Biotechnology Bulletin ›› 2016, Vol. 32 ›› Issue (2): 14-20.doi: 10.13560/j.cnki.biotech.bull.1985.2016.02.002
• Review • Previous Articles Next Articles
WANG Guang-hua, LIU Jun-jie, YU Zhen-hua, WANG Xin-zhen, JIN Jian, LIU Xiao-bing
Received:
2015-11-03
Online:
2016-02-24
Published:
2016-02-25
WANG Guang-hua, LIU Jun-jie, YU Zhen-hua, WANG Xin-zhen, JIN Jian, LIU Xiao-bing. Research Progress of Acidobacteria Ecology in Soils[J]. Biotechnology Bulletin, 2016, 32(2): 14-20.
[1] Kishimoto N, Kosako Y, Tano T.Acidobacterium capsulatum gen.nov., sp.nov.:an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment[J].Current Microbiology, 1991, 22:1-7. [2] Ludwig W, Bauer SH, Bauer M, et al.Detection and in situ identification of representatives of a widely distributed new bacterial phylum[J].FEMS Microbiology Letters, 1997, 153:181-190. [3] Barns SM, Takala SL, Kuske CR.Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment[J].Applied and Environmental Microbiology, 1999, 65:1731-1737. [4] Janssen PH, Yates PS, Grinton BE, et al.Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia[J].Applied and Environmental Microbiology, 2002, 68:2391-2396. [5] Jones RT, Robeson MS, Lauber CL, et al.A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses[J].The ISME Journal, 2009, 3:442-453. [6] Lee SH, Ka JO, Cho JC.Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil[J].FEMS Microbiology Letter, 2008, 285:263-269. [7] Hugenholtz P, Goebel BM, Pace NR.Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity[J].Journal of Bacteriology, 1998, 180:4765-4774. [8] Xiong J, Liu Y, Lin X, et al.Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau[J].Environmental Microbiology, 2012, 14:2457-2466. [9] Barns SM, Cain EC, Sommerville L, et al.Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum[J].Applied and Environmental Microbiology, 2007, 73:3113-3116. [10] Naether A, Foesel BU, Naegele V, et al.Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest soils[J].Apply Environmental Microbiology, 2012, 78:7398-7406. [11] Fierer N, Bradford MA, Jackson RB.Toward an ecological classific-ation of soil bacteria[J].Ecology, 2007, 88:1354-1364. [12] M?nnist? MK, Tiirola M, H?ggblom MM, et al.Bacterial commun-ities in Arctic fjelds of Finnish Lapland are stable but highly pH de-pendent[J].FEMS Microbiology Ecology, 2007, 59:452-465. [13] Lauber CL, Strickland MS, Bradford MA, et al.The influence of soil properties on the structure of bacterial and fungal communities across land-use types[J].Soil Biology and Biochemistry, 2008, 40:2407-2415. [14] Chu HY, Fierer N, Lauber CL, et al.Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes[J].Environmental Microbiology, 2010, 12:2998-3006. [15] Griffiths RI, Thomson BC, James P, et al.The bacterial biogeography of British soils[J].Environmental Microbiology, 2011, 13:1642-1654. [16] Zhang Y, Cong J, Lu H, et al.Community structure and elevational diversity patterns of soil Acidobacteria[J].Journal of Environm-ental Sciences, 2014, 26:1717-1724. [17] Liu JJ, Sui YY, Yu ZH, et al.Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China[J].Soil Biology and Biochemistry, 2015, 83:29-39. [18] 王春香, 田宝玉, 吕睿瑞, 等.西双版纳地区热带雨林土壤酸杆菌(Acidobacteria)群体结构和多样性分析[J].微生物学通报, 2010, 37:24-29. [19] Navarrete AA, Kuramae EE, de Hollander M, et al.Acidobacterial community responses to agricultural management of soybean in Amazon forest soils[J].FEMS Microbiol Ecology, 2013, 83:607-621. [20] Fierer N, McCain CM, Meir P, et al. Microbes do not follow the elevational diversity patterns of plants and animals[J].Ecology, 2011, 92:797-804. [21] Shen CC, Xiong JB, Zhang HY, et al.Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain[J].Soil Biology and Biochemistry, 2003, 57:204-211. [22] Fierer N, Lauber CL, Ramirez KS, et al.Comparative metagenomic, phylogenetic and physiological analyses of soil microbial commu-nities across nitrogen gradients[J].The ISME Journal, 2012, 6:1007-1017. [23] Campbell BJ, Polson SW, Hanson TE, et al. The effect of nutrient deposition on bacterial communities in Arctic tundra soil[J].Environmental Microbiology, 2010, 12:1842-1854. [24] Ramirez KS, Craine JM, Fierer N.Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes[J].Global Change Biology, 2012, 18:1918-1927. [25] Lesaulnier C, Papamichail D, McCorkle S, et al.Elevated atmospheric CO2 affects soil microbialdiversity associated with trembling aspen[J].Enviromental Microbiology, 2008, 10:926-941. [26] Austin EE, Castro HF, Sides KE, et al.Assessment of 10 years of CO2 fumigation on soil microbial communities and function in a sweetgum plantation[J].Soil Biology and Biochemistry, 2009, 41:514-520. [27] Dunbar J, Eichorst SA, Gallegos-Graves LV, et al.Common bacter-ial responses in six ecosystems exposed to 10 years of elevated atmospheric carbon dioxide[J].Evironmental Microbiology, 2012, 14:1145-1158. [28] Dunbar J, Gallegos-Graves LV, Steven B, et al.Surface soil fungal and bacterial communities in aspen stands are resilient to eleven years of elevated CO2 and O3[J].Soil Biology and Biochemistry, 2014, 76:227-234. [29] Gschwendtner S, Leberecht M, Engel M, et al. Effects of elevated atmospheric CO2 on microbial community structure at the plant-soil interface of young beech trees(Fagus sylvatica L.)grown at two sites with contrasting climatic conditions[J].Microbial Ecology, 2015, 69:867-878. [30] Deng Y, He Z, Xu M, et al.Elevated carbon dioxide alters the stru-cture of soil microbial communities[J].Applied and Environme-ntal Microbiology, 2012, 78:2991-2995. [31] Uroz S, Buée M, Murat C, et al.Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil[J].Environmental Microbiology Reports, 2010, 2:281-288. [32] da Rocha UN, van Elsas JD, van Overbeek LS.Real-time PCR detection of Holophagae(Acidobacteria)and Verrucomicrobia subdivision 1 groups in bulk and leek(Allium porrum)rhizosphere soils[J].Journal of Microbiological Methods, 2010, 83:141-148. [33] Kielak A, Pijl AS, van Veen JA, et al. Phylogenetic diversity of Acidobacteria in a former agricultural soil[J].The ISME Journal, 2009, 3:378-382. [34] Pankratov TA, Kirsanova LA, Kaparullina EN, et al.Telmatobacter bradus gen.nov., sp.nov., a cellulolytic facultative anaerobe from subdivision 1 of the Acidobacteria and emended description of Acidobacterium capsulatum Kishimoto et al.1991[J].International Journal of Systematic and Evolutionary Microbiology, 2012, 62:430-437. [35] Eichorst SA, Kuske CR, Schmidt TM.Influence of plant polymers on the distribution and cultivation of bacteria in the phylum Acidobacteria[J].Applied Environmental Microbiology, 2011, 77:586-596. [36] Pankratov TA, Ivanova AO, Dedysh SN, et al. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat[J].Environmental Microbiology, 2011, 13:1800-1814. [37] Kanokratana P, Uengwetwanit T, Rattanachomsri U, et al.Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis[J].Microbial Ecology, 2011, 61:518-528. [38] Lu SP, Gischkat S, Reiche M, et al.Ecophysiology of Fe-cycling bacteria in acidic sediments[J].Applied and Environmental Microbiology, 2010, 76:8174-8183. [39] Coates JD, Ellis DJ, Gaw CV, et al.Geothrix fermentans gen.nov., sp nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer[J].International Journal of Systematic Bacteriology, 1999, 49:1615-1622. [40] Bl?the M, Akob DM, Kostka JE, et al. pH gradient-induced hetero-geneity of Fe(III)-reducing microorganisms in coal mining-associated lake sediments[J].Applied and Environmental Microbiology, 2008, 74:1019-1029. [41] Coupland K, Johnson DB.Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria[J].FEMS Microbiology Letters, 2008, 279:30-35. [42] Bryant DA, Costas AMG, Maresca JA, et al.Candidatus Chloraci-dobacterium thermophilum:An aerobic phototrophic acidobacte-rium[J].Science, 2007, 317:523-526. [43] Müh F, Madjet MEA, Adolphs J, et al.α-Helices direct excitation energy flow in the Fenna-Matthews-Olson protein[J].Procee-dings of the National Academy of Sciences of theUnited StatesofAmerica, 2007, 104:16862-16867. [44] Pankratov TA, Serkebaeva YM, Kulichevskaya IS, et al.Substrate-induced growth and isolation of Acidobacteria from acidic Sphagnum peat[J].ISME Journal, 2008, 2:551-560. [45] Radajewski S, Webster G, Reay DS, et al. Identification of active methylotroph populations in an acidic forest soil by stable-isotope probing[J].Microbiology, 2002, 148:2331-2342. [46] Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L.Real-time detection of actively metabolizing microbes by redox sensing as applied to methylotroph populations in Lake Washington[J].ISME Journal, 2008, 2:696-706. |
[1] | SUN Hai-hang, GUAN Hui-lin, WANG Xu, WANG Tong, LI Hong-lin, PENG Wen-jie, LIU Bo-zhen, FAN Fang-ling. Effects of Biochar on the Soil Properties and Fungal Community Structure under Continuous Cropping of Panax notoginseng [J]. Biotechnology Bulletin, 2023, 39(2): 221-231. |
[2] | CHEN Tian-ci, WU Shao-lan, YANG Guo-hui, JIANG Dan-xia, JIANG Yu-ji, CHEN Bing-zhi. Effects of Ganoderma resinaceum Alcohol Extract on Sleep and Intestinal Microbiota in Mice [J]. Biotechnology Bulletin, 2022, 38(8): 225-232. |
[3] | ZHONG Hui, LIU Ya-jun, WANG Bin-hua, HE Meng-jie, WU Lan. Effects of Analysis Methods on the Analyzed Results of 16S rRNA Gene Amplicon Sequencing in Bacterial Communities [J]. Biotechnology Bulletin, 2022, 38(6): 81-92. |
[4] | ZHAO Lin-yan, GUAN Hui-lin, XIANG Ping, LI Ze-cheng, BAI Yu-long, SONG Hong-chuan, SUN Shi-zhong, XU Wu-mei. Composition Features of Microbial Community in the Rhizospheric Soil of Bletilla striata with Root Rot [J]. Biotechnology Bulletin, 2022, 38(2): 67-74. |
[5] | CHEN Yu-jie, ZHENG Hua-bao, ZHOU Xin-yan. Modified High-throughput Sequencing Reveals the Effects of Different Algicides towards Algal Community [J]. Biotechnology Bulletin, 2022, 38(11): 70-79. |
[6] | CAO Xiu-kai, WANG Shan, GE Ling, ZHANG Wei-bo, SUN Wei. Advances in Extrachromosomal Circular DNA and Their Application in Domestic Animal Breeding [J]. Biotechnology Bulletin, 2022, 38(1): 247-257. |
[7] | MAO Ting, NIU Yong-yan, ZHENG Qun, YANG Tao, MU Yong-song, ZHU Ying, JI Bin, WANG Zhi-ye. Effects of Microbial Inoculants on the Fermentation Quality and Microbial Community Diversity of Alfalfa Silage [J]. Biotechnology Bulletin, 2021, 37(9): 86-94. |
[8] | TANG Die, ZHOU Qian. Research Advances in Plant Genome Assembly [J]. Biotechnology Bulletin, 2021, 37(6): 1-12. |
[9] | ZHU Bin, GAN Chen-chen, WANG Hong-cheng. Characteristics of the Complete Chloroplast Genome of Dendrobium thyrsiflorum and Its Phylogenetic Relationship Analysis [J]. Biotechnology Bulletin, 2021, 37(5): 38-47. |
[10] | ZHANG Shu-hua, FANG Qian, JIA Hong-mei, HAN Gui-qi, YAN Zhu-yun, HE Dong-mei. Difference Analysis of Fungal Community Among Bulk Soil,Rhizosphere and Rhizomes of Ligusticum chuanxiong Hort. [J]. Biotechnology Bulletin, 2021, 37(4): 56-69. |
[11] | GUO Yan-ping, ZHANG Hao, ZHAO Xin-gang, LUO Hai-ling, ZHANG Ying-jun. Applications of DNA Metabarcoding in Diet Identification of Herbivores [J]. Biotechnology Bulletin, 2021, 37(3): 252-260. |
[12] | ZHENG Fang-fang, LIN Jun-sheng. Selection and Specificity of Nucleic Acid Aptamers for a Proliferation Inducing Ligand [J]. Biotechnology Bulletin, 2021, 37(10): 196-202. |
[13] | LI Ye-qing, JING Zhang-mu, JIANG Hao, XU Quan, ZHOU Hong-jun, FENG Lu. Microbiome and Its Research Progress of Anaerobic Digestion [J]. Biotechnology Bulletin, 2021, 37(1): 90-101. |
[14] | WANG Hong-jie, LIU Shao-dong, LIU Rui-hua, ZHANG Si-ping, YANG Jun, PANG Chao-you. Effects of Crop Rotation on Bacterial Communities in Cotton Rhizosphere Soil [J]. Biotechnology Bulletin, 2020, 36(9): 117-124. |
[15] | ZHANG Miao, CHEN Yu-feng, CHEN Long, HUANG Piao-ling, WEI Lu-ling. Difference Analysis of the Community Diversity of Fungi in the Rhizosphere Soil of Zanthoxylum nitidum(Roxb.)DC in Different Regions [J]. Biotechnology Bulletin, 2020, 36(9): 167-179. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||