Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (12): 115-126.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1630
Previous Articles Next Articles
MA Rong1,2,3,4(), SHANG Fang-zheng1,2,3,4, PAN Jian-feng1,2,3,4, RONG You-jun1,2,3,4, WANG Min1,2,3,4, LI Jin-quan1,2,3,4(), ZHANG Yan-jun1,2,3,4()
Received:
2022-01-03
Online:
2022-12-26
Published:
2022-12-29
Contact:
LI Jin-quan,ZHANG Yan-jun
E-mail:1095744164@qq.com;lijinquan_nd@126.com;imauzyj@163.com
MA Rong, SHANG Fang-zheng, PAN Jian-feng, RONG You-jun, WANG Min, LI Jin-quan, ZHANG Yan-jun. Research Progress in Influencing Factors of mRNA Translation in Cells and Translatome[J]. Biotechnology Bulletin, 2022, 38(12): 115-126.
项目 Item | 聚核糖体图谱技术 Polysome profiling | 翻译谱分析技术 RNC-RNA-Seq | 核糖体图谱技术 Ribosome profiling | 核糖体亲和纯化技术 RAP |
---|---|---|---|---|
技术原理 | 放线菌酮固定、蔗糖密度梯度离心法 | 放线菌酮固定、单一浓度蔗糖密度离心法 | RNase I降解不被核糖体保护的RNA片段、蔗糖密度梯度离心法 | 在被组织性启动子启动的蛋白的C末端上连接亲和标签、抗原抗体反应 |
mRNA长度 | 全长 | 全长 | 核糖体覆盖片段 | 全长 |
测序方式 | 芯片、测序 | 芯片、测序 | 芯片 | 芯片、测序 |
获取核糖体位置、密度、起始密码子位置、uORFs等 | 不能 | 多不能 | 能 | 不能 |
同一mRNA上核糖体数目的获取 | 能 | 不能 | 不能 | 不能 |
Table 1 Comparison of techniques in translatome
项目 Item | 聚核糖体图谱技术 Polysome profiling | 翻译谱分析技术 RNC-RNA-Seq | 核糖体图谱技术 Ribosome profiling | 核糖体亲和纯化技术 RAP |
---|---|---|---|---|
技术原理 | 放线菌酮固定、蔗糖密度梯度离心法 | 放线菌酮固定、单一浓度蔗糖密度离心法 | RNase I降解不被核糖体保护的RNA片段、蔗糖密度梯度离心法 | 在被组织性启动子启动的蛋白的C末端上连接亲和标签、抗原抗体反应 |
mRNA长度 | 全长 | 全长 | 核糖体覆盖片段 | 全长 |
测序方式 | 芯片、测序 | 芯片、测序 | 芯片 | 芯片、测序 |
获取核糖体位置、密度、起始密码子位置、uORFs等 | 不能 | 多不能 | 能 | 不能 |
同一mRNA上核糖体数目的获取 | 能 | 不能 | 不能 | 不能 |
[1] |
Costa-Mattioli M, Sossin WS, Klann E, et al. Translational control of long-lasting synaptic plasticity and memory[J]. Neuron, 2009, 61(1):10-26.
doi: 10.1016/j.neuron.2008.10.055 pmid: 19146809 |
[2] |
Tavernarakis N. Ageing and the regulation of protein synthesis:a balancing act?[J]. Trends Cell Biol, 2008, 18(5):228-235.
doi: 10.1016/j.tcb.2008.02.004 pmid: 18346894 |
[3] |
Wang T, Cui YZ, et al. Translating mRNAs strongly correlate to proteins in a multivariate manner and their translation ratios are phenotype specific[J]. Nucleic Acids Res, 2013(9):4743-4754.
doi: 10.1093/nar/gkt178 pmid: 23519614 |
[4] |
Nagaraj N, Wisniewski JR, Geiger T, et al. Deep proteome and transcriptome mapping of a human cancer cell line[J]. Mol Syst Biol, 2011, 7:548.
doi: 10.1038/msb.2011.81 pmid: 22068331 |
[5] |
Maier T, Güell M, Serrano L. Correlation of mRNA and protein in complex biological samples[J]. FEBS Lett, 2009, 583(24):3966-3973.
doi: 10.1016/j.febslet.2009.10.036 pmid: 19850042 |
[6] |
Bilanges B, Stokoe D. Mechanisms of translational deregulation in human tumors and therapeutic intervention strategies[J]. Oncogene, 2007, 26(41):5973-5990.
pmid: 17404576 |
[7] |
Scheper GC, van der Knaap MS, Proud CG. Translation matters:protein synthesis defects in inherited disease[J]. Nat Rev Genet, 2007, 8(9):711-723.
pmid: 17680008 |
[8] | 郑超星, 马小凤, 张永华, 等. 真核生物mRNA翻译起始机制研究进展[J]. 遗传, 2018, 40(8):607-619. |
Zheng CX, Ma XF, Zhang YH, et al. Research progress in the mechanism of translation initiation of eukaryotic m RNAs[J]. Hereditas, 2018, 40(8):607-619. | |
[9] |
Tuller T, Veksler-Lublinsky I, Gazit N, et al. Composite effects of gene determinants on the translation speed and density of ribosomes[J]. Genome Biol, 2011, 12(11):R110.
doi: 10.1186/gb-2011-12-11-r110 URL |
[10] |
Traubenik S, Ferrari M, Blanco FA, et al. Translational regulation in pathogenic and beneficial plant-microbe interactions[J]. Biochem J, 2021, 478(14):2775-2788.
doi: 10.1042/BCJ20210066 pmid: 34297042 |
[11] |
Tuller T, Carmi A, Vestsigian K, et al. An evolutionarily conserved mechanism for controlling the efficiency of protein translation[J]. Cell, 2010, 141(2):344-354.
doi: 10.1016/j.cell.2010.03.031 pmid: 20403328 |
[12] |
Schmitt E, Coureux PD, et al. Recent advances in archaeal translation initiation[J]. Front Microbiol, 2020, 11:584152.
doi: 10.3389/fmicb.2020.584152 URL |
[13] |
Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes:mechanisms and biological targets[J]. Cell, 2009, 136(4):731-745.
doi: 10.1016/j.cell.2009.01.042 pmid: 19239892 |
[14] |
Jackson RJ, Hellen CUT, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation[J]. Nat Rev Mol Cell Biol, 2010, 11(2):113-127.
doi: 10.1038/nrm2838 URL |
[15] |
Kozak M. Pushing the limits of the scanning mechanism for initiation of translation[J]. Gene, 2002, 299(1/2):1-34.
doi: 10.1016/S0378-1119(02)01056-9 URL |
[16] |
Hinnebusch AG. The scanning mechanism of eukaryotic translation initiation[J]. Annu Rev Biochem, 2014, 83:779-812.
doi: 10.1146/annurev-biochem-060713-035802 pmid: 24499181 |
[17] |
Browning KS, Bailey-Serres J. Mechanism of cytoplasmic mRNA translation[J]. Arabidopsis Book, 2015, 13:e0176.
doi: 10.1199/tab.0176 URL |
[18] |
Dahlquist KD, Puglisi JD. Interaction of translation initiation factor IF1 with the E. coli ribosomal A site[J]. J Mol Biol, 2000(1):1-15.
doi: 10.1006/jmbi.2000.3672 pmid: 10860719 |
[19] |
la Teana A, Pon CL, Gualerzi CO. Late events in translation initiation. Adjustment of fMet-tRNA in the ribosomal P-site[J]. J Mol Biol, 1996, 256(4):667-675.
pmid: 8642589 |
[20] |
Brandi L, Marzi S, Fabbretti A, et al. The translation initiation functions of IF2:targets for thiostrepton inhibition[J]. J Mol Biol, 2004, 335(4):881-894.
doi: 10.1016/j.jmb.2003.10.067 URL |
[21] |
Petrelli D, LaTeana A, Garofalo C, et al. Translation initiation factor IF3:two domains, five functions, one mechanism?[J]. EMBO J, 2001, 20(16):4560-4569.
pmid: 11500382 |
[22] |
Pioletti M, Schlünzen F, Harms J, et al. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3[J]. EMBO J, 2001, 20(8):1829-1839.
pmid: 11296217 |
[23] | 连新磊. 翻译延伸速率的全局测定及其生物学意义[D]. 广州: 暨南大学, 2017. |
Lian XL. Genome-wide evaluation of translation elongation speed and its biological significance[D]. Guangzhou: Jinan University, 2017. | |
[24] |
Inada T, Winstall E, Tarun SZ Jr, et al. One-step affinity purification of the yeast ribosome and its associated proteins and mRNAs[J]. RNA, 2002, 8(7):948-958.
pmid: 12166649 |
[25] |
Knight JRP, Garland G, Pöyry T, et al. Control of translation elongation in health and disease[J]. Dis Model Mech, 2020, 13(3):dmm043208.
doi: 10.1242/dmm.043208 URL |
[26] |
Lehmkuhl EM, et al. Lost in translation:evidence for protein synthesis deficits in ALS/FTD and related neurodegenerative diseases[J]. Adv Neurobiol, 2018, 20:283-301.
doi: 10.1007/978-3-319-89689-2_11 pmid: 29916024 |
[27] | 赵晶, 张弓. 翻译组学:方法及应用[J]. 生命的化学, 2017, 37(1):70-79. |
Zhao J, Zhang G. Translatomics:methods and applications[J]. Chem Life, 2017, 37(1):70-79. | |
[28] |
Ciandrini L, Stansfield I, Romano MC. Ribosome traffic on mRNAs maps to gene ontology:genome-wide quantification of translation initiation rates and polysome size regulation[J]. PLoS Comput Biol, 2013, 9(1):e1002866.
doi: 10.1371/journal.pcbi.1002866 URL |
[29] |
Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes[J]. Cell, 1986, 44(2):283-292.
doi: 10.1016/0092-8674(86)90762-2 pmid: 3943125 |
[30] |
Calvo SE, Pagliarini DJ, Mootha VK. Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans[J]. Proc Natl Acad Sci USA, 2009, 106(18):7507-7512.
doi: 10.1073/pnas.0810916106 URL |
[31] |
Kozak M. At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells[J]. J Mol Biol, 1987, 196(4):947-950.
pmid: 3681984 |
[32] |
Cao XW, Slavoff SA. Non-AUG start codons:expanding and regulating the small and alternative ORFeome[J]. Exp Cell Res, 2020, 391(1):111973.
doi: 10.1016/j.yexcr.2020.111973 URL |
[33] |
Shine J, Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA:complementarity to nonsense triplets and ribosome binding sites[J]. PNAS, 1974, 71(4):1342-1346.
pmid: 4598299 |
[34] |
Malys N. Shine-Dalgarno sequence of bacteriophage T4:GAGG prevails in early genes[J]. Mol Biol Rep, 2012, 39(1):33-39.
doi: 10.1007/s11033-011-0707-4 URL |
[35] |
Fu HY, Ghandour R, Ruf S, et al. The availability of neither D2 nor CP43 limits the biogenesis of photosystem II in tobacco[J]. Plant Physiol, 2021, 185(3):1111-1130.
doi: 10.1093/plphys/kiaa052 URL |
[36] |
Barrick D, Villanueba K, Childs J, et al. Quantitative analysis of ribosome binding sites in E. coli[J]. Nucleic Acids Res, 1994, 22(7):1287-1295.
pmid: 8165145 |
[37] |
Volkenborn K, Kuschmierz L, Benz N, et al. The length of ribosomal binding site spacer sequence controls the production yield for intracellular and secreted proteins by Bacillus subtilis[J]. Microb Cell Fact, 2020, 19(1):154.
doi: 10.1186/s12934-020-01404-2 pmid: 32727460 |
[38] |
Basu P, Altuvia S. RelA binding of mRNAs modulates translation or sRNA-mRNA basepairing depending on the position of the GGAG site[J]. Mol Microbiol, 2022, 117(1):143-159.
doi: 10.1111/mmi.14812 URL |
[39] |
Tuller T, Ruppin E, Kupiec M. Properties of untranslated regions of the S. cerevisiae genome[J]. BMC Genomics, 2009, 10:391.
doi: 10.1186/1471-2164-10-391 pmid: 19698117 |
[40] |
Mandal M, Boese B, Barrick JE, et al. Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria[J]. Cell, 2003, 113(5):577-586.
pmid: 12787499 |
[41] |
Gu WJ, Xu YM, Xie XY, et al. The role of RNA structure at 5' untranslated region in microRNA-mediated gene regulation[J]. RNA, 2014, 20(9):1369-1375.
doi: 10.1261/rna.044792.114 pmid: 25002673 |
[42] |
Kiriakidou M, Tan GS, Lamprinaki S, et al. An mRNA m7G cap binding-like motif within human Ago2 represses translation[J]. Cell, 2007, 129(6):1141-1151.
pmid: 17524464 |
[43] | 马涛. mRNA二级结构对酿酒酵母翻译效率的影响[D]. 杨凌: 西北农林科技大学, 2015. |
Ma T. The effect on translation efficiency of mRNA secondary structure[D]. Yangling: Northwest A & F University, 2015. | |
[44] |
Ingolia NT, Lareau LF, Weissman JS. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes[J]. Cell, 2011, 147(4):789-802.
doi: 10.1016/j.cell.2011.10.002 pmid: 22056041 |
[45] |
Kearse MG, Wilusz JE. Non-AUG translation:a new start for protein synthesis in eukaryotes[J]. Genes Dev, 2017, 31(17):1717-1731.
doi: 10.1101/gad.305250.117 URL |
[46] |
Stenström CM, Jin H, et al. Codon bias at the 3'-side of the initiation codon is correlated with translation initiation efficiency in Escherichia coli[J]. Gene, 2001, 263(1/2):273-284.
doi: 10.1016/S0378-1119(00)00550-3 URL |
[47] |
Obrig TG, Culp WJ, McKeehan WL, et al. The mechanism by which cycloheximide and related glutarimide antibiotics inhibit peptide synthesis on reticulocyte ribosomes[J]. J Biol Chem, 1971, 246(1):174-181.
pmid: 5541758 |
[48] |
Nielsen KH, Szamecz B, Valásek L, et al. Functions of eIF3 downstream of 48S assembly impact AUG recognition and GCN4 translational control[J]. EMBO J, 2004, 23(5):1166-1177.
pmid: 14976554 |
[49] |
Nelson PT, Hatzigeorgiou AG, Mourelatos Z. miRNP:mRNA association in polyribosomes in a human neuronal cell line[J]. RNA, 2004, 10(3):387-394.
pmid: 14970384 |
[50] |
Shenton D, Smirnova JB, Selley JN, et al. Global translational responses to oxidative stress impact upon multiple levels of protein synthesis[J]. J Biol Chem, 2006, 281(39):29011-29021.
doi: 10.1074/jbc.M601545200 pmid: 16849329 |
[51] |
Smirnova JB, Selley JN, Sanchez-Cabo F, et al. Global gene expression profiling reveals widespread yet distinctive translational responses to different eukaryotic translation initiation factor 2B-targeting stress pathways[J]. Mol Cell Biol, 2005, 25(21):9340-9349.
doi: 10.1128/MCB.25.21.9340-9349.2005 pmid: 16227585 |
[52] |
MacKay VL, Li XH, Flory MR, et al. Gene expression analyzed by high-resolution state array analysis and quantitative proteomics:response of yeast to mating pheromone[J]. Mol Cell Proteomics, 2004, 3(5):478-489.
doi: 10.1074/mcp.M300129-MCP200 URL |
[53] |
Arava Y, Wang YL, Storey JD, et al. Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae[J]. Proc Natl Acad Sci USA, 2003, 100(7):3889-3894.
doi: 10.1073/pnas.0635171100 URL |
[54] |
Mašek T, Valášek L, Pospíšek M. Polysome analysis and RNA purification from sucrose gradients[J]. Methods Mol Biol, 2011, 703:293-309.
doi: 10.1007/978-1-59745-248-9_20 pmid: 21125498 |
[55] |
Spangenberg L, Shigunov P, Abud APR, et al. Polysome profiling shows extensive posttranscriptional regulation during human adipocyte stem cell differentiation into adipocytes[J]. Stem Cell Res, 2013, 11(2):902-912.
doi: 10.1016/j.scr.2013.06.002 pmid: 23845413 |
[56] | Chassé H, Boulben S, et al. Analysis of translation using polysome profiling[J]. Nucleic Acids Res, 2017, 45(3):e15. |
[57] |
Polenkowski M, Burbano de Lara S, et al. Identification of novel micropeptides derived from hepatocellular carcinoma-specific long noncoding RNA[J]. Int J Mol Sci, 2021, 23(1):58.
doi: 10.3390/ijms23010058 URL |
[58] |
Tian XJ, Qin Z, Zhao Y, et al. Stress Granule-associated TaMBF1c confers thermotolerance through regulating specific mRNA translation in wheat(Triticum aestivum)[J]. New Phytol, 2022, 233(4):1719-1731.
doi: 10.1111/nph.17865 URL |
[59] |
Thermann R, Hentze MW. Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation[J]. Nature, 2007, 447(7146):875-878.
doi: 10.1038/nature05878 URL |
[60] |
Morello LG, Hesling C, Coltri PP, et al. The NIP7 protein is required for accurate pre-rRNA processing in human cells[J]. Nucleic Acids Res, 2011, 39(2):648-665.
doi: 10.1093/nar/gkq758 pmid: 20798176 |
[61] |
Zhang G, Hubalewska M, Ignatova Z. Transient ribosomal attenuation coordinates protein synthesis and co-translational folding[J]. Nat Struct Mol Biol, 2009, 16(3):274-280.
doi: 10.1038/nsmb.1554 pmid: 19198590 |
[62] |
魏康宁, 崔俊霞, 等. 翻译组研究技术进展[J]. 生物技术通报, 2019, 35(7):222-229.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0006 URL |
Wei KN, Cui JX, et al. Advances in the techniques of studying translatome[J]. Biotechnol Bull, 2019, 35(7):222-229. | |
[63] |
Luo ZP, Hu HL, Liu SQ, et al. Comprehensive analysis of the translatome reveals the relationship between the translational and transcriptional control in high fat diet-induced liver steatosis[J]. RNA Biol, 2021, 18(6):863-874.
doi: 10.1080/15476286.2020.1827193 URL |
[64] |
Zhang ML, Zhao K, Xu XP, et al. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma[J]. Nat Commun, 2018, 9(1):4475.
doi: 10.1038/s41467-018-06862-2 pmid: 30367041 |
[65] |
Ingolia NT, Ghaemmaghami S, Newman JRS, et al. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling[J]. Science, 2009, 324(5924):218-223.
doi: 10.1126/science.1168978 pmid: 19213877 |
[66] |
Ingolia NT. Ribosome footprint profiling of translation throughout the genome[J]. Cell, 2016, 165(1):22-33.
doi: S0092-8674(16)30216-1 pmid: 27015305 |
[67] |
Pelechano V, Wei W, Steinmetz LM. Widespread co-translational RNA decay reveals ribosome dynamics[J]. Cell, 2015, 161(6):1400-1412.
doi: 10.1016/j.cell.2015.05.008 pmid: 26046441 |
[68] |
Sotta N, Chiba Y, et al. Translational landscape of a C4 plant, Sorghum bicolor, under normal and sulfur deficient conditions[J]. Plant Cell Physiol, 2022. DOI:10.1093/pcp/pcac023.
doi: 10.1093/pcp/pcac023 URL |
[69] |
van't Spijker HM, Stackpole EE, Almeida S, et al. Ribosome profiling reveals novel regulation of C9ORF72 GGGGCC repeat-containing RNA translation[J]. RNA, 2022, 28(2):123-138.
doi: 10.1261/rna.078963.121 URL |
[70] |
Terenin IM, Akulich KA, Andreev DE, et al. Sliding of a 43S ribosomal complex from the recognized AUG codon triggered by a delay in eIF2-bound GTP hydrolysis[J]. Nucleic Acids Res, 2016, 44(4):1882-1893.
doi: 10.1093/nar/gkv1514 pmid: 26717981 |
[71] |
Heiman M, Kulicke R, Fenster RJ, et al. Cell type-specific mRNA purification by translating ribosome affinity purification(TRAP)[J]. Nat Protoc, 2014, 9(6):1282-1291.
doi: 10.1038/nprot.2014.085 URL |
[72] |
Corbacho J, Sanabria-Reinoso E, Buono L, et al. Trap-TRAP, a versatile tool for tissue-specific translatomics in zebrafish[J]. Front Cell Dev Biol, 2022, 9:817191.
doi: 10.3389/fcell.2021.817191 URL |
[1] | WEN Xiao-lei, LI Jian-yuan, LI Na, ZHANG Na, YANG Wen-xiang. Construction and Utilization of Yeast Two-hybrid cDNA Library of Wheat Interacted by Puccinia triticina [J]. Biotechnology Bulletin, 2023, 39(9): 136-146. |
[2] | GUO Shao-hua, MAO Hui-li, LIU Zheng-quan, FU Mei-yuan, ZHAO Ping-yuan, MA Wen-bo, LI Xu-dong, GUAN Jian-yi. Whole Genome Sequencing and Comparative Genome Analysis of a Fish-derived Pathogenic Aeromonas Hydrophila Strain XDMG [J]. Biotechnology Bulletin, 2023, 39(8): 291-306. |
[3] | LI Tuo, LI Long-ping, QU Lei. Research Progress in the Structure of Tailed Bacteriophage and Its Receptors [J]. Biotechnology Bulletin, 2023, 39(6): 88-101. |
[4] | QIAN Bang, LIU Zhen-dong, ZHAO Yin, LI Jing, PRAJAPATI Meera, LI Yan-min, SUN Yue-feng, DOU Yong-xi. Establishment of Chemiluminescence Immunoassay for the Detection of Peste des Petits Ruminants Virus H Protein Antibodies [J]. Biotechnology Bulletin, 2023, 39(5): 120-129. |
[5] | CHEN Xiao-meng, ZHANG Xue-jing, ZHANG Huan, ZHANG Bao-jiang, SU Yan. Prokaryotic Expression of Recombinant Bovine Mastitis Staphylococcus aureus GapC Protein and Identification of Its B-cell Epitopes [J]. Biotechnology Bulletin, 2023, 39(5): 306-313. |
[6] | YU Hui-li, LI Ai-tao. Application of Cytochrome P450 in the Biosynthesis of Flavors and Fragrances [J]. Biotechnology Bulletin, 2023, 39(4): 24-37. |
[7] | WANG Yi-qing, WANG Tao, WEI Chao-ling, DAI Hao-min, CAO Shi-xian, SUN Wei-jiang, ZENG Wen. Identification and Interaction Analysis of SMAS Gene Family in Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(4): 246-258. |
[8] | HOU Xiao-yuan, CHE Zheng-zheng, LI Heng-jing, DU Chong-yu, XU Qian, WANG Qun-qing. Construction of the Soybean Membrane System cDNA Library and Interaction Proteins Screening for Effector PsAvr3a [J]. Biotechnology Bulletin, 2023, 39(4): 268-276. |
[9] | WANG Mu-qiang, CHEN Qi, MA Wei, LI Chun-xiu, OUYANG Peng-fei, XU Jian-he. Advances in the Application of Machine Learning Methods for Directed Evolution of Enzymes [J]. Biotechnology Bulletin, 2023, 39(4): 38-48. |
[10] | WANG Tao, QI Si-yu, WEI Chao-ling, WANG Yi-qing, DAI Hao-min, ZHOU Zhe, CAO Shi-xian, ZENG Wen, SUN Wei-jiang. Expression Analysis and Interaction Protein Validation of CsPPR and CsCPN60-like in Albino Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(3): 218-231. |
[11] | DU Qing-jie, ZHOU Lu-yao, YANG Si-zhen, ZHANG Jia-xin, CHEN Chun-lin, LI Juan-qi, LI Meng, ZHAO Shi-wen, XIAO Huai-juan, WANG Ji-qing. Overexpression of CaCP1 Enhances Salt Stress Sensibility in Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(2): 172-182. |
[12] | SA Shi-juan, WU Han-yu, WEN Yuan, CHEN Xue-na, ZHENG Rui, YAO Xin-ling. Responses of Choloroplast Specific Protein Profile to Different Stomatal Densities in Nicotiana benthamiana [J]. Biotechnology Bulletin, 2023, 39(2): 193-202. |
[13] | ZHANG Xiao-yan, YANG Shu-hua, DING Yang-lin. Molecular Mechanism of Cold Signal Perception and Transduction in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 28-35. |
[14] | HUANG Jia-yan, FENG Xiao-yan, SHEN Lin-bo, WANG Wen-zhi, HU Hai-yan, ZHANG Shu-zhen. Cloning of Sugarcane ShPR10 Gene and Study on the Interaction Between ShPR10 Protein and P1 Protein Encoded by Sugarcane Streak Mosaic Virus [J]. Biotechnology Bulletin, 2023, 39(10): 163-174. |
[15] | GUO Wen-bo, LU Yang, SUI Li, ZHAO Yu, ZOU Xiao-wei, ZHANG Zheng-kun, LI Qi-yun. Preparation and Application of Polyclonal Antibodies Against Beauveria bassiana Mycovirus BbPmV-4 Coat Protein [J]. Biotechnology Bulletin, 2023, 39(10): 58-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||