Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (11): 160-168.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0450
Previous Articles Next Articles
LI Chong-hui1, 3, YIN Jun-mei2, 3
Received:
2019-05-24
Online:
2019-11-26
Published:
2019-11-19
LI Chong-hui, YIN Jun-mei. Genetic Engineering Progress and Breeding Tactics on Blue Flowers[J]. Biotechnology Bulletin, 2019, 35(11): 160-168.
[1] Tanaka Y, Sasaki N, Ohmiya A.Biosynthesis of plant pigments:anthocyanins, betalains and carotenoids[J]. Plant Journal, 2008, 54:733-749. [2] 徐清燏, 戴思兰. 蓝色花卉分子育种[J]. 分子植物育种, 2004, 2(1):93-99. [3] 欧阳汝欣. 蓝色花的基因工程育种研究进展[J]. 黑龙江农业科学, 2010(1):8-10. [4] Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, et al.Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin[J]. Plant and Cell Physiology, 2007, 48(11):1589-1600. [5] Noda N, Yoshioka S, Kishimoto S, et al.Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism[J]. Science Advances, 2017, 3(7):e1602785. [6] Mii M.Ornamental plant breeding through interspecific hybridization, somatic hybridization and genetic transformation[J]. Acta Horticulturae, 2012, (953):43-54. [7] Yoshida K, Mori M, Kondo T.Blue flower color development by anthocyanins:from chemical structure to cell physiology[J]. Natural Product Reports, 2009, 26(7):884-915. [8] Okitsu N, Noda N, Chandler S, et al.Flower Color and Its Engineering by Genetic Modification[M]// Van Huylenbroeck J. Ornamental Crops. Handbook of Plant Breeding, vol 11. Cham Heidelberg:Springer, 2018:29-62. [9] Sasaki N, Nakayama T.Achievements and perspectives in biochemistry concerning anthocyanin modification for blue flower coloration[J]. Plant and Cell Physiology, 2015, 56(1):28-40. [10] Hosokawa K, Fukushi E, Kawabata J, et al.Seven acylated anthocyanins in blue flowers of Gentiana[J]. Phytochemistry, 1997, 45(1):167-171. [11] Hosokawa K.Variations among anthocyanins in the floral organs of seven cultivars of Hyacinthus orientalis[J]. Journal of Plant Physiology, 1999, 155(2):285-287. [12] Saito N, Tatsuzawa F, Yoda K, et al.Acylated cyanidin glycosides in the violet-blue flowers of Ipomoea purpurea[J]. Phytochemistry, 1995, 40(4):1283-1289. [13] Takeda K, Yamaguchi S, Iwata K, et al.A malonylated anthocyanin and flavonols in the blue flowers of Meconopsis[J]. Phytochemistry, 1996, 42(3):863-865. [14] Tanaka M, Fujimori T, Uchida I, et al.A malonylated anthocyanin and flavonols in blue Meconopsis flowers[J]. Phytochemistry, 2001, 56(4):373-376. [15] Yoshida K, Tojo K, Mori M, et al.Chemical mechanism of petal color development of Nemophila menziesii by a metalloanthocyanin, nemophilin[J]. Tetrahedron, 2015, 71(48):9123-9130. [16] Yoshida K, Kitahara S, Ito D, et al.Ferric ions involved in the flower color development of the Himalayan blue poppy, Meconopsis grandis[J]. Phytochemistry, 2006, 67(10):992-998. [17] Yoshida K.Sepal color variation of Hydrangea macrophylla and vacuolar pH measured with a proton-selective microelectrode[J]. Plant and Cell Physiology, 2003, 44(3):262-268. [18] Toyama-Kato Y, Yoshida K, Fujimori E, et al.Analysis of metal elements of hydrangea sepals at various growing stages by ICP-AES[J]. Biochemical Engineering Journal, 2003, 14(3):237-241. [19] Shoji K, Miki N, Nakajama N, et al.Perianth bottom-specific blue color development in tulip cv. Murasakizuisho requires ferric ions[J]. Plant Cell Physiology, 2007, 48:243-251. [20] Yoshida K, Kondo T, Okazaki Y, et al.Cause of blue petal colour[J]. Nature, 1995, 373(6512):291-291. [21] Tanaka Y, Brugliera F.Flower colour and cytochromes P450[J]. Philosophical transactions of the royal society B, 2013, 368:20120432. [22] Nakatsuka T, Mishiba KI, Abe Y, et al.Flower color modification of gentian plants by RNAi-mediated gene silencing[J]. Plant Biotechnology, 2008, 25(1):61-68. [23] Nishizaki Y, Yasunaga M, Okamoto E, et al.p-Hydroxybenzoyl-glucose is a zwitter donor for the biosynthesis of 7-polyacylated anthocyanin in Delphinium[J]. Plant Cell, 2013, 25(10):4150-4165. [24] van Houwelingen A. Analysis of flower pigmentation mutants generated by random transposon mutagenesis in Petunia hybrida[J]. Plant Journal, 1998, 13(1):39-50. [25] Verweij W, Spelt C, Di Sansebastiano G P, et al. An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour[J]. Nature Cell Biology, 2008, 10(12):1456-1462. [26] Faraco M, Spelt C, Bliek M, et al.Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color[J]. Cell Reports. 6:32-43. [27] Yamaguchi T, Fukada-Tanaka S, Inagaki Y, et al.Genes encoding the vacuolar Na+/H+ exchanger and flower coloration[J]. Plant Cell Physiology. 2001, 42:451-461. [28] Ohnishi M, Fukada-Tanaka S, Hoshino A, et al.Characterization of a novel Na+/H+ antiporter gene InNHX2 and comparison of InNHX2 with InNHX1, which is responsible for blue flower coloration by increasing the vacuolar pH in the Japanese morning glory[J]. Plant Cell Physiology, 2005, 46:259-267. [29] Momonoi K, Yoshida K, Mano S, et al.A vacuolar iron transporter in tulip, TgVit1, is responsible for blue coloration in petal cells through iron accumulation[J]. Plant Journal, 2009, 59:437-447. [30] Yoshida K, Negishi T.The identification of a vacuolar iron transporter involved in the blue coloration of cornflower petals[J]. Phytochemistry, 2013, 94:60-67. [31] Negishi T, Oshima K, Hattori M, et al.Tonoplast- and plasma membrane-localized aquaporin-family transporters in blue hydrangea sepals of aluminum hyperaccumulating plant[J]. PLoS One, 2012, 7(8):e43189. [32] Noda N.Recent advances in the research and development of blue flowers[J]. Breeding Science, 2018, 68(1):79-87. [33] Shimada Y, Nakano-Shimada R, Ohbayashi M, et al.Expression of chimeric P450 genes encoding flavonoid-3', 5'-hydroxylase in transgenic tobacco and petunia plants[J]. FEBS Letters, 1999, 461:241-245. [34] Mori S, Kobayashi H, Hoshi Y, et al.Heterologous expression of the flavonoid 30, 50-hydroxylase gene of Vinca major alters flower color in transgenic Petunia hybrida[J]. Plant Cell Reports, 2004, 22:415-421. [35] Okinaka Y, Shimada Y, Nakano-Shimada R et al. Selective accumulation of delphinidin derivatives in tobacco using a putative flavonoid 3', 5'-hydroxylase cDNA from Campanula medium[J]. Bioscience, Biotechnology, Biochemistry, 2003, 67(1):161-165. [36] Togami J, Tamura M, Ishiguro K, et al.Molecular characterization of the flavonoid biosynthesis of Verbena hybrida and the functional analysis of verbena and Clitoria ternatea F3'5'H genes in transgenic verbena[J]. Plant Biotechnology, 2006, 23, 5-11. [37] Qi Y, Lou Q, Quan Y, et al.Flower-specific expression of the Phalaenopsis flavonoid 3', 5'-hydoxylase modifies flower color pigmentation in Petunia and Lilium[J]. Plant Cell Tissue & Organ Culture, 2013, 115(2):263-273. [38] Brugliera F, Tao GQ, Tems U, et al.Violet/Blue chrysanthemums--metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors[J]. Plant and Cell Physiology, 2013, 54(10):1696-1710. [39] Noda N, Aida R, Kishimoto S, et al.Genetic engineering of novel bluer-colored chrysanthemums produced by accumulation of delphinidin-based anthocyanins[J]. Plant and Cell Physiology, 2013, 54(10):1684-1695. [40] Fukui Y, Tanaka Y, Kusumi T, et al.A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3', 5'-hydroxylase gene[J]. Phytochemistry, 2003, 63(1):15-23. [41] de Vetten N, Horst JT, Schaik HPV, et al. A Cytochrome b5 is required for full activity of flavonoid 3', 5'-hydroxylase, a cytochrome P450 involved in the formation of blue flower colors[J]. Proceedings of the National Academy of Sciences, 1999, 96(2):778-783. [42] Raymond O, Gouzy J, Just J, et al.The Rosa genome provides new insights into the domestication of modern roses[J]. Nature Genetics, 2018, 50:772-777. [43] Huang H, Hu K, Han K, et al.Flower colour modification of chrysanthemum by suppression of F3'H and overexpression of the exogenous Senecio cruentus F3'5'H Gene[J]. PLoS One, 2013, 8(11):e74395. [44] Aida R, Yoshida K, Kondo T, et al.Copigmentation gives bluer flowers on transgenic torenia plants with the antisense dihydroflavonol-4-reductase gene[J]. Plant Science, 2000, 160(1):49-56. [45] Shoji K, Momonoi K, Tsuji T.Alternative expression of vacuolar iron transporter and ferritin genes leads to blue/purple coloration of flowers in Tulip cv. “Murasakizuisho”[J]. Plant and Cell Physiology, 2010, 51(2):215-224. [46] Shoji K.Identification of cis-element for tulip petal-specific TgMYB1 promoter and its application for modifying a flower color[C]. Proceedings of the Annual Meeting of Japan Society for Bioscience, Biotechnology, and Agrochemistry, 2015. [47] Kurihara C, Hosoi S, Kondo E, et al.Genetic approach for breeding of the blue-flowered fragrant cyclamen[J]. J Fac Eng Saitama Inst Technol, 2015, 25: 17-21. |
[1] | PING Huai-lei, GUO Xue, YU Xiao, SONG Jing, DU Chun, WANG Juan, ZHANG Huai-bi. Cloning and Expression of PdANS in Paeonia delavayi and Correlation with Anthocyanin Content [J]. Biotechnology Bulletin, 2023, 39(3): 206-217. |
[2] | HUANG Wen-li, LI Xiang-xiang, ZHOU Wen-ting, LUO Sha, YAO Wei-jia, MA Jie, ZHANG Fen, SHEN Yu-sen, GU Hong-hui, WANG Jian-sheng, SUN Bo. Targeted Editing of BoZDS in Broccoli by CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(2): 80-87. |
[3] | ZHOU Jia-yan, ZOU Jian, CHEN Wei-ying, WU Yi-chao, CHEN Xi-tong, WANG Qian, ZENG Wen-jing, HU Nan, YANG Jun. Construction of Multi-gene Interference System for Plant and Analysis of Its Application Efficiency [J]. Biotechnology Bulletin, 2023, 39(1): 115-126. |
[4] | SUN Wei, ZHANG Yan, WANG Yu-han, XU Hui, XU Xiao-rong, JU Zhi-gang. Cloning of Rd3GT1 in Rhododendron delavayi and Its Effect on Flower Color Formation of Petunia hybrida [J]. Biotechnology Bulletin, 2022, 38(9): 198-206. |
[5] | DUAN Yue-tong, WANG Peng-nian, ZHANG Chun-bao, LIN Chun-jing. Research Progress in Plant Flavanone-3-hydroxylase Gene [J]. Biotechnology Bulletin, 2022, 38(6): 27-33. |
[6] | YANG Qing-qing, TANG Jia-qi, ZHANG Chang-quan, GAO Ji-ping, LIU Qiao-quan. Application and Prospect of KASP Marker Technology in Main Crops [J]. Biotechnology Bulletin, 2022, 38(4): 58-71. |
[7] | YANG Jia-hui, SUN Yu-ping, LU Ya-ning, LIU huan, LU Cun-fu, CHEN Yu-zhen. Abiotic Stress Resistance of Escherichia coli Transformed with Arabidopsis thaliana AtTERT Gene [J]. Biotechnology Bulletin, 2022, 38(2): 1-9. |
[8] | ZOU Liang-ping, GUO Xin, QI Deng-feng, ZHAI Min, LI Zhuang, ZHAO Ping-juan, PENG Ming, NIU Xing-kui. Anthocyanin Accumulation and Its Gene Expression Induced by Low Nitrogen Stress in Cassava Seedlings [J]. Biotechnology Bulletin, 2022, 38(2): 75-82. |
[9] | DANG Yuan, LI Wei, MIAO Xiang, XIU Yu, LIN Shan-zhi. Cloning of Oleosin Gene PsOLE4 from Prunus sibirica and Its Regulatory Function Analysis for Oil Accumulation [J]. Biotechnology Bulletin, 2022, 38(11): 151-161. |
[10] | LUO Ya-fang, ZHU Chun-hua, XIAO Yu-ting, LI Fang-quan, ZHANG Jiang, WANG Yu-shu. Screening and Functional Analysis of UGT Genes Involved in the Flavonoid Biosynthesis of Brassica oleracea var. acephala [J]. Biotechnology Bulletin, 2022, 38(11): 194-201. |
[11] | GUO Ai, JIANG Mu-yan, Ha Li-ma-ti·Ba He-tai-li, LIU Yu-yuan, WANG Jing. Transcriptome Analysis of Lycium ruthenicum Murr. Shoots in Anthocyanin Biosynthesis Response to Salt Stress [J]. Biotechnology Bulletin, 2022, 38(10): 173-183. |
[12] | LI Qian, JIANG Wen-bo, WANG Yu-xiang, ZHANG Bo, PANG Yong-zhen. Research Progresses on the Drought Resistance of Medicago at Molecular Level [J]. Biotechnology Bulletin, 2021, 37(8): 243-252. |
[13] | CUI Xiang-hua, TAO Nan, CHENG Bo-pu, ZHAO Yong-chang, CHEN Wei-min, LI Jing. Screening Promoters for Genetic Transformation of Cyclocybe aegerita [J]. Biotechnology Bulletin, 2021, 37(5): 259-266. |
[14] | CHEN Ying, CHEN Xi, WANG Qian, WANG Xiao-li. Cloning,Expression and Biological Function Analysis of Universal Stress Protein in Festuca arundinacea [J]. Biotechnology Bulletin, 2021, 37(2): 32-39. |
[15] | LU Wen-ying, ZHAO Lei, LI Tian-qi, CUI He-yun, LIAO Ping-an. Research Advances of Fruit Anthocyanin Accumulation in Rosaceae Plants [J]. Biotechnology Bulletin, 2021, 37(1): 234-245. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||