Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (8): 244-251.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1303
Previous Articles Next Articles
ZHOU Xue-min(), KANG Li-juan, GUO Yong-ni, YANG Xiao-han, JIANG Yi-long, WANG Ze-long, SUN Qian, KANG bo()
Received:
2021-10-14
Online:
2022-08-26
Published:
2022-09-14
Contact:
KANG bo
E-mail:zhouxuemin@stu.sicau.edu.cn;bokang@sicau.edu.cn
ZHOU Xue-min, KANG Li-juan, GUO Yong-ni, YANG Xiao-han, JIANG Yi-long, WANG Ze-long, SUN Qian, KANG bo. Expressions of Genes Related to Polyamine Metabolism and Muscle Development in Muscle Tissues of Duck at Different Ages[J]. Biotechnology Bulletin, 2022, 38(8): 244-251.
引物 Primer | 序列 Sequence(5'-3') | 产物大小 Amplicon size/bp | 退火温度 Annealing temperature/℃ |
---|---|---|---|
MyoD1 | F:GCAACGCCATCCGCTACAT R:GCAATCAAGGCTGGAAACAACA | 85 | 64.5 |
Myf5 | F:AGGAGGAGGCTGAAGAAAGTGA R:GCTCTGTCTCGGCAGGTGATA | 180 | 60 |
MyoG | F:CGGATCACCTCCTGCCTGA R:CGTCCTCTACGGCGATGCT | 87 | 63 |
IGF-1 | F:GTGAAGATGCATACTGTGTC R:TGAAGTAAAAGCCTCTGT | 249 | 60 |
MSTN | F:GCACTGGTATTTGGCAGAGTATT R:TCACCTGGTCCTGGGAAAGT | 143 | 55 |
ODC | F:TTGACTGCCACATCCTTG R:GCTCTGCTATCGTTACACT | 199 | 58 |
SPDS | F:ACCAGCTCATGAAGACAGCACTCA R:TGCTACACAGCATGAAGCCGATCT | 189 | 60 |
SPMS | F:TTCGGGTGACTCAGTTCCTGCTAA R:AACGGAGACCCTCCTTCAGCAAAT | 199 | 60 |
APAO | F:AGTCTTCACATGTGCTCTGTGGGT R:TGGCAATTGTGGGTTTCCTGTCAC | 131 | 59 |
SSAT | F:TGCCGGTGTAGACAATGACAACCT R:TAAAGCTTTGGAATGGGTGCTCGC | 114 | 59 |
SMO | F:CTACCCACGGTGCTGTGCTTT R:TTGAGCCCACCTGTGTGTAGGAAT | 129 | 59 |
GAPDH | F:GTGGTGCAAGAGGCATTGCTGAC R:GCTGATGCTCCCATGTTCGTGAT | 86 | 65 |
Table 1 Primer sequences used in the study
引物 Primer | 序列 Sequence(5'-3') | 产物大小 Amplicon size/bp | 退火温度 Annealing temperature/℃ |
---|---|---|---|
MyoD1 | F:GCAACGCCATCCGCTACAT R:GCAATCAAGGCTGGAAACAACA | 85 | 64.5 |
Myf5 | F:AGGAGGAGGCTGAAGAAAGTGA R:GCTCTGTCTCGGCAGGTGATA | 180 | 60 |
MyoG | F:CGGATCACCTCCTGCCTGA R:CGTCCTCTACGGCGATGCT | 87 | 63 |
IGF-1 | F:GTGAAGATGCATACTGTGTC R:TGAAGTAAAAGCCTCTGT | 249 | 60 |
MSTN | F:GCACTGGTATTTGGCAGAGTATT R:TCACCTGGTCCTGGGAAAGT | 143 | 55 |
ODC | F:TTGACTGCCACATCCTTG R:GCTCTGCTATCGTTACACT | 199 | 58 |
SPDS | F:ACCAGCTCATGAAGACAGCACTCA R:TGCTACACAGCATGAAGCCGATCT | 189 | 60 |
SPMS | F:TTCGGGTGACTCAGTTCCTGCTAA R:AACGGAGACCCTCCTTCAGCAAAT | 199 | 60 |
APAO | F:AGTCTTCACATGTGCTCTGTGGGT R:TGGCAATTGTGGGTTTCCTGTCAC | 131 | 59 |
SSAT | F:TGCCGGTGTAGACAATGACAACCT R:TAAAGCTTTGGAATGGGTGCTCGC | 114 | 59 |
SMO | F:CTACCCACGGTGCTGTGCTTT R:TTGAGCCCACCTGTGTGTAGGAAT | 129 | 59 |
GAPDH | F:GTGGTGCAAGAGGCATTGCTGAC R:GCTGATGCTCCCATGTTCGTGAT | 86 | 65 |
Fig. 1 Changes of polyamine contents of different aged duck pectoralis Different lowercase letters in the figure indicate significant differences at the P<0.05 level,the same below
基因 Gene | 相关系数 Correlation coefficient | P值 P value | |
---|---|---|---|
MyoD1 | SPMS | 0.733 24 | 6.827 11×10-4 |
MyoD1 | SPDS | 0.846 36 | 3.594 06×10-7 |
MyoD1 | SSAT | 0.810 69 | 5.133 09×10-7 |
MyoD1 | SMO | 0.820 04 | 1.720 74×10-5 |
Myf5 | SPMS | 0.946 4 | 7.152 42×10-10 |
Myf5 | SPDS | 0.827 96 | 3.259×10-7 |
Myf5 | SSAT | 0.945 63 | 0.001 08 |
Myf5 | SMO | 0.916 11 | 3.682 54×10-8 |
Table 2 Correlation coefficient between expressions of polyamine metabolism and muscle development genes in breast muscle
基因 Gene | 相关系数 Correlation coefficient | P值 P value | |
---|---|---|---|
MyoD1 | SPMS | 0.733 24 | 6.827 11×10-4 |
MyoD1 | SPDS | 0.846 36 | 3.594 06×10-7 |
MyoD1 | SSAT | 0.810 69 | 5.133 09×10-7 |
MyoD1 | SMO | 0.820 04 | 1.720 74×10-5 |
Myf5 | SPMS | 0.946 4 | 7.152 42×10-10 |
Myf5 | SPDS | 0.827 96 | 3.259×10-7 |
Myf5 | SSAT | 0.945 63 | 0.001 08 |
Myf5 | SMO | 0.916 11 | 3.682 54×10-8 |
基因 Gene | 相关系数 Correlation coefficient | P值 P value | |
---|---|---|---|
MyoD1 | ODC | 0.746 32 | 0.005 53 |
MSTN | ODC | 0.919 39 | 4.878 05×10-12 |
Table 3 Correlation coefficient between expressions of polyamine metabolism and muscle development genes in leg muscle
基因 Gene | 相关系数 Correlation coefficient | P值 P value | |
---|---|---|---|
MyoD1 | ODC | 0.746 32 | 0.005 53 |
MSTN | ODC | 0.919 39 | 4.878 05×10-12 |
[1] |
Igarashi K, Kashiwagi K. The functional role of polyamines in eukaryotic cells[J]. Int J Biochem Cell Biol, 2019, 107:104-115.
doi: S1357-2725(18)30272-3 pmid: 30578954 |
[2] |
Saiki S, Sasazawa Y, Fujimaki M, et al. A metabolic profile of polyamines in parkinson disease:a promising biomarker[J]. Ann Neurol, 2019, 86(2):251-263.
doi: 10.1002/ana.25516 URL |
[3] | 胡梦婷, 崔毓桂. 多胺的生殖生物学作用及其研究进展[J]. 国际生殖健康/计划生育杂志, 2018, 37(5):397-400. |
Hu MT, Cui YG. Effects of polyamine on reproduction:aspects of reproductive biology[J]. J Int Reproductive Heal Plan, 2018, 37(5):397-400. | |
[4] |
Madeo F, Bauer MA, Carmona-Gutierrez D, et al. Spermidine:a physiological autophagy inducer acting as an anti-aging vitamin in humans?[J]. Autophagy, 2019, 15(1):165-168.
doi: 10.1080/15548627.2018.1530929 URL |
[5] | 向睿, 何珲, 康波, 等. 多胺调控动物繁殖的作用及其机制[J]. 动物营养学报, 2014, 26(11):3251-3255. |
Xiang R, He H, Kang B, et al. Effects of polyamine regulation on animal reproduction and its mechanism[J]. Chin J Animal Nutr, 2014, 26(11):3251-3255. | |
[6] |
De Santa F, Vitiello L, et al. The role of metabolic remodeling in macrophage polarization and its effect on skeletal muscle regeneration[J]. Antioxid Redox Signal, 2019, 30(12):1553-1598.
doi: 10.1089/ars.2017.7420 URL |
[7] | Yamazawa T, Yamada S. Role of skeletal muscle homeostasis of functional food material[J]. Nihon Yakurigaku Zasshi Folia Pharmacol Japonica, 2020, 155(4):236-240. |
[8] |
Van den Bossche J, Lamers WH, Koehler ES, et al. Pivotal Advance:Arginase-1-independent polyamine production stimulates the expression of IL-4-induced alternatively activated macrophage markers while inhibiting LPS-induced expression of inflammatory genes[J]. J Leukoc Biol, 2012, 91(5):685-699.
doi: 10.1189/jlb.0911453 URL |
[9] |
Fan J, Yang X, Li J, et al. Spermidine coupled with exercise rescues skeletal muscle atrophy from D-gal-induced aging rats through enhanced autophagy and reduced apoptosis via AMPK-FOXO3a signal pathway[J]. Oncotarget, 2017, 8(11):17475-17490.
doi: 10.18632/oncotarget.15728 URL |
[10] | 王月超, 蔡辉益, 闫海洁, 等. 家禽骨骼肌的生长发育规律及调控[J]. 饲料工业, 2014, 35(17):87-92. |
Wang YC, Cai HY, Yan HJ, et al. Research on skeletal muscle growth and development rules in poultry and its manipulation[J]. Feed Ind, 2014, 35(17):87-92. | |
[11] |
Brinegar AE, Xia Z, et al. Extensive alternative splicing transitions during postnatal skeletal muscle development are required for calcium handling functions[J]. Elife, 2017, 6:e27192.
doi: 10.7554/eLife.27192 URL |
[12] |
Adhikari A, Kim W, Davie J. Myogenin is required for assembly of the transcription machinery on muscle genes during skeletal muscle differentiation[J]. PLoS One, 2021, 16(1):e0245618.
doi: 10.1371/journal.pone.0245618 URL |
[13] | 刘宁, 邓雪娟, 王建平, 等. 生肌调节因子及肌生成调控因素研究进展[J]. 中国畜牧兽医, 2015, 42(10):2644-2649. |
Liu N, Deng XJ, Wang JP, et al. Research progress on regulation factors of myogenic regulatory factors and myogenesis[J]. China Animal Husb Vet Med, 2015, 42(10):2644-2649. | |
[14] |
Yoshida T, Delafontaine P. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy[J]. Cells, 2020, 9(9):1970.
doi: 10.3390/cells9091970 URL |
[15] | 刘宏祥, 薛敏开, 等. 高邮鸭MSTN 5'端非编码区SNP突变与生长性状的关联分析[J]. 中国家禽, 2017, 39(17):10-13. |
Liu HX, Xue MK, et al. A SNP locus in 5' non-coding part of MSTN gene of Gaoyou duck closely relating to growth traits[J]. China Poult, 2017, 39(17):10-13. | |
[16] |
Ploskonos MV, Syatkin SP, Neborak EV, et al. Polyamine analogues of propanediamine series inhibit prostate tumor cell growth and activate the polyamine catabolic pathway[J]. Anticancer Res, 2020, 40(3):1437-1441.
doi: 10.21873/anticanres.14085 pmid: 32132040 |
[17] |
Reichhardt CC, Ahmadpour A, Christensen RG, et al. Understanding the influence of trenbolone acetate and polyamines on proliferation of bovine satellite cells[J]. Domest Anim Endocrinol, 2021, 74:106479.
doi: 10.1016/j.domaniend.2020.106479 URL |
[18] |
Reichhardt CC, Okamoto LL, Motsinger LA, et al. The impact of polyamine precursors, polyamines, and steroid hormones on temporal messenger RNA abundance in bovine satellite cells induced to differentiate[J]. Animals, 2021, 11(3):764.
doi: 10.3390/ani11030764 URL |
[19] | Cervelli M, Leonetti A, Duranti G, et al. Skeletal muscle pathophysiology:the emerging role of spermine oxidase and spermidine[J]. Med Sci(Basel), 2018, 6(1):E14. |
[20] |
Zhang L, et al. Spermidine-activated satellite cells are associated with hypoacetylation in ACVR2B and Smad3 binding to myogenic genes in mice[J]. J Agric Food Chem, 2018, 66(2):540-550.
doi: 10.1021/acs.jafc.7b04482 URL |
[21] | 刘宏祥, 宋卫涛, 胡艳, 等. 通过生长模型对不同品种鸭体重与胸肌、腿肌生长发育规律进行比较[J]. 畜牧兽医学报, 2016, 47(6):1112-1123. |
Liu HX, Song WT, Hu Y, et al. The comparison of growth patterns of body weight, breast muscle and leg muscle between different duck breeds via growth models[J]. Chin J Animal Vet Sci, 2016, 47(6):1112-1123. | |
[22] | 张海波. 鸭早期生长发育规律及A-FABP基因多态性与脂肪性状关联分析[D]. 扬州: 扬州大学, 2009. |
Zhang HB. The analysis of the early growth-development patterns and the correlation between genetic polymorphism of A-FABP gene with fat traits in ducks[D]. Yangzhou: Yangzhou University, 2009. | |
[23] | 王丽霞, 陈星, 杨宇, 等. 乌嘴白羽优质肉鸭体重与胸腿肌生长发育规律及其生长曲线模型拟合分析[J]. 中国畜牧杂志, 2020, 56(2):71-76. |
Wang LX, Chen X, Yang Y, et al. Fitness and growth curve model fitting analysis of quality meat duck weight and thoracic muscle in upper white feather meat duck and its growth curve model[J]. Chin J Animal Sci, 2020, 56(2):71-76. | |
[24] |
Lefèvre PL, Palin MF, Murphy BD. Polyamines on the reproductive landscape[J]. Endocr Rev, 2011, 32(5):694-712.
doi: 10.1210/er.2011-0012 pmid: 21791568 |
[25] |
Kusano T, Berberich T, et al. Polyamines:essential factors for growth and survival[J]. Planta, 2008, 228(3):367-381.
doi: 10.1007/s00425-008-0772-7 pmid: 18594857 |
[26] | 魏园丁. 鸭MyoD1和Myf5基因CDS区克隆及其在肌肉组织中发育差异性表达研究[D]. 雅安: 四川农业大学, 2009. |
Wei YD. Cloning of duck MyoD1 and Myf5 genes CDS sequences and research about their differential developmental expression in duck muscle tissues[D]. Yaan: Sichuan Agricultural University, 2009. | |
[27] |
Schiaffino S, Dyar KA, et al. Mechanisms regulating skeletal muscle growth and atrophy[J]. FEBS J, 2013(17):4294-4314.
doi: 10.1111/febs.12253 pmid: 23517348 |
[28] | 陶志云, 朱春红, 姬改革, 等. 鸭胚骨骼肌成肌细胞中MyoD1和Myf5基因的表达与分析[J]. 福建农林大学学报:自然科学版, 2014, 43(3):299-303. |
Tao ZY, Zhu CH, Ji GG, et al. Expression and analysis of MyoD1 and Myf5 gene in duck embryo myoblast[J]. J Fujian Agric For Univ:Nat Sci Ed, 2014, 43(3):299-303. | |
[29] |
Yin HD, Li DY, Wang Y, et al. Myogenic regulatory factor(MRF)expression is affected by exercise in postnatal chicken skeletal muscles[J]. Gene, 2015, 561(2):292-299.
doi: 10.1016/j.gene.2015.02.044 URL |
[30] | 寇洁, 李亮, 王继文. 5个鸭品种MyoD基因外显子1的多态性及其与屠宰性状的关联分析[J]. 中国畜牧杂志, 2011, 47(19):10-12. |
Kou J, Li L, Wang JW. Polymorphism of Myod gene excognito 1 and its correlation analysis and slaughter traits in five duck variety[J]. Chin J Animal Sci, 2011, 47(19):10-12. | |
[31] | 李丰耘, 张茹, 王坤, 等. 盐津乌骨鸡MyoG和IGF-1基因表达及其与生长、屠宰性状的相关性分析[J]. 中国畜牧兽医, 2020, 47(8):2502-2509. |
Li FY, Zhang R, Wang K, et al. Expression of MyoG and IGF-1 genes and its correlation analysis with growth and slaughter traits of Yanjin black-bone chickens[J]. China Animal Husb Vet Med, 2020, 47(8):2502-2509. | |
[32] | 方幸. 运动介导肌肉因子IGF-1、FGF-2对小鼠骨的影响[D]. 上海: 华东师范大学, 2018. |
Fang X. The effect of exercise-mediated myokine IGF-1, FGF-2 on bone in mice[D]. Shanghai: East China Normal University, 2018. | |
[33] |
Zanou N, Gailly P. Skeletal muscle hypertrophy and regeneration:interplay between the myogenic regulatory factors(MRFs)and insulin-like growth factors(IGFs)pathways[J]. Cell Mol Life Sci, 2013, 70(21):4117-4130.
doi: 10.1007/s00018-013-1330-4 URL |
[1] | ZHENG Huan, LIN Dong-mei, LIU Jun-yuan, ZHANG Yin-lian, LIN Biao-sheng, LIN Zhan-xi, LI Jing. Analysis of Amino Acid Metabolism Difference Between Fruiting Body and Mycelium of Taiwanofungus camphoratus by LC-QTOF-MS Metabonomics [J]. Biotechnology Bulletin, 2023, 39(5): 254-266. |
[2] | YAO Jin-dong, TANG Hua-mei, YANG Wen-xiao, ZHANG Li-shan, LIN Xiang-min. Comparative Proteomics Analysis of Aeromonas hydrophila Under Enrofloxacin Stress [J]. Biotechnology Bulletin, 2023, 39(4): 288-296. |
[3] | CUI Ji-jie, CAI Wen-bo, ZHUANG Qing-hui, GAO Ai-ping, HUANG Jian-feng, CHEN Ya-hui, SONG Zhi-zhong. Biological Function of Gene MiISU1 for Fe-S Cluster Assembly in Mangifera indica [J]. Biotechnology Bulletin, 2023, 39(2): 139-146. |
[4] | YAN Xiong-ying, WANG Zhen, WANG Xia, YANG Shi-hui. Microbial Sulfur Metabolism and Stress Resistance [J]. Biotechnology Bulletin, 2023, 39(11): 150-167. |
[5] | WEI Xin-xin, LAN Hai-yan. Advances in the Regulation of Plant MYB Transcription Factors in Secondary Metabolism and Stress Response [J]. Biotechnology Bulletin, 2022, 38(8): 12-23. |
[6] | CHEN Guang, LI Jia, DU Rui-ying, WANG Xu. pOsHAK1:OsFLN2 Expression Enhances the Drought Tolerance by Altering Sugar Metabolism in Rice [J]. Biotechnology Bulletin, 2022, 38(8): 92-100. |
[7] | WANG Zheng-yan, HU Hai-sheng, YONG Han-zi, LU Yu-jie. Nutritional Interactions Between Symbiotic Microbiota and Insect Hosts [J]. Biotechnology Bulletin, 2022, 38(7): 99-108. |
[8] | CHEN Hu, YANG Zhang-qi, SUN Shuang, LI Peng, XU Hui-lan. Expressions and of Genes Response to Signal Substances in MAPK Cascade Pathway Genes in Pinus massoniana [J]. Biotechnology Bulletin, 2022, 38(6): 187-197. |
[9] | GAO Xue-yan, CHEN Lin-xu, CHEN Xian-ke, PANG Xin, PAN Deng, LIN Jian-qun. Application of Acidithiobacillus spp. in Industry and Agriculture [J]. Biotechnology Bulletin, 2022, 38(5): 36-46. |
[10] | YAN Jiong, FENG Chen-yi, GAO Xue-kun, XU Xiang, YANG Jia-min, CHEN Zhao-yang. Construction of Homozygous Plin1-knockout Mouse Model and Phenotype Analysis Based on CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2022, 38(3): 173-180. |
[11] | SUN Man-luan, GE Sai, BU Jia, ZHU Zhuang-yan. Regulation Mechanism of Ribonucleases in Escherichia coli [J]. Biotechnology Bulletin, 2022, 38(3): 234-245. |
[12] | LI Yi-dan, SHAN Xiao-hui. Gibberellin Metabolism Regulation and Green Revolution [J]. Biotechnology Bulletin, 2022, 38(2): 195-204. |
[13] | NIU Hong-yu, SHU Qian, YANG Hai-jun, YAN Zhi-yong, TAN Ju. Isolation, Identification, Degradation Characteristics and Metabolic Pathway of an Efficient Sodium Dodecyl Sulfate-degrading Bacterium [J]. Biotechnology Bulletin, 2022, 38(12): 287-299. |
[14] | CAI Guo-lei, LU Xiao-kai, LOU Shui-zhu, YANG Hai-ying, DU Gang. Classification and Identification of Bacillus LM Based on Whole Genome and Study on Its Antibacterial Principle [J]. Biotechnology Bulletin, 2021, 37(8): 176-185. |
[15] | YUAN Kai, HE Wei, YANG Yun-li, ZHU Wei-yu, PENG Chao, AN Tai, LI Li, ZHOU Wei-qiang. Research Progress on Biosynthesis and Metabolic Regulation of Ganoderic Acids [J]. Biotechnology Bulletin, 2021, 37(8): 46-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||