[1] Celik H, Kramer A, Challen GA.DNA methylation in normal and malignant hematopoiesis[J]. International Journal of Hematology, 2016, 103(6):617-626. [2] Ito S, D'Alessio AC, Taranova OV, et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification.[J]. Nature, 2010, 466(7310):1129-1133. [3] Tahiliani M, Koh KP, Shen Y, et al.Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1.[J]. Science, 2009, 324(5929):930-935. [4] Ko M, An J, Pastor WA, et al.TET proteins and 5-methylcytosine oxidation in hematological cancers[J]. Immunological Reviews, 2015, 263(1):6-21. [5] Scourzic L, Mouly E, Bernard OA.TET proteins and the control of cytosine demethylation in cancer[J]. Genome Medicine, 2015, 7(1):9. [6] Jankowska AM, Szpurka H, Tiu RV, et al.Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms[J]. Blood, 2009, 113(25):6403-6410. [7] Ko M, Huang Y, Jankowska AM, et al.Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2[J]. Nature, 2010, 468(7325):839-843. [8] Junjie U. Guo, Su Y, Zhong C, et al. Hydroxylation of 5-Methylcytosine by TET1 promotes active DNA demethylation in the adult brain[J]. Cell, 2011, 145(3):423-434. [9] Itzykson R, Kosmider O, Renneville A, et al.Clonal architecture of chronic myelomonocytic leukemias[J]. Blood, 2013, 121(12):2186-2198. [10] Smith AE, Mohamedali AM, Kulasekararaj A, et al.Next-generation sequencing of the TET2 gene in 355 MDS and CMML patients reveals low-abundance mutant clones with early origins, but indicates no definite prognostic value[J]. Blood, 2010, 116(19):3923. [11] Turtle CJ, Hanafi LA, Berger C, et al.CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients[J]. The Journal of Clinical Investigation, 2016, 126(6):2123-2138. [12] Hsu PD, Scott DA, Weinstein JA, et al.DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nature Biotechnology, 2013, 31(9):827. [13] Hsu P, Lander E, Zhang F.Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6):1262-1278. [14] Sander JD, Joung JK.CRISPR-Cas systems for editing, regulating and targeting genomes[J]. Nature Biotechnology, 2014, 32(4):347-355. [15] Eyquem J, Mansilla-Soto J, Giavridis T, et al.Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection[J]. Nature, 2017, 543(7643):113-117. [16] Hale M, Lee B, Honaker Y, et al.Homology-directed recombination for enhanced engineering of chimeric antigen receptor T cells[J]. Molecular Therapy - Methods & Clinical Development, 2017, 4:192-203. [17] Cornu TI, Mussolino C, Cathomen T.Refining strategies to translate genome editing to the clinic[J]. Nature Medicine, 2017, 23(4):415-423. [18] Kim S, Kim D, Cho SW, et al.Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins[J]. Genome Research, 2014, 24(6):1012-1019. [19] Schumann K, Lin S, Boyer E, et al.Generation of knock-in primary human T cells using Cas9 ribonucleoproteins[J]. Proc Natil Acad Sci USA, 2015, 112(33):10437-10442. [20] Roth TL, Puig-Saus C, Yu R, et al.Reprogramming human T cell function and specificity with non-viral genome targeting[J]. Nature, 2018, 559(7714):405-409. [21] Pan W, Zhu S, Qu K, et al.The DNA methylcytosine dioxygenase TET2 sustains immunosuppressive function of tumor-Infiltrating myeloid cells to promote melanoma progression[J]. Immunity, 2017, 47(2):284. [22] Yue X, Trifari S, Tarmo, et al. Control of Foxp3 stability through modulation of TET activity[J]. The Journal of Experimental Medicine, 2016, 213(3):377-397. [23] Carty SA, Gohil M, Banks LB, et al.The loss of TET2 promotes CD8(+)T cell memory differentiation.[J]. Journal of Immunology, 2018, 200(1):82-91. [24] Fraietta JA, Nobles CL, Sammons MA, et al.Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells[J]. Nature, 2018, 558(7709):307-312. |