[1] Tress ML, Abascal F, Valencia A.Alternative splicing may not be the key to proteome complexity[J]. Trends Biochem Sci, 2017, 42(2):98-110. [2] Baralle FE, Giudice J.Alternative splicing as a regulator of development and tissue identity[J]. Nat Rev Mol Cell Biol, 2017, 18(7):437-451. [3] Blencowe BJ.The relationship between alternative splicing and proteomic complexity[J]. Trends Biochem Sci, 2017, 42(6):407-408. [4] Nilsen TW, Graveley BR.Expansion of the eukaryotic proteome by alternative splicing[J]. Nature, 2010, 463(7280):457-463. [5] Graveley BR.Alternative splicing:increasing diversity in the proteomic world[J]. Trends Genet, 2001, 17(2):100-107. [6] Wang ET, Sandberg R, Luo S, et al.Alternative isoform regulation in human tissue transcriptomes[J]. Nature, 2008, 456(7221):470-476. [7] Blue RE, Koushik A, Engels NM, et al.Modulation of alternative splicing of trafficking genes by genome editing reveals functional consequences in muscle biology[J]. Int J Biochem Cell Biol, 2018, 105:134-143. [8] Kuranaga Y, Sugito N, Shinohara H, et al.SRSF3, a splicer of the PKM gene, regulates cell growth and maintenance of cancer-specific energy metabolism in colon cancer cells[J]. Int J Mol Sci, 2018, 19(10):3012. [9] Pamela L, Antonella S, Stefania F, et al.RNA-binding proteins RBM20 and PTBP1 regulate the alternative splicing of FHOD3[J]. Int J Biochem Cell Biol, 2019, 106(1):74-83. [10] Liu Y, Huang W, Gao X, et al.Regulation between two alternative splicing isoforms ZNF148(FL)and ZNF148(DeltaN), and their roles in the apoptosis and invasion of colorectal cancer[J]. Pathol Res Pract, 2019, 215(2):272-277. [11] Nicholson P, Yepiskoposyan H, Metze S, et al.Nonsense-mediated mRNA decay in human cells:mechanistic insights, functions beyond quality control and the double-life of NMD factors[J]. Cell Mol Life Sci, 2010, 67(5):677-700. [12] Yu S, Wang G, Liao J, et al.Five alternative splicing variants of the TYR gene and their different roles in melanogenesis in the Muchuan black-boned chicken[J]. Br Poult Sci, 2019, 60(1):8-14. [13] Miao X, Luo Q, et al.Ovarian transcriptomic analysis reveals the alternative splicing events associated with fecundity in different sheep breeds[J]. Anim Reprod Sci, 2018, 198:177-183. [14] 张天, 李祥龙, 周荣艳, 等. 不同毛色山羊皮肤组织Agouti基因剪接体类型研究[J]. 畜牧兽医学报, 2015(11):1934-1943. [15] Shen S, Park JW, Lu ZX, et al.rMATS:robust and flexible detec-tion of differential alternative splicing from replicate RNA-Seq data[J]. Proc Natl Acad Sci USA, 2014, 111(51):E5593-E5601. [16] Patel R K, Jain M.NGS QC Toolkit:a toolkit for quality control of next generation sequencing data[J]. PLoS One, 2012, 7(2):e30619. [17] Kim D, Langmead B, Salzberg SL.HISAT:a fast spliced aligner with low memory requirements[J]. Nat Methods, 2015, 12(4):357-360. [18] Pertea M, Pertea GM, Antonescu CM, et al.StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nat Biotechnol, 2015, 33(3):290-295. [19] Trapnell C, Roberts A, Goff L, et al.Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks[J]. Nat Protoc, 2012, 7(3):562-578. [20] Frazee AC, Pertea G, Jaffe AE, et al.Ballgown bridges the gap between transcriptome assembly and expression analysis[J]. Nat Biotechnol, 2015, 33(3):243-246. [21] Pertea M, Kim D, Pertea GM, et al.Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown[J]. Nat Protoc, 2016, 11(9):1650-1667. [22] Reimand J, Kull M, Peterson H, et al.g:Profiler--a web-based toolset for functional profiling of gene lists from large-scale experiments[J]. Nucleic Acids Res, 2007, 35:W193-200. [23] Reimand J, Arak T, Vilo J. g:Profiler--a web server for functional interpretation of gene lists(2011 update)[J]. Nucleic Acids Res, 2011, 39:W307-315. [24] Huang DW, Sherman BT, Lempicki RA.Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nat Protoc, 2009, 4(1):44-57. [25] Huang DW, Sherman BT.Bioinformatics enrichment tools:paths toward the comprehensive functional analysis of large gene lists[J]. Nucleic Acids Res, 2009, 37(1):1-13. [26] Gilbert W.Why genes in pieces?[J]. Nature, 1978, 271(5645):501. [27] Climente-Gonzalez H, Porta-Pardo E, Godzik A, et al.The functional impact of alternative splicing in cancer[J]. Cell Rep, 2017, 20(9):2215-2226. [28] Martinez-Montiel N, Rosas-Murrieta NH, Anaya RM, et al.Alternative splicing as a target for cancer treatment[J]. Int J Mol Sci, 2018, 19(2):545. [29] Urbanski LM, Leclair N, Anczukow O.Alternative-splicing defects in cancer:splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics[J]. Wiley Interdiscip Rev RNA, 2018, 9(4):e1476. [30] Peterfy M, Phan J, Reue K.Alternatively spliced lipin isoforms exhibit distinct expression pattern, subcellular localization, and role in adipogenesis[J]. J Biol Chem, 2005, 280(38):32883-32889. [31] Zhang X, Yan H, Wang K, et al.Goat CTNNB1:mRNA expression profile of alternative splicing in testis and association analysis with litter size[J]. Gene, 2018, 679:297-304. [32] Zhang X, Zhou Y, Pan C, et al.Novel alternative splice variants of NFIX and their diverse mRNA expression patterns in dairy goat[J]. Gene, 2015, 569(2):250-258. [33] 冉茂良, 陈斌, 李智, 等. 基于RNA-seq测序数据鉴定和分析猪基因组可变剪接事件[J]. 中国科学:生命科学, 2016(3):274-284. [34] 张敏, 王杰, 孙艳发, 等. 肉鸡肌肉与脂肪组织基因组差异剪接基因分析[J]. 畜牧兽医学报, 2018(10):2124-2132. [35] 郭家中, 陶海溪, 李鹏飞, 等. 简州大耳羊早期胎儿到新出生阶段背最长肌中可变剪接的鉴定与分析[J]. 西北农业学报, 2018(3):316-325. [36] 黄艳群, 陈文, 李宁, 等. 鸡Lmbr1基因一种异常可变剪接的克隆和表达分析[J]. 畜牧兽医学报, 2010(5):518-523. [37] Picard B, Lefaucheur L, et al.Muscle fibre ontogenesis in farm animal species[J]. Reprod Nutr Dev, 2002, 42(5):415-431. [38] Li B, Dong C, Li P, et al.Identification of candidate genes associated with porcine meat color traits by genome-wide transcriptome analysis[J]. Sci Rep, 2016, 6:35224. [39] Hooper JE.A survey of software for genome-wide discovery of differential splicing in RNA-Seq data[J]. Hum Genomics, 2014, 8:3. doi:10.1186/1479-7364-8-3. |