroRNAs in Physcomitrella patens:an alternative to targeted gene knockouts[J]. Plant Physiol, 2008, 148(2):684-693. [57]Tiwari M, Sharma D, Trivedi PK. Artificial microRNA mediated gene silencing in plants:progress and perspectives[J]. Plant Mol Biol, 2014, 86(1-2):1-18. [58]Carbonell A, Fahlgren N, Mitchell S, et al. Highly specific gene silencing in a monocot species by artificial microRNAs derived from chimeric miRNA precursors[J]. Plant J, 2015, 82(6):1061-1075. [59]Chi M, Bhagwat B, Lane WD, et al. Reduced polyphenol oxidase gene expression and enzymatic browning in potato(Solanum tuberosum L. )with artificial microRNAs[J]. BMC Plant Biol, 2014, 14:62. [60]Ali I, Amin I, Briddon RW, et al. Artificial microRNA-mediated resistance against the monopartite begomovirus Cotton leaf curl Burewala virus[J]. Virol J, 2013, 10:231. [61]Song YZ, Han QJ, Jiang F, et al. Effects of the sequence characteristics of miRNAs on multi-viral resistance mediated by single amiRNAs in transgenic tobacco[J]. Plant Physiol Biochem, 2014, 77:90-98. [62]Todesco M, Rubio-Somoza I, Paz-Ares J, et al. A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana[J]. PLoS Genet, 2010, 6(7):e1001031. [63]Fujii H, Chiou TJ, Lin SI, et al. A miRNA involved in phosphate-starvation response in Arabidopsis[J]. Curr Biol, 2005, 15(22):2038-2043. [64]Franco-Zorrilla JM, Valli A, Todesco M, et al. Target mimicry provides a new mechanism for regulation of microRNA activity[J]. Nat Genet, 2007, 39(8):1033-1037. [65]Wang Y, Li J. Genes controlling plant architecture[J]. Curr Opin Biotechnol, 2006, 17(2):123-129. [66]Reichel M, Millar AA. Specificity of plant microRNA target MIMICs:Cross-targeting of miR159 and miR319[J]. J Plant Physiol, 2015, 180:45-48. [67]Reichel M, Li Y, Li J, et al. Inhibiting plant microRNA activity:molecular SPONGEs, target MIMICs and STTMs all display variable efficacies against target microRNAs[J]. Plant Biotechnol J, 2015, 13(7):915-926. [68]Song JB, Gao S, Sun D, et al. miR394 and LCR are involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner[J]. BMC Plant Biol, 2013, 13:210. [69]Song JB, Shu XX, Shen Q, et al. Altered fruit and seed development of transgenic rapeseed(Brassica napus)over-expressing microRNA394[J]. PLoS One, 2015, 10(5):e0125427. [70]Zhang L, Hou D, Chen X, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1:evidence of cross-kingdom regulation by microRNA[J]. Cell Res, 2012, 22(1):107-126. [71]Ramesh SV. Non-coding RNAs in crop genetic modification:considerations and predictable environmental risk assessments(ERA)[J]. Mol Biotechnol, 2013, 55(1):87-100. |
[1] | SHI Jian-lei, ZAI Wen-shan, SU Shi-wen, FU Cun-nian, XIONG Zi-li. Identification and Expression Analysis of miRNA Related to Bacterial Wilt Resistance in Tomato [J]. Biotechnology Bulletin, 2023, 39(5): 233-242. |
[2] | GE Yan-rui, ZHAO Ran, XU Jing, LI Ruo-fan, HU Yun-tao, LI Rui-li. Advances in the Development and Regulation of Vascular Cambium [J]. Biotechnology Bulletin, 2023, 39(3): 13-25. |
[3] | ZHOU Jia-yan, ZOU Jian, CHEN Wei-ying, WU Yi-chao, CHEN Xi-tong, WANG Qian, ZENG Wen-jing, HU Nan, YANG Jun. Construction of Multi-gene Interference System for Plant and Analysis of Its Application Efficiency [J]. Biotechnology Bulletin, 2023, 39(1): 115-126. |
[4] | LUO Hao-tian, WANG Long, WANG Yu-qian, WANG Yue, LI Jia-zhen, YANG Meng-ke, ZHANG Jie, DENG Xin, WANG Hong-yan. Genome-wide Identification and Expression Analysis of the RNAi-related Gene Families in Setaria viridis [J]. Biotechnology Bulletin, 2023, 39(1): 175-186. |
[5] | WANG Nan-nan, WANG Wen-jia, ZHU Qiang. Research Progress of microRNAs in Plant Stress Responses [J]. Biotechnology Bulletin, 2022, 38(8): 1-11. |
[6] | HONG Jun, WEI Xia-yi, JI Bing-jie, YE Yan-xin, CHENG Tian-ci. Change of Differentially Expressed Genes and SNP Before or After Pseudomonas aeruginosa Resistance to Tachyplesin I [J]. Biotechnology Bulletin, 2021, 37(9): 191-202. |
[7] | LI Ling, YANG Li-xia, GUO Mei. Function of Transcription Factor CNR in the Ripening Process of Tomato Fruit [J]. Biotechnology Bulletin, 2021, 37(2): 51-62. |
[8] | ZHANG Ting-huan, LONG Xi, GUO Zong-yi, CHAI Jie. miR-378 Promoting Lipogenesis and Identification of Target Genes [J]. Biotechnology Bulletin, 2021, 37(2): 80-87. |
[9] | TANG De-ping, YAO Hui-hui, TANG Jin-zhou, MAO Ai-hong. Mutual Regulation of microRNAs and Epigenetics in Human Cancers [J]. Biotechnology Bulletin, 2020, 36(8): 194-200. |
[10] | YANG Zhen-zhou, LIU Gang, XU Li. Reverse Transcription Digital PCR Detection Method for NAi-Based Transgenic Maize [J]. Biotechnology Bulletin, 2020, 36(5): 56-63. |
[11] | YANG Wen-wen, NI Jia-yao, HU Rui-jie, WANG Hua-zhong. A Sequencing Strategy for Inverted Repeats in RNAi Vectors [J]. Biotechnology Bulletin, 2020, 36(5): 205-210. |
[12] | LI Ze-qing, LIU Cai-xian, XING Wen, WEN Ya-feng. Research Progress on Regulation of miRNA in the Heat Stress Response of Plants [J]. Biotechnology Bulletin, 2020, 36(2): 149-157. |
[13] | SUN Rui-ping, WANG Feng, CHAO Zhe, LIU Hai-long, XING Man-ping, LIU Quan-wei, ZHENG Xin-li, HUANG Li-li, WEI Li-min. Comparative Analysis on miRNA Transcriptome of Skeletal Muscle Between Wuzhishan Pig and Landrace [J]. Biotechnology Bulletin, 2020, 36(10): 40-48. |
[14] | XU Xiang, DONG Wei-peng, ZHANG Shao-hua, FENG Chen-yi, LIU Tian-fu, YAN Jiong. Construction of Fsp27 Gene Silencing Vector and Its Effect on Cell Lipolysis [J]. Biotechnology Bulletin, 2020, 36(1): 88-94. |
[15] | HU Ji-xiang, CAO Ya-qian, ZHU Xiu-mei, YU Chao, TIAN Fang, YANG Feng-huan, CHEN Hua-min, HE Chen-yang. Rapid Validation of Target Rice miRNAs Genes in Transient Expression System [J]. Biotechnology Bulletin, 2019, 35(10): 57-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||