Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (9): 49-63.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0117
Previous Articles Next Articles
XIE Wei1,2, HAO Zhi-peng1, GUO Lan-ping3, ZHANG Xin1, ZHANG Shu-bin4, WANG You-shan4, CHEN Bao-dong1,2
Received:
2020-02-10
Online:
2020-09-26
Published:
2020-09-30
XIE Wei, HAO Zhi-peng, GUO Lan-ping, ZHANG Xin, ZHANG Shu-bin, WANG You-shan, CHEN Bao-dong. Research Advances in Terpenoids Synthesis and Accumulation in Plants as Influenced by Arbuscular Mycorrhizal Symbiosis[J]. Biotechnology Bulletin, 2020, 36(9): 49-63.
[1] Wink M.Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective[J]. Phytochemistry, 2003, 64(1):3-19. [2] 董娟娥, 张康健, 梁宗锁. 植物次生代谢与调控[M]. 杨凌:西北农林科技大学出版社, 2009. Dong JE, Zhang KJ, Liang ZS.Plant secondary metabolism and its regulation[M]. Yangling:Northwest A&F University Press, 2009. [3] 潘瑞炽. 植物生理学[M]. 第7版. 北京:高等教育出版社, 2012. Pan RZ.Plant physiology[M]. 7rd Edition. Beijing:Higher Education Press, 2012. [4] Pusztahelyi T, Holb IJ, Pócsi I.Secondary metabolites in fungus-plant interactions[J]. Frontiers in Plant Science, 2015, 6:573. [5] Bakkali F, Averbeck S, Averbeck D, et al.Biological effects of essential oils-a review[J]. Food and Chemical Toxicology, 2008, 46(2):446-475. [6] Bohlmann J, Keeling CI.Terpenoid biomaterials[J]. The Plant Journal, 2008, 54(4):656-669. [7] Kappers IF, Aharoni A, van Herpen TWJM, et al. Genetic engineering of terpenoid metabolism attracts, bodyguards to Arabidopsis[J]. Science, 2005, 309:2070-2072. [8] Sharma E, Anand G, Kapoor R.Terpenoids in plant and arbuscular mycorrhiza-reinforced defence against herbivorous insects[J]. Annals of Botany, 2017, 119(5):791-801. [9] Duhamel M, Pel R, Ooms A, et al.Do fungivores trigger the transfer of protective metabolites from host plants to arbuscular mycorrhizal hyphae?[J]. Ecology, 2013, 94(9):2019-2029. [10] Babikova Z, Gilbert L, Bruce TJA, et al.Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack[J]. Ecol Lett, 2013, 16(7):835-843. [11] Hayashi H, Sudo H.Economic importance of licorice[J]. Plant Biotechnology, 2009, 26(1):101-104. [12] Mandal S, Upadhyay S, Wajid S, et al.Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels[J]. Mycorrhiza, 2015, 25(5):345-357. [13] 王凌健, 方欣, 杨长青, 等. 植物萜类次生代谢及其调控[J]. 中国科学:生命科学, 2013, 43(12):1030-1046. Wang LJ, Fang X, Yang CQ, et al.Biosynthesis and regulation of secondary terpenoid metabolism in plants[J]. Science in China(Series C), 2013, 43(12):1030-1046. [14] Smith SE, Read DJ.Mycorrhizal symbiosis[M]. Pittsburgh:Academic Press, 2008. [15] Jiang Y, Wang W, Xie Q, et al.Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi[J]. Science, 2017, 356(6343):1172-1175. [16] Drigo B, Pijl AS, Duyts H, et al.Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2[J]. Proc Natl Acad Sci, 2010, 107(24):10938-10942. [17] van der Heijden MGA, Martin FM, Selosse MA, et al. Mycorrhizal ecology and evolution:the past, the present, and the future[J]. New Phytol, 2015, 205(4):1406-1423. [18] Welling MT, Liu L, Rose TJ, et al.Arbuscular mycorrhizal fungi:effects on plant terpenoid accumulation[J]. Plant Biology, 2016, 18(4):552-562. [19] Zeng Y, Guo L, Chen B, et al.Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants:current research status and prospectives[J]. Mycorrhiza, 2013, 23(4):253-265. [20] Kapoor R, Anand G, Gupta P, et al.Insight into the mechanisms of enhanced production of valuable terpenoids by arbuscular mycorrhiza[J]. Phytochem Rev, 2017, 16(4):677-692. [21] Treseder, Kathleen K.The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content[J]. Plant Soil, 2013, 371(1-2):1-13. [22] 秦明森, 关佳威, 刘永俊, 等. 丛枝菌根真菌对车轴草属植物生长影响的 Meta 分析[J]. 草业科学, 2015, 32(10):1576-1585. Qin MS, Guan JW, Liu YJ, et al.A Meta-analysis of arbuscular mycorrhizal fungi effects on Trifolium plants growth[J]. Pratacultural Science,2015, 32(10):1576-1585. [23] Verbruggen E, van der Heijden MGA, Rillig MC, et al. Mycorrhizal fungal establishment in agricultural soils:factors determining inoculation success[J]. New Phytol, 2013, 197(4):1104-1109. [24] Berruti A, Lumini E, Balestrini R, et al.Arbuscular mycorrhizal fungi as natural biofertilizers:let’s benefit from past successes[J]. Front Microbiol, 2016, 6:1559. [25] Öpik M, Vanatoa A, Vanatoa E, et al.The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi(Glomeromycota)[J]. New Phytol, 2010, 188(1):223-241. [26] Oehl F, Laczko E, Bogenrieder A, et al.Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities[J]. Soil Biology and Biochemistry, 2010, 42(5):724-738. [27] 黄璐琦, 郭兰萍. 环境胁迫下次生代谢产物的积累及道地药材的形成[J]. 中国中药杂志, 2007, 32(4):277-280. Huang LQ, Guo LP.Secondary metabolites accumulating and geoherbs formation under enviromental stress[J]. China Journal of Chinese Materia Medica, 2007, 32(4):277-280. [28] Selmar D, Kleinwächter M.Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants[J]. Ind Crops Prod, 2013, 42:558-566. [29] Thakur M, Bhattacharya S, Khosla PK, et al.Improving production of plant secondary metabolites through biotic and abiotic elicitation[J]. Journal of Applied Research on Medicinal and Aromatic Plants, 2019, 12:1-12. [30] Xie W, Hao Z, Zhou X, et al.Arbuscular mycorrhiza facilitates the accumulation of glycyrrhizin and liquiritin in Glycyrrhiza uralensis under drought stress[J]. Mycorrhiza, 2018, 28(3):285-300. [31] 张华, 孙纪全, 包玉英. 丛枝菌根真菌影响植物次生代谢产物的研究进展[J]. 农业生物技术学报, 2015, 23(8):1093-1103. Zhang H, Sun JQ, Bao YY.Advances in studies on plant secondary metabolites influenced by arbuscular mycorrhizal fungi[J]. Journal of Agricultural Biotechnology, 2015, 23(8):1093-1103. [32] Zubek S, Stojakowska A, Anielska T, et al.Arbuscular mycorrhizal fungi alter thymol derivative contents of Inula ensifolia L[J]. Mycorrhiza, 2010, 20(7):497-504. [33] Amiri R, Nikbakht A, Rahimmalek M, et al.Variation in the essential oil composition, antioxidant capacity, and physiological characteristics of Pelargonium graveolens L. inoculated with two species of mycorrhizal fungi under water deficit conditions[J]. Journal of Plant Growth Regulation, 2017, 36(2):502-515. [34] Asensio D, Rapparini F, Peñuelas J.AM fungi root colonization increases the production of essential isoprenoids vs. nonessential isoprenoids especially under drought stress conditions or after jasmonic acid application[J]. Phytochem, 2012, 77:149-161. [35] Adolfsson L, Nziengui H, Abreu IN, et al.Enhanced secondary-and hormone metabolism in leaves of arbuscular mycorrhizal Medicago truncatula[J]. Plant Physiology, 2017, 4597-4602. [36] Copetta A, Lingua G, Berta G.Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese[J]. Mycorrhiza, 2006, 16(7):485-494. [37] Shrivastava G, Ownley BH, Augé RM, et al.Colonization by arbuscular mycorrhizal and endophytic fungi enhanced terpene production in tomato plants and their defense against a herbivorous insect[J]. Symbiosis, 2015, 65(2):65-74. [38] Walter MH, Floβ DS, Hans J, et al.Apocarotenoid biosynthesis in arbuscular mycorrhizal roots:contributions from methylerythritol phosphate pathway isogenes and tools for its manipulation[J]. Phytochemistry, 2007, 68(1):130-138. [39] Baas R, Lambers H.Effects of vesicular-arbuscular mycorrhizal infection and phosphate on Plantago major ssp. pleiosperma in relation to the internal phosphate concentration[J]. Physiologia Plantarum 1988, 74:701-707. [40] Schweiger R, Baier MC, Müller C.Arbuscular mycorrhiza-induced shifts in foliar metabolism and photosynthesis mirror the developmental stage of the symbiosis and are only partly driven by improved phosphate uptake[J]. Molecular Plant-Microbe Interactions, 2014, 27(12):1403-1412. [41] Xie W, Hao Z, Yu M, et al.Improved phosphorus nutrition by arbuscular mycorrhizal symbiosis as a key factor facilitating glycyrrhizin and liquiritin accumulation in Glycyrrhiza uralensis[J]. Plant Soil, 2018, 1-15. [42] Kapoor R, Giri B, Mukerji KG.Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer[J]. Bioresource Technology, 2004, 93(3):307-311. [43] Saia S, Benítez E, García-Garrido JM, et al.The effect of arbuscular mycorrhizal fungi on total plant nitrogen uptake and nitrogen recovery from soil organic material[J]. The Journal of Agricultural Science, 2014, 152(3):370-378. [44] Zhao R, Guo W, Bi N, et al.Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize(Zea mays L.)grown in two types of coal mine spoils under drought stress[J]. Applied Soil Ecology, 2015, 88:41-49. [45] Hodge A, Fitter AH.Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling[J]. Proc Natl Acad Sci, 2010, 107(31):13754-13759. [46] Graciano C, Goya JF, Frangi JL, et al.Fertilization with phosphorus increases soil nitrogen absorption in young plants of Eucalyptus grandis[J]. For Ecol Manage, 2006, 236(2-3):202-210. [47] 刘文兰, 师尚礼, 田福平, 等. 紫花苜蓿生物量空间层次分布与叶片 C, N, P 化学计量特征对 P 添加的响应[J]. 草地学报, 2017, 25(2):322-329. Liu WL, Shi SL, Tian FP, et al.Spatial distribution of alfalfa biomass and response of leaf C, N, P ecological stoichiometry to P addition[J]. Acta Agrestia Sinica, 2017, 25(2):322-329. [48] Gershenzon J.Metabolic costs of terpenoid accumulation in higher plants[J]. J Chem Ecol, 1994, 20(6):1281-1328. [49] Hamilton JG, Zangerl AR, DeLucia EH, et al. The carbon-nutrient balance hypothesis:its rise and fall[J]. Ecology Letters, 2001, 4(1):86-95. [50] Fritz C, Palacios-Rojas N, Feil R, et al.Regulation of secondary metabolism by the carbon-nitrogen status in tobacco:nitrate inhibits large sectors of phenylpropanoid metabolism[J]. The Plant Journal, 2006, 46(4):533-548. [51] Gavito, ME, Jakobsen I, Mikkelsen TN, et al. Direct evidence for modulation of photosynthesis by an arbuscular mycorrhiza-induced carbon sink strength[J]. New Phytol, 2019, 223(2):896-907. [52] Huang J, Hammerbacher A, Forkelová L, et al.Release of resource constraints allows greater carbon allocation to secondary metabolites and storage in winter wheat[J]. Plant Cell and Environment, 2017, 40(5):672-685. [53] Schweiger R, Müller C.Leaf metabolome in arbuscular mycorrhizal symbiosis[J]. Curr Opin Plant Biol, 2015, 26:120-126. [54] Black KG, Mitchell DT, Osborne BA.Effect of mycorrhizal-enhanced leaf phosphate status on carbon partitioning, translocation and photosynthesis in cucumber[J]. Plant Cell and Environment, 2000, 23(8):797-809. [55] Nielsen KL, Eshel A, Lynch JP.The effect of phosphorus availability on the carbon economy of contrasting common bean(Phaseolus vulgaris L.)genotypes[J]. J Exp Bot, 2001, 52(355):329-339. [56] Shinde S, Naik D, Cumming JR.Carbon allocation and partitioning in Populus tremuloides are modulated by ectomycorrhizal fungi under phosphorus limitation[J]. Tree Physiol, 2017, 38(1):52-65. [57] Kapoor R, Chaudhary V, Bhatnagar AK.Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L[J]. Mycorrhiza, 2007, 17(7):581-587. [58] Khaosaad T, Vierheilig H, Nell M, et al.Arbuscular mycorrhiza alter the concentration of essential oils in oregano(Origanum sp. , Lamiaceae)[J]. Mycorrhiza, 2006, 16(6):443-446. [59] Mandal S, Upadhyay S, Singh VP, et al.Enhanced production of steviol glycosides in mycorrhizal plants:a concerted effect of arbuscular mycorrhizal symbiosis on transcription of biosynthetic genes[J]. Plant Physiol Biochem, 2015, 89:100-106. [60] Chappell J, Wolf F, Proulx J, et al.Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme A reductase a rate-limiting step for isoprenoid biosynthesis in plants?[J]. Plant Physiology, 1995, 109(4):1337-1343. [61] Gerlach N, Schmitz J, Polatajko A, et al.An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis[J]. Plant Cell and Environment, 2015, 38(8):1591-1612. [62] Opitz S, Nes WD, Gershenzon J.Both methylerythritol phosphate and mevalonate pathways contribute to biosynthesis of each of the major isoprenoid classes in young cotton seedlings[J]. Phytochemistry, 2014, 98:110-119. [63] Laule O, Fürholz A, Chang HS, et al.Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana[J]. Proc Natl Acad Sci, 2003, 100(11):6866-6871. [64] Mendoza-Poudereux I, Kutzner E, Huber C, et al.Metabolic cross-talk between pathways of terpenoid backbone biosynthesis in spike lavender[J]. Plant Physiol Biochem, 2015, 95:113-120. [65] Lillo C, Lea US, Ruoff P.Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway[J]. Plant Cell and Environment, 2008, 31:587-601. [66] Lazzara S, Militello M, Carrubba A, et al.Arbuscular mycorrhizal fungi altered the hypericin, pseudohypericin, and hyperforin content in flowers of Hypericum perforatum grown under contrasting P availability in a highly organic substrate[J]. Mycorrhiza, 2017, 27(4):345-354. [67] Essigmann B, Güler S, Narang RA, et al.Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana[J]. Proc Natl Acad Sci, 1998, 95(4):1950-1955. [68] Jørgensen ME, Nour-Eldin HH, Halkier BA.Transport of defense compounds from source to sink:lessons learned from glucosinolates[J]. Trends Plant Sci, 2015, 20(8):508-514. [69] Mylona P, Owatworakit A, Papadopoulou K, et al.Sad3 and Sad4 are required for saponin biosynthesis and root development in oat[J]. Plant Cell, 2008, 20(1):201-212. [70] Kurosawa Y, Takahara H, Shiraiwa M.UDP-glucuronic acid:soyasapogenol glucuronosyltransferase involved in saponin biosynthesis in germinating soybean seeds[J]. Planta, 2002, 215(4):620-629. [71] Zhao J, Dixon RA.The ‘ins’ and ‘outs’ of flavonoid transport[J]. Trends Plant Sci, 2010, 15(2):72-80. [72] Jasiński M, Stukkens Y, Degand H, et al.A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion[J]. Plant Cell, 2001, 13(5):1095-1107. [73] Crouzet J, Roland J, Peeters E, et al.NtPDR1, a plasma membrane ABC transporter from Nicotiana tabacum, is involved in diterpene transport[J]. Plant Mol Biol, 2013, 82(1-2):181-192. [74] Kretzschmar T, Kohlen W, Sasse J, et al.A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching[J]. Nature, 2012, 483(7389):341-344. [75] Boursiac Y, Léran S, Corratgé-Faillie C, et al.ABA transport and transporters[J]. Trends Plant Sci, 2013, 18(6):325-333. [76] 张婧, 陈梦词, 马清, 等. 植物ABCG 转运蛋白研究进展[J]. 草业学报, 2015, 24(7):180-188. Zhang J, Chen MC, Ma Q, et al.Review of advances in the study of plant ABCG transporters[J]. Acta Prataculturae Sinica, 2015, 24(7):180-188. [77] Nadal M, Paszkowski U.Polyphony in the rhizosphere:presymbiotic communication in arbuscular mycorrhizal symbiosis[J]. Curr Opin Plant Biol, 2013, 16(4):473-479. [78] Holbrook NM, Shashidhar VR, James RA, et al.Stomatal control in tomato with ABA-deficient roots:response of grafted plants to soil drying[J]. J Exp Bot, 2002, 53(373):1503-1514. [79] Aroca R, del Mar Alguacil M, Vernieri P, et al. Plant responses to drought stress and exogenous ABA application are modulated differently by mycorrhization in tomato and an ABA-deficient mutant(sitiens)[J]. Microbial Ecology, 2008, 56(4):704. [80] Zager JJ, Lange BM.Assessing flux distribution associated with metabolic specialization of glandular trichomes[J]. Trends Plant Sci, 2018, 23(7):638-647. [81] Shi P, Fu X, Shen Q, et al.The roles of AaMIXTA1 in regulating the initiation of glandular trichomes and cuticle biosynthesis in Artemisia annua[J]. New Phytol, 2018, 217(1):261-276. [82] Mandal S, Evelin H, Giri B, et al.Arbuscular mycorrhiza enhances the production of stevioside and rebaudioside-A in Stevia rebaudiana via nutritional and non-nutritional mechanisms[J]. Applied Soil Ecology, 2013, 72:187-194. [83] Hazzoumi Z, Moustakime Y, Joutei KA.Effect of arbuscular mycorrhizal fungi and water stress on ultrastructural change of glandular hairs and essential oil compositions in Ocimum gratissimum[J]. Chemical and Biological Technologies in Agriculture, 2017, 4(1):20. [84] 李宏富, 彭励, 刘滨, 等. 甘草根中甘草酸的免疫组织化学定位研究[J]. 西北植物学报, 2012, 32(7):1361-1364. Li HF, Peng L, Liu B, et al.Immunohistochemical localization of glycyrrhizic acid in the radix of Glycyrrhiza uralensis Fisch.[J]. Acta Botanica Boreali-Occidentalia Sinica,2012, 32(7):1361-1364. [85] Marquez N, Giachero ML, Gallou A.Transcriptional changes in mycorrhizal and nonmycorrhizal soybean plants upon infection with the fungal pathogen Macrophomina phaseolina[J]. Molecular Plant-Microbe Interactions, 2018, 31(8):842-855. [86] Scheller HV, Ulvskov P.Hemicelluloses[J]. Annual Review of Plant Biology, 2010, 61:263-289. [87] Chen X, Kang Y, San SP, et al.Arbuscular mycorrhizal fungi increase the proportion of cellulose and hemicellulose in the root stele of vetiver grass[J]. Plant Soil, 2018, 425(1-2):309-319. [88] Tomczak VV, Müller C.Influence of arbuscular mycorrhizal stage and plant age on the performance of a generalist aphid[J]. Journal of Insect Physiology, 2017, 98:258-266. [89] Smith SE, Jakobsen I, et al.Roles of arbuscular mycorrhizas in plant phosphorus nutrition:interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition[J]. Plant Physiology, 2011, 156(3):1050-1057. [90] Rosendahl S, Peter M, Joseph BM.Lack of global population genetic differentiation in the arbuscular mycorrhizal fungus Glomus mosseae suggests a recent range expansion which may have coincided with the spread of agriculture[J]. Molecular Ecology, 2009, 18(20):4316-4329. [91] Wagg C, Barendregt C, Jansa J, et al.Complementarity in both plant and mycorrhizal fungal communities are not necessarily increased by diversity in the other[J]. J Ecol, 2015, 103(5):1233-1244. [92] Rivero J, Gamir J, Aroca R, et al.Metabolic transition in mycorrhizal tomato roots[J]. Front Microbiol, 2015, 6:598. [93] Xue Z, Tan Z, Huang A, et al.Identification of key amino acid residues determining product specificity of 2, 3-oxidosqualene cyclase in Oryza species[J]. New Phytol, 2018, 218(3):1076-1088. [94] Devarenne TP, Shin DH, Back K, et al.Molecular characterization of tobacco squalene synthase and regulation in response to fungal elicitor[J]. Arch Biochem Biophysics, 1998, 349:205-215. [95] Song Y, Wang M, Zeng R, et al.Priming and filtering of anti-herbivore defenses among Nicotiana attenuata plants connected by mycorrhizal networks[J]. Plant Cell and Environment, 2019, 42(11):2945-2961. |
[1] | LI Yue, YU Wan-xian, LI Ning, YAO Ming-hua, LI Feng, DENG Ying-tian. Inoculation Method for Colletotrichum in Pepper(Capsicum annuum)Seedlings [J]. Biotechnology Bulletin, 2023, 39(4): 221-226. |
[2] | WEI Xin-xin, LAN Hai-yan. Advances in the Regulation of Plant MYB Transcription Factors in Secondary Metabolism and Stress Response [J]. Biotechnology Bulletin, 2022, 38(8): 12-23. |
[3] | ZHANG Chan, WU You-gen, YU Jing, YANG Dong-mei, YAO Guang-long, YANG Hua-geng, ZHANG Jun-feng, CHEN Ping. Molecular Mechanism of Terpenoids Synthesis Intermediated by Light and Jasmonates Signals [J]. Biotechnology Bulletin, 2022, 38(8): 32-40. |
[4] | LI Nan-hai, SUN Zhuo, YANG Li-min. Effects of Phosphorus Level and Arbuscular Mycorrhizal Fungi on the Growth and Quality of Platycodon grandiflorum [J]. Biotechnology Bulletin, 2022, 38(1): 132-140. |
[5] | YE Min, GAO Jiao-qi, ZHOU Yong-jin. Engineering Non-conventional Yeast Cell Factory for the Biosynthesis of Natural Products [J]. Biotechnology Bulletin, 2021, 37(8): 12-24. |
[6] | CAI Guo-lei, LU Xiao-kai, LOU Shui-zhu, YANG Hai-ying, DU Gang. Classification and Identification of Bacillus LM Based on Whole Genome and Study on Its Antibacterial Principle [J]. Biotechnology Bulletin, 2021, 37(8): 176-185. |
[7] | LV Yan, LIU Jian-li, LI Jing-yu, HOU Lin-lin, SUN Min, GOU Qi. Diversity of Arbuscular Mycorrhizal Fungi Inhabiting the Roots of Lycium barbarum in Different Varieties and Cultivation Regions [J]. Biotechnology Bulletin, 2021, 37(6): 36-48. |
[8] | LV Yan, WANG Wen-bin, GOU Qi, WANG Ying-na, LI Jing-yu, LIU Jian-li. Effect of Root Rot on Arbuscular Mycorrhizal Fungi Community in Root Zone Soil of Lycium barbarum L. [J]. Biotechnology Bulletin, 2021, 37(12): 29-40. |
[9] | LI Jing, FENG Na, WANG Sheng-yang, LIN Zhan-xi. Research Progress in Chemical Constituents of Taiwanofungus camphoratum and Its Pharmacological Activities [J]. Biotechnology Bulletin, 2021, 37(11): 14-31. |
[10] | SUN Yu, CHANG Jing-jing, TIAN Chun-jie. Technical Systems of Reorganization and Construction of Crop Rhizosphere Microbiome [J]. Biotechnology Bulletin, 2020, 36(9): 25-30. |
[11] | WANG Dan, LI Sheng-yan, LIU Jin-ping, LANG Zhi-hong. Study on the Function of Terpene Synthase Gene tps2 and Its Promoter Functional Segment in Zea mays [J]. Biotechnology Bulletin, 2020, 36(12): 1-11. |
[12] | LI Jia-xiu, CAI Qian-ru, WU Jie-qun. Research Progresses on the Synthetic Biology of Terpenes in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2020, 36(12): 199-207. |
[13] | ZHANG Qi, CHEN Jing, LI Li, ZHAO Ming-zhu, ZHANG Mei-ping, WANG Yi. Research Progress on Plant AP2/ERF Transcription Factor Family [J]. Biotechnology Bulletin, 2018, 34(8): 1-7. |
[14] | LUO Xiao-ning, ZHAI Li-juan, LI Xiang, SHI Qian-qian, ZHANG Yan-long. Research Progress on microRNA in Landscape Plants [J]. Biotechnology Bulletin, 2018, 34(8): 17-26. |
[15] | ZHANG Hao-yu, FAN Jun-miao, WANG Ting, HAN Yuan-huai, DU Fang. Advances on Key Gene DXS Involved in the Terpenoid Biosynthesis in Plants [J]. Biotechnology Bulletin, 2018, 34(3): 1-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||