Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (12): 137-145.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0258
Previous Articles Next Articles
ZHOU Huai-ye(), ZHOU Bi-yao, Su Tao()
Received:
2020-05-30
Online:
2020-12-26
Published:
2020-12-22
Contact:
Su Tao
E-mail:zhouhuaiye@njfu.edu.cn;sutao@njfu.edu.cn
ZHOU Huai-ye, ZHOU Bi-yao, Su Tao. The Research Progress of β-Fructosidase Inhibitors[J]. Biotechnology Bulletin, 2020, 36(12): 137-145.
[1] |
Fernie AR, Bachem CWB, Helariutta Y, et al. Synchronization of developmental, molecular and metabolic aspects of source-sink interactions[J]. Nature Plants, 2020,6(2):55-66.
doi: 10.1038/s41477-020-0590-x URL pmid: 32042154 |
[2] | 陈年来. 作物库源关系研究进展[J]. 甘肃农业大学学报, 2019,54(1):1-10. |
Chen NL. Research advance in source-sink interaction of crops[J]. Journal of Gansu Agricultural University, 2019,54(1):1-10. | |
[3] |
Roitsch T, Balibrea ME, Hofmann M, et al. Extracellular invertase:key metabolic enzyme and PR protein[J]. Journal of Experimental Botany, 2003,54(382):513-524.
URL pmid: 12508062 |
[4] |
Doidy J, Grace E, Kühn C, et al. Sugar transporters in plants and in their interactions with fungi[J]. Trends in Plant Science, 2012,17(7):413-422.
doi: 10.1016/j.tplants.2012.03.009 URL pmid: 22513109 |
[5] | 徐晓霞. 番茄细胞壁蔗糖转化酶抑制蛋白(Le-INVINH1)在植株抵抗低温胁迫中的功能研究[D]. 武汉:华中师范大学, 2013. |
Xu XX. The function of tomato cell wall invertase inhibitor(Le-INVINH1)in plant tolerance to low temperature stress[D]. Wuhan:Central China Normal University, 2013. | |
[6] |
Xu X, Ren Y, Wang C, et al. OsVIN2 encodes a vacuolar acid invertase that affects grain size by altering sugar metabolism in rice[J]. Plant Cell Reports, 2019,38(10):1273-1290.
doi: 10.1007/s00299-019-02443-9 URL pmid: 31321495 |
[7] | 姚远. 木薯转化酶基因家族克隆、结构进化及表达分析[D]. 海口:海南大学, 2013. |
Yao Y. cloning, structure evolution and expressing analysis of the invertase family genes in cassava(Manihot esculenta Crantz)[D]. Haikou:Hainan University, 2013. | |
[8] | 钱双宏. 甘蔗ShSWEET1和ShSWEET2基因克隆及功能分析[D]. 海口:海南大学, 2015. |
Qian SH. Cloning and function analysis of ShSWEET1 and ShSWEET2 in sugarcane[D]. Haikou:Hainan University, 2015. | |
[9] | Zhou T, Hao G, Yang Y, et al. Sicwinv1, a cell wall invertase from sesame, is involved in anther development[J]. Journal of Plant Growth Regulation, 2019,38(4):1274-1286. |
[10] |
Su T, Han M, Min J, et al. Functional characterization of invertase inhibitors PtC/VIF1 and 2 revealed their involvements in the defense response to fungal pathogen in Populus trichocarpa[J]. Frontiers in Plant Science, 2020,10:1654.
URL pmid: 31969894 |
[11] |
Rausch T, Greiner S. Plant protein inhibitors of invertases[J]. Biochimica et Biophysica Acta, 2004,1696(2):253-261.
doi: 10.1016/j.bbapap.2003.09.017 URL pmid: 14871666 |
[12] |
Liao S, Wang L, Li J, Ruan YL. Cell wall invertase is essential for ovule development through sugar signaling rather than provision of carbon[J]. Plant Physiology, 2020. DOI: 10. 1104/pp. 20. 00400.
URL pmid: 33082269 |
[13] |
Chourey PS, Jain M, Li QB, et al. Genetic control of cell wall invertases in developing endosperm of maize[J]. Planta, 2006,223(2):159-167.
URL pmid: 16025339 |
[14] |
Li B, Liu H, Zhang Y, et al. Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize[J]. Plant Biotechnology Journal, 2013,11(9):1080-1091.
URL pmid: 23926950 |
[15] |
Yan W, Wu X, Li Y, et al. Cell wall invertase 3 affects cassava productivity via regulating sugar allocation from source to sink[J]. Frontiers in Plant Science, 2019,10:541.
doi: 10.3389/fpls.2019.00541 URL |
[16] |
Albacete A, Cantero-Navarro E, Groβkinsky DK, et al. Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato[J]. Journal of Experimental Botany, 2015,66(3):863-878.
URL pmid: 25392479 |
[17] |
Bonfig KB, Berger S, Fatima T, et al. Metabolic control of seedling development by invertases[J]. Functional Plant Biology, 2007,34(6):508-516.
URL pmid: 32689380 |
[18] | Heyer AG, Raap M, Schroeer B, et al. Cell wall invertase expression at the apical meristem alters floral, architectural, and reproductive traits in Arabidopsis thaliana[J]. Plant Journal, 2004,39(2):161-169. |
[19] |
Rodrigues CM, Jung B, Klemens PAW. Vacuolar sucrose homeostasis is critical for development, seed properties and survival of dark phases of Arabidopsis[J]. Journal of Experimental Botany, 2020. DOI: 10. 1093/jxb/eraa205.
URL pmid: 33258954 |
[20] |
Luo T, Shuai L, Liao L, et al. Soluble acid invertases act as key factors influencing the sucrose/hexose ratio and sugar receding in longan pulp(Dimocarpus longan Lour.)[J]. Journal of Agricultural and Food Chemistry, 2019,67(1):352-363.
doi: 10.1021/acs.jafc.8b05243 URL pmid: 30541284 |
[21] | Wang L, Cook A, Patrick JW, et al. Silencing the vacuolar invertase gene GhVIN1 blocks cotton fiber initiation from the ovule epidermis, probably by suppressing a cohort of regulatory genes via sugar signaling[J]. Plant Journal, 2014,78(4):686-696. |
[22] | Yu X, Wang X, Zhang W, et al. Antisense suppression of an acid invertase gene(MAI1)in muskmelon alters plant growth and fruit development[J]. Journal of Experimental Botany, 2008,59(11):2969-2977. |
[23] | Chi Y, Wilson K, Liu Z, et al. Vacuolar invertase genes SbVIN1 and SbVIN2 are differently associated with stem and grain traits in sorghum(Sorghum bicolor)[J]. Crop Journal, 2019,8(2):299-312. |
[24] |
Tang X, Su T, Han M, et al. Suppression of extracellular invertase inhibitor gene expression improves seed weight in soybean(Glycine max)[J]. Journal of Experimental Botany, 2017,68(3):469-482.
URL pmid: 28204559 |
[25] | Pressey R. Invertase inhibitor in tomato fruit[J]. Phytochemistry, 1994,36(3):543-546. |
[26] |
Weil M, Krausgrill S, Schuster A, et al. A 17-kDa Nicotiana tabacumcell-wall peptide acts as an in-vitro inhibitor of the cell-wall isoform of acid invertase[J]. Planta, 1994,193(3):438-445.
URL pmid: 7764874 |
[27] |
Greiner S, Krausgrill S, Rausch T. Cloning of a Tobacco apoplasmic invertase inhibitor:proof of function of the recombinant protein and expression analysis during plant development[J]. Plant Physiology, 1998,116(2):733-742.
URL pmid: 9489020 |
[28] | Greiner S, Ulrike K, Lauer K, et al. Plant invertase inhibitors: Expression in cell culture and during plant development[J]. Functional Plant Biology, 2000,27(9):807-814. |
[29] | 牛俊奇, Phan TT, 邵敏, 等. 甘蔗工艺成熟期转化酶及其抑制子与蔗糖积累的相关性研究[J]. 西南农业学报, 2015,28(4):1606-1611. |
Niu JQ, Phan TT, Shao M, et al. Correlation analysis among invertases activities, invertase inhibitor gene expression and sugar content at technical maturing stage of sugarcane[J]. Southwest China Journal of Agricultural Sciences, 2015,28(4):1606-1611. | |
[30] |
Shivalingamurthy SG, Anangi R, Kalaipandian S, et al. Identification and functional characterization of sugarcane invertase inhibitor(ShINH1):A potential candidate for reducing pre- and post-harvest loss of sucrose in sugarcane[J]. Frontiers in Plant Science 2018,9:598.
URL pmid: 29774044 |
[31] | 苗小荣, 牛俊奇, 莫昭展. 铁皮石斛转化酶抑制子家族基因的克隆和表达分析[J]. 生物技术通报, 2018,34(1):129-136. |
Miao XR, Niu JQ, Mo ZZ. Cloning and expression analysis of invertase inhibitor gene families from Dendrobium officinale[J]. Biotechnology Bulletin, 2018,34(1):129-136. | |
[32] |
Reca IB, Brutus A, D’Avino R, et al. Molecular cloning, expression and characterization of a novel apoplastic invertase inhibitor from tomato(Solanum lycopersicum)and its use to purify a vacuolar invertase[J]. Biochimie, 2008,90(11-12):1611-1623.
URL pmid: 18573306 |
[33] | Yang D, Xie Y, Sun H, et al. IbINH positively regulates drought stress tolerance in sweetpotato[J]. Plant Physiology and Biochemistry, 2020,146(10):403-410. |
[34] | Su T, Wolf S, Han M, et al. Reassessment of an Arabidopsis cell wall invertase inhibitor AtCIF1 reveals its role in seed germination and early seedling growth[J]. Plant Molecular Biology, 2016,90(1):137-155. |
[35] | Halaba J, Rudnicki RM. Invertase inhibitor-control of sucrose transport from carnation petals to other flower parts[J]. Plant Growth Regulation, 1988,7(3):193-199. |
[36] |
Koh EJ, Lee SJ, Hong SW, et al. The ABA effect on the accumulation of an invertase inhibitor transcript that is driven by the CAMV35S promoter in ARABIDOPSIS[J]. Molecules and Cells, 2008,26(3):236-242.
URL pmid: 18427162 |
[37] |
Xu XX, Hu Q, Yang WN, et al. The roles of cell wall invertase inhibitor in regulating chilling tolerance in tomato[J]. BMC Plant Biology, 2017,17(1):195.
URL pmid: 29121866 |
[38] |
Bonfig KB, Gabler A, Simon UK, et al. Post-translational derepression of invertase activity in source leaves via down-regulation of invertase inhibitor expression is part of the plant defense response[J]. Molecular Plant, 2010,3(6):1037-1048.
URL pmid: 20833735 |
[39] |
Veillet F, Gaillard C, Lemonnier P, et al. The molecular dialogue between Arabidopsis thaliana and the necrotrophic fungus Botrytis cinerea leads to major changes in host carbon metabolism[J]. Scientific Reports, 2017,7(1):17121.
doi: 10.1038/s41598-017-17413-y URL pmid: 29215097 |
[40] | Kinase P, Lin Y, Liu T, et al. Subtle regulation of potato acid invertase activity by a protein complex of invertase, invertase inhibitor, and SUCROSE NONFERMENTING1-RELATED[J], Plant Physiology, 2015,168(8):1807-1819. |
[41] | Zhao H, Greiner S, Scheffzek K, et al. A 6&1-FEH encodes an enzyme for fructan degradation and interact with invertase inhibitor protein in maize(Zea mays L.)[J]. International Journal of Molecular Sciences, 2019,20(15):3807. |
[42] | Zhang N, Shi J, Zhao H, et al. Activation of small heat shock protein(SlHSP17. 7)gene by cell wall invertase inhibitor(SlCIF1)gene involved in sugar metabolism in tomato[J]. Gene, 2018,679(8):90-99. |
[43] |
Wang L, Ruan YL. New insights into roles of cell wall invertase in early seed development revealed by comprehensive spatial and temporal expression patterns of GhCWIN1 in cotton[J]. Plant Physiology, 2012,160(2):777-787.
URL pmid: 22864582 |
[44] |
Zhang J, Wu Z, Hu F, et al. Aberrant seed development in Litchi chinensis is associated with the impaired expression of cell wall invertase genes[J]. Horticulture Research, 2018,5:39.
URL pmid: 30083354 |
[45] |
Palmer WM, Ru L, Jin Y, et al. Tomato ovary-to-fruit transition is characterized by a spatial shift of mrnas for cell wall invertase and its inhibitor with the encoded proteins localized to sieve elements[J]. Molecular Plant, 2015,8(2):315-328.
doi: 10.1016/j.molp.2014.12.019 URL pmid: 25680776 |
[46] |
Jin Y, Ni DA, Ruan YL. Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose Level[J]. Plant Cell, 2009,21(7):2072-2089.
URL pmid: 19574437 |
[47] |
Zeeman SC, Kossmann J, Smith AM. Starch:its metabolism, evolution, and biotechnological modification in plants[J]. Annual Review of Plant Biology, 2010,61:209-234.
URL pmid: 20192737 |
[48] |
Qin G, Zhu Z, Wang W, et al. A tomato vacuolar invertase inhibitor mediates sucrose metabolism and influences fruit ripening[J]. Plant Physiology, 2016,172(3):1596-1611.
URL pmid: 27694342 |
[49] | Ma M, Wang L. Acid vacuolar invertase 1(PbrAc-Inv1)and invertase inhibitor 5(PbrII5)were involved in sucrose hydrolysis during postharvest pear storage[J]. Food Chemistry, 2020,320(4):126635. |
[50] |
de Araújo NO, Véras MLM, Santos MN de S, et al. Sucrose degradation pathways in cold-induced sweetening and its impact on the non-enzymatic darkening in sweet potato root[J]. Food Chemistry, 2020,312(11):125904.
doi: 10.1016/j.foodchem.2019.125904 URL |
[51] |
Greiner S, Rausch T, Sonnewald U, et al. Ectopic expression of a tobacco invertase inhibitor homolog prevents cold-induced sweetening of potato tubers[J]. Nature Biotechnology, 1999,17(7):708-711.
URL pmid: 10404166 |
[52] |
Liu X, Lin Y, Liu J, et al. StInvInh2 as an inhibitor of StvacINV1 regulates the cold-induced sweetening of potato tubers by specifically capping vacuolar invertase activity[J]. Plant Biotechnology Journal, 2013,11(5):640-647.
URL pmid: 23421503 |
[53] |
Yang W, Chen S, Cheng Y, et al. Cell wall/vacuolar inhibitor of fructosidase 1 regulates ABA response and salt tolerance in Arabidopsis[J]. Plant Signaling and Behavior, 2020,15(4):1744293.
doi: 10.1080/15592324.2020.1744293 URL pmid: 32213123 |
[54] | 陈素芬. 液泡蔗糖转化酶调控拟南芥气孔运动及其抗旱作用[D]. 上海:上海应用技术学院, 2015. |
Chen SF. Regulation of vacuolar invertase in Arabidopsis stomatal movement and its effect on drought resistance[D]. Shanghai:Shanghai Institute of Technology, 2015. | |
[55] |
Chen SF, Liang K, Yin DM, et al. Ectopic expression of a tobacco vacuolar invertase inhibitor in guard cells confers drought tolerance in Arabidopsis[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016. 31(6):1381-1385.
doi: 10.3109/14756366.2016.1142981 URL pmid: 26899912 |
[56] |
Swarbrick PJ, Schulze-Lefert P, Scholes JD. Metabolic consequences of susceptibility and resistance(race-specific and broad-spectrum)in barley leaves challenged with powdery mildew[J]. Plant, Cell and Environment, 2006,29(6):1061-1076.
URL pmid: 17080933 |
[57] | Sutton PN, Gilbert MJ, Williams LE, et al. Powdery mildew infection of wheat leaves changes host solute transport and invertase activity[J]. Physiologia Plantarum, 2007,129(4):787-795. |
[58] |
Essmann J, Schmitz-Thom I, Schön H, et al. RNA interference-mediated repression of cell wall invertase impairs defense in source leaves of tobacco[J]. Plant Physiology, 2008,147(3):1288-1299.
URL pmid: 18502974 |
[59] |
Cabello S, Lorenz C, Crespo S, et al. Altered sucrose synthase and invertase expression affects the local and systemic sugar metabolism of nematode-infected Arabidopsis thaliana plants[J]. Journal of Experimental Botany, 2014,65(1):201-212.
doi: 10.1093/jxb/ert359 URL pmid: 24187419 |
[60] |
Kocal N, Sonnewald U, Sonnewald S. Cell wall-bound invertase limits sucrose export and is involved in symptom development and inhibition of photosynjournal during compatible interaction between tomato and Xanthomonas campestris pv vesicatorya[J]. Plant Physiology, 2008,148(11):1523-1536.
doi: 10.1104/pp.108.127977 URL |
[61] |
Schaarschmidt S, Roitsch T, Hause B. Arbuscular mycorrhiza induces gene expression of the apoplastic invertase LIN6 in tomato(Lycopersicon esculentum)roots[J]. Journal of Experimental Botany, 2006,57(15):4015-4023.
doi: 10.1093/jxb/erl172 URL pmid: 17050639 |
[62] |
Hayes M, Feechan A, Dry IB. Involvement of abscisic acid in the coordinated regulation of a stress-inducible hexose transporter(VvHT5)and a cell wall invertase in grapevine in response to biotrophic fungal infection[J]. Plant Physiology, 2010,153(1):211-221.
doi: 10.1104/pp.110.154765 URL pmid: 20348211 |
[63] |
Sun L, Yang D, Kong Y, et al. Sugar homeostasis mediated by cell wall invertase GRAIN INCOMPLETE FILLING 1(GIF1)plays a role in pre-existing and induced defence in rice[J]. Molecular Plant Pathology, 2014,15(2):161-173.
doi: 10.1111/mpp.12078 URL pmid: 24118770 |
[64] |
Chou HM, Bundock N, Rolfe SA, et al. Infection of Arabidopsis thaliana leaves with Albugo candida(white blister rust)causes a reprogramming of host metabolism[J]. Molecular Plant Pathology, 2000,1(2):99-113.
doi: 10.1046/j.1364-3703.2000.00013.x URL pmid: 20572957 |
[65] |
Herbers K, Takahata Y, Melzer M, et al. Regulation of carbohydrate partitioning during the interaction of potato virus Y with tobacco[J]. Molecular Plant Pathology, 2000,1(1):51-59.
URL pmid: 20572950 |
[66] |
Scharte J, Schön H, Weis E. Photosynjournal and carbohydrate metabolism in tobacco leaves during an incompatible interaction with Phytophthora nicotianae[J]. Plant, Cell and Environment, 2005,28(11):1421-1435.
doi: 10.1111/pce.2005.28.issue-11 URL |
[67] |
Siemens J, González MC, Wolf S, et al. Extracellular invertase is involved in the regulation of clubroot disease in Arabidopsis thaliana[J]. Molecular Plant Pathology, 2011,12(3):247-262.
URL pmid: 21355997 |
[1] | MA Jun-xiu, WU Hao-qiong, JIANG Wei, YAN Geng-xuan, HU Ji-hua, ZHANG Shu-mei. Screening and Identification of Broad-spectrum Antagonistic Bacterial Strains Against Vegetable Soft Rot Pathogen and Its Control Effects [J]. Biotechnology Bulletin, 2023, 39(7): 228-240. |
[2] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[3] | YANG Yang, ZHU Jin-cheng, LOU Hui, HAN Ze-gang, ZHANG Wei. Transcriptome Analysis of Interaction Between Gossypium barbadense and Fusarium oxysporum f. sp. vasinfectum [J]. Biotechnology Bulletin, 2023, 39(6): 259-273. |
[4] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[5] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[6] | PAN Guo-qiang, WU Si-yuan, LIU Lu, GUO Hui-ming, CHENG Hong-mei, SU Xiao-feng. Construction and Preliminary Analysis of Verticillim dahliae Mutant Library [J]. Biotechnology Bulletin, 2023, 39(5): 112-119. |
[7] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[8] | YANG Chun-hong, DONG Lu, CHEN Lin, SONG Li. Characterization of Soybean VAS1 Gene Family and Its Involvement in Lateral Root Development [J]. Biotechnology Bulletin, 2023, 39(3): 133-142. |
[9] | XU Xiao-wen, LI Jin-cang, HAI Du, ZHA Yu-ping, SONG Fei, WANG Yi-xun. Identification and Diversity Analysis of Mycoviruses from the Phytopathogenic Fungus Colletotrichum spp. of Walnut [J]. Biotechnology Bulletin, 2023, 39(3): 278-289. |
[10] | WANG Wei-chen, ZHAO Jin, HUANG Wei-yi, GUO Xin-zhu, LI Wan-ying, ZHANG Zhuo. Research Progress in Metabolites Produced by Bacillus Against Three Common Plant Pathogenic Fungi [J]. Biotechnology Bulletin, 2023, 39(3): 59-68. |
[11] | WANG Feng-ting, WANG Yan, SUN Ying, CUI Wen-jing, QIAO Kai-bin, PAN Hong-yu, LIU Jin-liang. Isolation and Identification of Saline-alkali Tolerant Aspergillus terreus SYAT-1 and Its Activities Against Plant Pathogenic Fungi [J]. Biotechnology Bulletin, 2023, 39(2): 203-210. |
[12] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[13] | XU Rui, ZHU Ying-fang. The Key Roles of Mediator Complex in Plant Responses to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(11): 54-60. |
[14] | CHEN Guang-xia, LI Xiu-jie, JIANG Xi-long, SHAN Lei, ZHANG Zhi-chang, LI Bo. Research Progress in Plant Small Signaling Peptides Involved in Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(11): 61-73. |
[15] | HAN Fang-ying, HU Xin, WANG Nan-nan, XIE Yu-hong, WANG Xiao-yan, ZHU Qiang. Research Progress in Response of DREBs to Abiotic Stress in Plant [J]. Biotechnology Bulletin, 2023, 39(11): 86-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||