Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (12): 146-154.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0207
Previous Articles Next Articles
WANG Pan-pan(), YANG Ye, LIU Di-qiu, CUI Xiu-ming, LIU Yuan()
Received:
2020-03-03
Online:
2020-12-26
Published:
2020-12-22
Contact:
LIU Yuan
E-mail:945179704@qq.com;liuyuan513@kust.edu.cn
WANG Pan-pan, YANG Ye, LIU Di-qiu, CUI Xiu-ming, LIU Yuan. Application of Metagenomics in Plant Diseases Research[J]. Biotechnology Bulletin, 2020, 36(12): 146-154.
宿主 | 病毒 | 互惠关系 | 参考文献 |
---|---|---|---|
真菌内生植物 | Curvularia thermal tolerance virus | 赋予共生植物热耐受性,耐受温度可达65℃ | [47] |
番茄 | Tomato endogenous pararetroviral | 保护番茄免受外源性LycePRV和其他相关病毒的感染 | [48] |
植物 | Cytomegalo | 提高植物耐旱和耐寒的特性 | [49] |
栗子 | Cryphonectria parasitica | 当真菌感染Cryphonectria parasitica后,植株的病理影响大大降低 | [50] |
白三叶草植物 | White clover mosaic virus | 白三叶草植物感染WCIMV后对真菌性蚊虫的吸引力降低 | [51] |
宿主 | 病毒 | 互惠关系 | 参考文献 |
---|---|---|---|
真菌内生植物 | Curvularia thermal tolerance virus | 赋予共生植物热耐受性,耐受温度可达65℃ | [47] |
番茄 | Tomato endogenous pararetroviral | 保护番茄免受外源性LycePRV和其他相关病毒的感染 | [48] |
植物 | Cytomegalo | 提高植物耐旱和耐寒的特性 | [49] |
栗子 | Cryphonectria parasitica | 当真菌感染Cryphonectria parasitica后,植株的病理影响大大降低 | [50] |
白三叶草植物 | White clover mosaic virus | 白三叶草植物感染WCIMV后对真菌性蚊虫的吸引力降低 | [51] |
[1] |
Clark MF, Adams AN. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses[J]. J Gen Virol, 1977,34(3):475-83.
URL pmid: 323416 |
[2] |
Candresse T, Cambra M, Dallot S, et al. Comparison of monoclonal antibodies and polymerase chain reaction assays for the typing of isolates belonging to the D and M serotypes of plum pox potyvirus[J]. Phytopathology, 1998,88:198-204.
URL pmid: 18944965 |
[3] |
Martin RM, James D, Levesque CA. Impacts of molecular diagnostic technologies on plant disease management[J]. Annual Review of Phytopathology, 2000,38:207-239.
doi: 10.1146/annurev.phyto.38.1.207 URL pmid: 11701842 |
[4] | Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification of individual microbial cells without cultivation[J]. Microbiol Review, 1995,59(1):143-169. |
[5] | Handelsman J, Rondon MR, Brady SF, et al. Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products[J]. Chem Biological, 1998,5(10):245-249. |
[6] |
Ian PA, Rachel HG, Wendy AM, et al. Next-generation sequencing and metagenomic analysis:a universal diagnostic tool in plant virology[J]. Molecular Plant Pathology, 2009,10(4), 537-545.
URL pmid: 19523106 |
[7] | Chen K, Pachter L. Bioinformatics for whole-genome shotgun sequencing of microbial communities[J]. PLoS Computational Biology, 2005,1(2):e24. |
[8] | 周华, 张新, 刘腾云, 等. 高通量转录组测序的数据分析与基因挖掘[J]. 江西科学, 2012,30(5):607-611. |
Zhou H, Zhang X, Liu TY, et al. Data processing and gene discovery of high-throughput transcriptome sequencing[J]. Jiangxi Science, 2012,30(5):607-611. | |
[9] |
Seeman T. Prokka:rapid prokaryotic genome annotation[J]. Bioinformatics, 2014,30(14):2068-2069.
URL pmid: 24642063 |
[10] | 田李, 张颖, 赵云峰. 新一代测序技术的发展和应用[J]. 生物技术通报, 2015,31(11):1-8. |
Tian L, Zhang Y, Zhao YF. The next generation sequencing technology and its applications[J]. Biotechnology Bulletin, 2015,31(11):1-8. | |
[11] | Raaijmakers JM, Paulitz TC, Steinberg C, et al. The rhizosphere:a playground and battlefield for soilborne pathogens and beneficial microorganisms[J]. Plant and Soil, 2009,321:341-361. |
[12] |
Marcel GA. Van DH, Richard D, et al. The unseen majority:soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecology Letters, 2007,11(3):296-310.
URL pmid: 18047587 |
[13] |
Schnitzer SA, Klironomos JN, HilleRisLambers J, et al. Soil microbes drive the classic plant diversity-productivity pattern[J]. Ecology, 2011,92(2):296-303.
URL pmid: 21618909 |
[14] |
Wagg C, Jansa J, Schmid B, et al. Belowground biodiversity effects of plant symbionts support aboveground productivity[J]. Ecology Letters, 2011,14(10):1001-1009.
doi: 10.1111/ele.2011.14.issue-10 URL |
[15] | Maurhofer M, Keel C, Schnider U, et al. Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHA0 on its disease suppressive capacity[J]. Phytopathology, 1992,82:190-195. |
[16] |
Tian BY, Cao Y, Zhang KQ. Metagenomic insights into communities, functions of endophytes, and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots[J]. Scientific Reports, 2015,5:17087.
doi: 10.1038/srep17087 URL pmid: 26603211 |
[17] | Dnceppe MO, Kimoto T, Lemieux C, et al. Screening for exotic forest pathogens to increase survey capacity using metagenomics[J]. Phytopathology, 2018,108(2):1509-1521. |
[18] | 欧小宏, 刘迪秋, 王麟猛, 等. 土壤熏蒸处理对连作三七生长发育及土壤理化性状的影响[J]. 中国现代中药, 2018,20(7):842-849. |
Ou XH, Liu DQ, Wang LM, et al. Effects of soil fumigant chlorpicrin on the growth development and soil physico-chemical properties of continuous cropping panax notoginseng[J]. Modern Chinese Medicine, 2018,20(7):842-849. | |
[19] | 王峰, 吕艺, 刘洋, 等. 氯化苦土壤消毒对三七种植后细菌群落多样性及烤烟轮作的影响[J]. 昆明理工大学学报:自然科学版, 2019,4(44):90-96. |
Wang F, LÜ Y, Liu Y, et al. Effects of fumigation with chloropicrin on soil fungal composition and diversity after continuous cropping of Panax notoginseng[J]. Journal of Kunming University of Science and Technology:Natural Science, 2019,4(44):90-96. | |
[20] |
Van LL. Plant responses to plant growth-promoting rhizobacteria[J]. European Journal of Plant Pathology, 2007,119:243-254.
doi: 10.1007/s10658-007-9165-1 URL |
[21] |
Tyler HL, Triplett EW. Plants as a habitat for beneficial and/or human pathogenic bacteria[J]. Annual Review of Phytopathology, 2008,46:53-73.
URL pmid: 18680423 |
[22] | Holden N, Pritchard L, Toth I. Colonization outwith the colon:plants as an alternative environmental reservoir for human pathogenic enterobacteria[J]. FEMS Microbiol Rev, 2009,33(4):689-703. |
[23] |
Teplitski M, Warriner K, Bartz J, et al. Untangling metabolic and communication networks:interactions of enterics with phytobacteria and their implications in produce safety[J]. Trends in Microbiology, 2011,19(3):121-127.
URL pmid: 21177108 |
[24] | Pierret A, Doussan C, Capowiez Y, et al. Root functional architecture:A framework for modeling the interplay between roots and soil[J]. Vadose Zone Journal, 2007,6(2):269-281. |
[25] | Goss EM, Tabima JF, Cooke DE, et al. The Irish potato famine pathogen Phytophthora infestans originated in central Mexico rather than the Andes[J]. Proc Natl Inst Sci USA, 2014,111(24):8791-8796. |
[26] | Punja ZK. Fungal pathogens of American ginseng(Panax quinquefolium)in British Columbia[J]. Canadian Journal of Plant Pathology, 1997,19(3):301-306. |
[27] |
Gaulin E, Jacquet C, Bottin A, et al. Root rot disease of legumes caused by Aphanomyces euteiches[J]. Molecular Plant Pathology, 2007,8(5):539-548.
doi: 10.1111/j.1364-3703.2007.00413.x URL pmid: 20507520 |
[28] |
Chatterton S, Gossen B, McLaren D, et al. Metagenomic analysis of oomycete communities from the rhizosphere of field pea on the Canadian prairies[J]. Canadian Journal of Microbiology, 2017, 63(9). https://doi.org/10.1139/cjm-2017-0099.
doi: 10.1139/cjm-2017-0221 URL pmid: 28521110 |
[29] | Duan Y, Zhou L, Hall DG, et al. Complete genome sequence of citrus huanglongbing bacterium, ‘Candidatus Liberibacter asiaticus’ obtained through metagenomics[J]. Microbiology Resource Announcements Starting, 2009,22(8):1011-1020. |
[30] |
Cook RJ, Thomashow LS, Weller DM, et al. Molecular mechanisms of defense by rhizobacteria against root disease[J]. Proc Natl Acad Sci USA, 1995,92(10):4197-4201.
URL pmid: 11607544 |
[31] |
Rudrappa T, Czymmek KJ, Pare PW, et al. Root-secreted malic acid recruits beneficial soil bacteria[J]. Plant Physiology, 2008,148(3):1547-1556.
URL pmid: 18820082 |
[32] |
Carrión VJ, Perez-Jaramillo J, Cordovez V, et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome[J]. Science, 2019,366(6465):606-612.
URL pmid: 31672892 |
[33] | Manoj K, George M, Rony S. Metagenomic insights of the root colonizing microbiome associated with symptomatic and non-symptomatic bananas in Fusarium wilt infected fields[J]. Plants, 2020,18, 9(2):263. |
[34] | Insam H, Seewald MSA. Volatile organic compounds(VOCs)in soils[J]. Biology and Fertility of Soils, 2010,46(3):199-213. |
[35] |
Vespermann A, Kai M, Piechulla B. Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana[J]. Appl Environ Microbiol, 2007,73(17):5639-5641.
URL pmid: 17601806 |
[36] |
Marilyn JR. Plant virus metagenomics:biodiversity and ecology[J]. Annual Review of Genetics, 2012,46:359-369.
URL pmid: 22934641 |
[37] |
Xiao HG, Li CH, Rwahnih MA, et al. Metagenomic analysis of riesling grapevine reveals complex virome including two new and divergent variants of Grapevine leafroll associated virus 3[J]. Plant Disease, 2019,103(6):1275-1285.
doi: 10.1094/PDIS-09-18-1503-RE URL pmid: 30932733 |
[38] |
Zhou J, Cao K, Zhang ZX, et al. Identification and characterization of a novel rhabdovirus infecting peach in China[J]. Virus Res, 2020,280:197905.
URL pmid: 32105763 |
[39] |
Héctor SO, Rodolfo DLTA, Jesús ÁSN, et al. Identification and genomic characterization of a novel tobamovirus from prickly pear cactus[J]. Arch Virol, 2020,165(3):781-784.
URL pmid: 31980940 |
[40] |
Susi H, Denis F, Mikko JF, et al. Diverse and variable virus communities in wild plant populations revealed by metagenomic tools[J]. PeerJ, 2019,7:e6140.
URL pmid: 30648011 |
[41] |
Susi H, Laine AL, Filloux D, et al. Genome sequences of a capulavirus infecting Plantago lanceolata in the land archipelago of Finland[J]. Archives of Virology, 2017,162:2041-2045.
URL pmid: 28283818 |
[42] |
Power AG, Borer ET, Hosseini P, et al. The community ecology of barley/cereal yellow dwarf viruses in Western US grasslands[J]. Virus Res, 2011,159:95-100.
URL pmid: 21641945 |
[43] |
Moore SM, Borer ET. The influence of host diversity and composition on epidemiological patterns at multiple spatial scales[J]. Ecology, 2012,93:1095-1105.
URL pmid: 22764495 |
[44] |
Malmstrom CM, Hughes CC, Newton LA, et al. Virus infection in remnant native bunchgrasses from invaded California grasslands[J]. New Phytol, 2005,168:217-230.
URL pmid: 16159335 |
[45] |
Malmstrom CM, McCullough AJ, Johnson HA, et al. Invasive annual grasses indirectly increase virus incidence in California native perennial bunchgrasses[J]. Oecologia, 2005,145:153-164.
URL pmid: 15875144 |
[46] |
Marilyn JR. Plants, viruses and the environment:Ecology and mutualism[J]. Virology, 2015,479-480:271-277.
URL pmid: 25858141 |
[47] |
Márquez LM, Redman RS, Rodriguez RJ, et al. A virus in a fungus in a plant:Three-way symbiosis required for thermal tolerance[J]. Science, 2007,315(5811):513-515.
URL pmid: 17255511 |
[48] |
Staginnus C. Endogenous pararetroviral sequences in tomato(Solanum lycopersicum)and related species[J]. BMC Plant Biology, 2007,7:24.
doi: 10.1186/1471-2229-7-24 URL pmid: 17517142 |
[49] | Xu P, Fang C, Jonathan P, et al. Virus infection improves drought tolerance[J]. New Phytologist, 2008,180(4):911-921. |
[50] | Nuss DL. Encyclopedia of virology[M]. Academic Press, 2008. |
[51] |
VanMolken T, DeCaluwe H, Hordijk CA, et al. Virus infection decreases the attractiveness of white clover plants for a non-vectoring herbivore[J]. Oecologia, 2012,170(2):433-444.
doi: 10.1007/s00442-012-2322-z URL pmid: 22526939 |
[52] |
Eilenberg J, Hajek A, Lomer C. Suggestions for unifying the terminology in biological control[J]. BioControl, 2001,46(4):387-400.
doi: 10.1023/A:1014193329979 URL |
[53] |
Xu XM, Jeffries P, Pautasso M, et al. Combined use of biocontrol agents to manage plant diseases in theory and practice[J]. Phytopathology, 2011,101(9):1024-1031.
doi: 10.1094/PHYTO-08-10-0216 URL |
[54] |
Blagodatskaya E, Blagodatsky S, Kuzyakov Y, et al. Microbial growth and carbon use efficiency in the rhizosphere and root free soil[J]. PLoS One, 2014,9(4):e93282.
URL pmid: 24722409 |
[55] | Timm CM, Campbell AG, Uttukar SM, et al. Metabolic functions of Pseudomonas fluorescens strains from Populus deltoides depend on rhizosphere or endosphere isolation compartment[J]. Front in Microbiol, 2015,6:1118. |
[56] | Inch S, Leder J, Taylor A, et al. Evaluation of microbials using comparative genomics and high-throughput assays as a method to reduce product development time[J]. Phytopathology, 2016,106:168. |
[57] |
Scheffler RJ, Colmer S, Tynan H, et al. Antimicrobials, drug discovery and genome mining[J]. Applied Microbiology Biotechnology, 2013,97(3):969-978.
URL pmid: 23233204 |
[58] |
Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria(PGPR):Emergence in agriculture[J]. World Journal of Microbiology Biotechnology, 2012,28(4):1327-1350.
URL pmid: 22805914 |
[59] |
Brodeur J. Host specificity in biological control:insights from opportunistic pathogens[J]. Evol Appl, 2012,5, 470-480.
URL pmid: 22949922 |
[60] |
Alvarez B, Biosca EG. Bacteriophage-based bacterial wilt biocontrol for an environmentally sustainable agriculture[J]. Front Plant Sci, 2017,8:1218.
URL pmid: 28769942 |
[61] |
Wang XF, Wei Z, Yang KM, et al. Phage combination therapies for bacterial wilt disease in tomato[J]. Nature Biotechnology, 2019,37:1513-1520.
doi: 10.1038/s41587-019-0328-3 URL pmid: 31792408 |
[62] | 田荣欢, 刘迪秋, 葛峰, 等. 植物病毒基因沉默抑制子研究进展[J]. 生物技术通报, 2010(4):11-15. |
Tian RH, Liu DQ, Ge F, et al. Approach of research on gene silencing suppressors of plant virus[J]. Biotechnology Bulletin, 2010(4):11-15. | |
[63] |
Heinlein M. Plant virus replication and movement[J]. Virology, 2015, 479-480:657-671.
doi: 10.1016/j.virol.2015.01.025 URL pmid: 25746797 |
[64] |
Berg G, Eberl L, Hartmann A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria[J]. Environmental Microbiology, 2005,7(11):1673-1685.
doi: 10.1111/j.1462-2920.2005.00891.x URL pmid: 16232283 |
[1] | ZHANG Lu-yang, HAN Wen-long, XU Xiao-wen, YAO Jian, LI Fang-fang, TIAN Xiao-yuan, ZHANG Zhi-qiang. Identification and Expression Analysis of the Tobacco TCP Gene Family [J]. Biotechnology Bulletin, 2023, 39(6): 248-258. |
[2] | LI Jing-rui, WANG Yu-bo, XIE Zi-wei, LI Chang, WU Xiao-lei, GONG Bin-bin, GAO Hong-bo. Identification and Expression Analysis of PIN Gene Family in Melon Under High Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(5): 192-204. |
[3] | GUO San-bao, SONG Mei-ling, LI Ling-xin, YAO Zi-zhao, GUI Ming-ming, HUANG Sheng-he. Cloning and Analysis of Chalcone Synthase Gene and Its Promoter from Euphorbia maculata [J]. Biotechnology Bulletin, 2023, 39(4): 148-156. |
[4] | WANG Yi-qing, WANG Tao, WEI Chao-ling, DAI Hao-min, CAO Shi-xian, SUN Wei-jiang, ZENG Wen. Identification and Interaction Analysis of SMAS Gene Family in Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(4): 246-258. |
[5] | YANG Lan, ZHANG Chen-xi, FAN Xue-wei, WANG Yang-guang, WANG Chun-xiu, LI Wen-ting. Gene Cloning, Expression Pattern, and Promoter Activity Analysis of Chicken BMP15 [J]. Biotechnology Bulletin, 2023, 39(4): 304-312. |
[6] | CHEN Qiang, ZHOU Ming-kang, SONG Jia-min, ZHANG Chong, WU Long-kun. Identification and Analysis of LBD Gene Family and Expression Analysis of Fruit Development in Cucumis melo [J]. Biotechnology Bulletin, 2023, 39(3): 176-183. |
[7] | PING Huai-lei, GUO Xue, YU Xiao, SONG Jing, DU Chun, WANG Juan, ZHANG Huai-bi. Cloning and Expression of PdANS in Paeonia delavayi and Correlation with Anthocyanin Content [J]. Biotechnology Bulletin, 2023, 39(3): 206-217. |
[8] | SUN Hai-hang, GUAN Hui-lin, WANG Xu, WANG Tong, LI Hong-lin, PENG Wen-jie, LIU Bo-zhen, FAN Fang-ling. Effects of Biochar on the Soil Properties and Fungal Community Structure under Continuous Cropping of Panax notoginseng [J]. Biotechnology Bulletin, 2023, 39(2): 221-231. |
[9] | XING Yuan, SONG Jian, LI Jun-yi, ZHENG Ting-ting, LIU Si-chen, QIAO Zhi-jun. Identification of AP Gene Family and Its Response Analysis to Abiotic Stress in Setaria italica [J]. Biotechnology Bulletin, 2023, 39(11): 238-251. |
[10] | CHEN Chu-yi, YANG Xiao-mei, CHEN Sheng-yan, CHEN Bin, YUE Li-ran. Expression Analysis of the ZF-HD Gene Family in Chrysanthemum nankingense Under Drought and ABA Treatment [J]. Biotechnology Bulletin, 2023, 39(11): 270-282. |
[11] | YANG Min, LONG Yu-qing, ZENG Juan, ZENG Mei, ZHOU Xin-ru, WANG Ling, FU Xue-sen, ZHOU Ri-bao, LIU Xiang-dan. Cloning and Function Analysis of Gene UGTPg17 and UGTPg36 in Lonicera macranthoides [J]. Biotechnology Bulletin, 2023, 39(10): 256-267. |
[12] | MA Sai-mai, LI Tong-yuan, MA Yan-jun, HAN Fu-jun, PENG Hai, KONG Wei-bao. Research Progress in Chitinase Involving in the Biocontrol of Crop Diseases and Pests [J]. Biotechnology Bulletin, 2023, 39(10): 29-40. |
[13] | LU Zhao-xiang, WANG Xi-ran, LIAN Xin-lei, LIAO Xiao-ping, LIU Ya-hong, SUN Jian. Advances in the Discovery of Novel Antibiotic-resistant Genes Based on Functional Metagenomics [J]. Biotechnology Bulletin, 2022, 38(9): 17-27. |
[14] | GUO Zhi-hao, JIN Ze-xin, LIU Qi, GAO Li. Bioinformatics Analysis, Subcellular Localization and Toxicity Verification of Effector g11335 in Tilletia contraversa Kühn [J]. Biotechnology Bulletin, 2022, 38(8): 110-117. |
[15] | CHEN Tian-ci, WU Shao-lan, YANG Guo-hui, JIANG Dan-xia, JIANG Yu-ji, CHEN Bing-zhi. Effects of Ganoderma resinaceum Alcohol Extract on Sleep and Intestinal Microbiota in Mice [J]. Biotechnology Bulletin, 2022, 38(8): 225-232. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||