[1] Chen M, He M, Peng K, et al.Expression of somatostatin and cDNA cloning in the thymus of the African ostrich[J]. Acta Histochemica, 2014, 116(1):191-196. [2] Gonkowski S, Rytel L.Somatostatin as an active substance in the mammalian enteric nervous system[J]. International Journal of Molecular Sciences, 2019, 20(18):4461. [3] Tostivint H, Lihrmann I, Vaudry H.New insight into the molecular evolution of the somatostatin family[J]. Molecular and Cellular Endocrinology, 2008, 286(1-2):5-17. [4] Patel YC.Somatostatin and its receptor family[J]. Frontiers in Neuroendocrinology, 1999, 20(3):157-198. [5] Lakeh AAB, et al.Growth enhancement of rainbow trout(Oncorhy-nchus mykiss)by passive immunization against somatostatin-14[J]. Aquaculture International, 2016, 24(1):11-21. [6] 黄志鹏, 等. 生长抑素基因疫苗pVAX1-TRX-SS的构建及对猪生长的影响[J]. 中国兽医学报, 2018, 38(12):2360-2365. Huang ZP, Chen T, Sun JJ, et al.Construction of somatostatin gene vaccine pVAX1-TRX-SS and its effect on pig growth[J]. Chinese Journal of Veterinary Science, 2018, 38(12):2360-2365. [7] Hill RA, Flint DJ, Pell JM.Antibodies as molecular mimics of biomolecules:roles in understanding physiological functions and mechanisms[J]. Adv Physiol Edu, 2008, 32(4):261-273. [8] Xue C, et al.Effect of genetic adjuvants on immune respondance, growth and hormone levels in somatostatin DNA vaccination-induced Hu lambs[J]. Vaccine, 2010, 28(6):1541-1546. [9] Morisset J.Somatostatin[J]. Pancreapedia:The Exocrine Pancreas Knowledge Base, 2015. DOI:10.3998/panc.2015.43. [10] Sillence MN.Technologies for the control of fat and lean deposition in livestock[J]. The Veter J, 2004, 167(3):242-257. [11] Xin D, Chen X, Wen P, et al.Insight into the role of α-arabinofuranosidase in biomass hydrolysis:cellulose digestibility and inhibition by xylooligomers[J]. Biotechnology for Biofuels, 2019, 12(1):64. [12] Rennie EA, Scheller HV.Xylan biosynthesis[J]. Current Opinion in Biotechnology, 2014, 26:100-107. [13] Alokika, Singh B.Production, characteristics, and biotechnological applications of microbial xylanases[J]. Applied Microbiology and Biotechnology, 2019, 103(21):8763-8784. [14] Lee SH, Lim V, Lee CK.Newly isolate highly potential xylanase producer strain from various environmental sources[J]. Biocatalysis and Agricultural Biotechnology, 2018, 16:669-676. [15] Verma D, Kumar R, Satyanarayana T.Diversity in xylan-degrading prokaryotes and xylanolytic enzymes and their bioprospects[M]//Satyanarayana T, Das SK, Johri BN. Microbial diversity in ecosystem sustainability and biotechnological applications, Singapore:Springer Singapore. 2019:325-373. [16] 汪儆. 木聚糖酶制剂对生长肥育猪次粉日粮饲养效果的影响[J]. 中国饲料, 1997, 3:17-19. Wang J, Juokslahti T.Effect of xylanase preparation on feeding effect of wheat middlings meal diets for growing and finishing pigs[J]. China Feed, 1997, 3:17-19. [17] Spencer GSG, Garssen GJ, et al.A novel approach to growth promotion using auto-immunisation against somatostatin II. Effects on appetite, carcass composition and food utilisation in lambs[J]. Livestock Production Science, 1983, 10(5):469-477. [18] Ding Y, et al.The effect of albumin fusion patterns on the produc-tion and bioactivity of the somatostatin-14 fusion protein in Pichia pastoris[J]. Appl Biochem Biotechnol, 2013, 7:1637-1648. [19] Xue X, Wang R, Tu T, et al.The N-terminal GH10 domain of a multimodular protein from Caldicellulosiruptor bescii is a versatile xylanase/β-glucanase that can degrade crystalline cellulose[J]. App Environ Microbiol, 2015, 81(11):3823-3833. [20] Chu Y, Hao Z, Wang K, et al.The GH10 and GH48 dual-functional catalytic domains from a multimodular glycoside hydrolase synergize in hydrolyzing both cellulose and xylan[J]. Biotechnology for Biofuels, 2019, 12:279-279. [21] Liang A, Riaz H, Dong F, et al.Evaluation of efficacy, biodistribution and safety of antibiotic-free plasmid encoding somatostatin genes delivered by attenuated Salmonella enterica serovar Choleraesuis[J]. Vaccine, 2014, 32(12):1368-1374. [22] 贡长慧, 等. 重组嵌合生长抑素工程菌的构建、表达与免疫[J]. 海南大学学报:自然科学版, 2018, 36(2):110-116. Gong CH, Feng S, Shen WJ, et al.Construction, characterization and immunogenicity of a recombinant chimeric somatostatin engineering bacteria strain[J]. Natural Science Journal of Hainan University, 2018, 36(2):110-116. [23] Gehring CK, Lilly KGS, Shires LK, et al.Increasing mixer-added fat reduces the electrical energy required for pelleting and improves exogenous enzyme efficacy for broilers[J]. Journal of Applied Poultry Research, 2011, 20(1):75-89. [24] Goodarzi Boroojeni F, Svihus B, et al.The effects of hydrothermal processing on feed hygiene, nutrient availability, intestinal microbiota and morphology in poultry-A review[J]. Animal Feed Science and Technology, 2016, 220:187-215. [25] Singh P, Yadav SK.Feed enzymes:source and applications[M]//Kuddus M. enzymes in food technology:improvements and innovations. Singapore:Springer Singapore. 2018:347-358. [26] De Lima MR, Perazzo Costa FG, Vieira DVG, et al.Xylanase, glucanase, and phytase in the diet of light laying hens[J]. The Journal of Applied Poultry Research, 2019, 28(4):1150-1155. [27] Tewoldebrhan TA, et al.Exogenous β-mannanase improves feed conversion efficiency and reduces somatic cell count in dairy cattle[J]. J Dairy Sci, 2017, 100(1):244-252. [28] Gernaey B, Sorbara JOB, et al.Environmental assessment of amyl-ase used as digestibility improvement factor for intensive chicken production in Brazil[J]. Sustainability, 2018, 10(8):2735. [29] Ye M, et al.The optimization of fermentation conditions for producing cellulase of Bacillus amyloliquefaciens and its applica-tion to goose feed[J]. R Soc Open Sci, 2017, 4(10):171012. [30] Additives EPanel O, Feed PoSuiA, Bampidis V, et al. Safety and efficacy of FRA® Octazyme C Dry(endo-1, 4-β-xylanase, mannan-endo-1, 4-β-mannosidase, α-amylase, endo-1, 3(4)-β-glucanase, pectinase, endo-1, 4-β-glucanase, protease, α-galactosidase)as a feed additive for weaned piglets and chickens for fattening[J]. EFSA Journal, 2019, 17(6):e05730. |