Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (1): 84-94.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0473
Previous Articles Next Articles
JIN Yun-qian1,3(), WANG Bin1, GUO Shu-lei2, ZHAO Lin-xi1, HAN Zan-ping1()
Received:
2022-04-15
Online:
2023-01-26
Published:
2023-02-02
Contact:
HAN Zan-ping
E-mail:jyq920422@163.com;hnlyhzp@163.com
JIN Yun-qian, WANG Bin, GUO Shu-lei, ZHAO Lin-xi, HAN Zan-ping. Research Progress in Gibberellin Regulation on Maize Seed Vigor[J]. Biotechnology Bulletin, 2023, 39(1): 84-94.
Fig. 1 Biosynthesis of gibberellin(GA) 2ox: GA2-oxidase. 3ox: GA3-oxidase. 13ox: GA13-oxidase. 20ox: GA20-oxidase. GGDP: Geranylgeranyl diphosphate. CPS: Ent-copalyl diphosphate synthase. KS: Ent-kaurene synthase. KO: Ent-kaurene oxidase. KAO: Ent-kaurenoic acid oxidase
Fig. 2 Signal transduction of gibberellin(GA) A: When GA concentration is increasing, GA binds to GID1, GA is enclosed in GID1 by GIDI, and then binds to DELLA protein, prompting DELLA protein to be activated and degraded by SCF, and finally GA signal is released to play A physiological promoting role. B: When GA concentration is decreasing, GID1 does not bind to GA, DELLA protein inhibits GA signal transduction, and GA signal is inhibited
[1] | 路立平, 赵化春, 赵娜, 等. 世界玉米产业现状及发展前景[J]. 玉米科学, 2006, 14(5): 149-151, 156. |
Lu LP, Zhao HC, Zhao N, et al. Status and development prospects of the world's corn industry[J]. J Maize Sci, 2006, 14(5): 149-151, 156. | |
[2] | 陈秀兰, 王兴旺. 中美玉米消费结构比较研究[J]. 世界农业, 2016(6): 109-114. |
Chen XL, Wang XW. Comparative study on corn consumption structure between China and American[J]. World Agric, 2016(6): 109-114. | |
[3] | 王济学, 郭军平, 黄福海. 中国玉米供求趋势[J]. 粮食与饲料工业, 2021(2): 1-4. |
Wang JX, Guo JP, Huang FH. The supply and demand trend of corn in China[J]. Cereal Feed Ind, 2021(2): 1-4. | |
[4] | 王延琴, 陆许可. 棉花种子检验实务[M]. 北京: 中国农业出版社, 2018. |
Wang YQ, Lu XK. Practice of cotton seed inspection[M]. Beijing: Chinese Agriculture Press, 2018. | |
[5] | 张红生, 胡晋. 种子学[M]. 北京: 科学出版社, 2010. |
Zhang HS, Hu J. Seed science[M]. Beijing: Science Press, 2010. | |
[6] | 李巧峡, 张丽, 王玉, 等. 赤霉素调控植物开花及花器官发育的研究进展[J]. 中国细胞生物学学报, 2019, 41(4): 746-758. |
Li QX, Zhang L, Wang Y, et al. The research progress of gibberellin on the regulation of flowering and floral organ development in plant[J]. Chin J Cell Biol, 2019, 41(4): 746-758. | |
[7] | 颜启传. 种子学[M]. 北京: 中国农业出版社2010. |
Yan QC. Seed science[M]. Beijing: China Agriculture Press, 2010. | |
[8] | 潘瑞炽. 植物生理学[M]. 6版. 北京: 高等教育出版社, 2008. |
Pan RC. Plant physiology[M]. 6th ed. Beijing: Higher Education Press, 2008. | |
[9] |
Yamaguchi S. Gibberellin metabolism and its regulation[J]. Annu Rev Plant Biol, 2008, 59:225-251.
doi: 10.1146/annurev.arplant.59.032607.092804 pmid: 18173378 |
[10] | 李强, 吴建明, 梁和, 等. 高等植物赤霉素生物合成及其信号转导途径[J]. 生物技术通报, 2014(10): 16-22. |
Li Q, Wu JM, Liang H, et al. Gibberellins biosynthesis and signaling transduction pathway in higher plant[J]. Biotechnol Bull, 2014(10): 16-22. | |
[11] |
Appleford NEJ, Evans DJ, Lenton JR, et al. Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat[J]. Planta, 2006, 223(3): 568-582.
doi: 10.1007/s00425-005-0104-0 pmid: 16160850 |
[12] |
Chen Y, Hou MM, Liu LJ, et al. The maize DWARF1 encodes a gibberellin 3-oxidase and is dual localized to the nucleus and cytosol[J]. Plant Physiol, 2014, 166(4): 2028-2039.
doi: 10.1104/pp.114.247486 pmid: 25341533 |
[13] |
Thomas SG, Phillips AL, Hedden P. Molecular cloning and functional expression of gibberellin 2- oxidases, multifunctional enzymes involved in gibberellin deactivation[J]. PNAS, 1999, 96(8): 4698-4703.
doi: 10.1073/pnas.96.8.4698 pmid: 10200325 |
[14] |
Lee DJ, Zeevaart JAD. Molecular cloning of GA 2-oxidase3 from spinach and its ectopic expression in Nicotiana sylvestris[J]. Plant Physiol, 2005, 138(1): 243-254.
doi: 10.1104/pp.104.056499 URL |
[15] |
Varbanova M, Yamaguchi S, Yang Y, et al. Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2[J]. Plant Cell, 2007, 19(1): 32-45.
doi: 10.1105/tpc.106.044602 pmid: 17220201 |
[16] |
Zhang YY, Zhang BC, Yan DW, et al. Two Arabidopsis cytochrome P450 monooxygenases, CYP714A1 and CYP714A2, function redundantly in plant development through gibberellin deactivation[J]. Plant J, 2011, 67(2): 342-353.
doi: 10.1111/j.1365-313X.2011.04596.x URL |
[17] |
Ueguchi-Tanaka M, Ashikari M, Nakajima M, et al. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin[J]. Nature, 2005, 437(7059): 693-698.
doi: 10.1038/nature04028 URL |
[18] |
Sun TP. The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants[J]. Curr Biol, 2011, 21(9): R338-R345.
doi: 10.1016/j.cub.2011.02.036 URL |
[19] | 黄桃鹏, 李媚娟, 王睿, 等. 赤霉素生物合成及信号转导途径研究进展[J]. 植物生理学报, 2015, 51(8): 1241-1247. |
Huang TP, Li MJ, Wang R, et al. Progress in study of gibberellins biosynthesis and signaling transduction pathway[J]. Plant Physiol J, 2015, 51(8): 1241-1247. | |
[20] |
Dill A, Jung HS, Sun TP. The DELLA motif is essential for gibberellin-induced degradation of RGA[J]. PNAS, 2001, 98(24): 14162-14167.
doi: 10.1073/pnas.251534098 pmid: 11717468 |
[21] |
Park J, Nguyen KT, Park E, et al. DELLA proteins and their interacting RING finger proteins repress gibberellin responses by binding to the promoters of a subset of gibberellin-responsive genes in Arabidopsis[J]. Plant Cell, 2013, 25(3): 927-943.
doi: 10.1105/tpc.112.108951 URL |
[22] |
Chen X, Chang M, Wang B, et al. Cloning of a Ca2+-ATPase gene and the role of cytosolic Ca2+ in the gibberellin-dependent signaling pathway in aleurone cells[J]. Plant J, 1997, 11(3): 363-371.
doi: 10.1046/j.1365-313x.1997.11030363.x pmid: 9107028 |
[23] |
Bastian R, Dawe A, Meier S, et al. Gibberellic acid and cGMP-dependent transcriptional regulation in Arabidopsis thaliana[J]. Plant Signal Behav, 2010, 5(3): 224-232.
doi: 10.4161/psb.5.3.10718 pmid: 20118660 |
[24] |
Yuasa K, Uehara S, et al. Transcriptional regulation of cGMP-dependent protein kinase II(cGK-II)in chondrocytes[J]. Biosci Biotechnol Biochem, 2010, 74(1): 44-49.
doi: 10.1271/bbb.90529 URL |
[25] |
Cho SH, Kang K, Lee SH, et al. OsWOX3A is involved in negative feedback regulation of the gibberellic acid biosynthetic pathway in rice(Oryza sativa)[J]. J Exp Bot, 2016, 67(6): 1677-1687.
doi: 10.1093/jxb/erv559 URL |
[26] | 王振, 邓杰, 高树仁, 等. 老化处理对不同活力玉米种子生理特性的影响[J]. 黑龙江农业科学, 2021(11): 7-12. |
Wang Z, Deng J, Gao SR, et al. Effects of aging treatment on physiological characteristics of maize seeds with different vigor[J]. Heilongjiang Agric Sci, 2021(11): 7-12. | |
[27] | 祁亚淑, 狄红艳, 段继凤. 人工老化对水稻种子活力的影响试验研究[J]. 种子科技, 2021, 39(1): 2-4. |
Qi YS, Di HY, Duan JF. Experimental study on the effect of artificial aging on rice seed vigor[J]. Seed Sci Technol, 2021, 39(1): 2-4. | |
[28] |
邓晓娟, 苏秀娟, 玛依拉·依不拉音, 等. 人工老化和低温胁迫对陆地棉种子活力的影响和评价[J]. 新疆农业科学, 2021, 58(6): 998-1005.
doi: 10.6048/j.issn.1001-4330.2021.06.003 |
Deng XJ, Su XJ, Mayila Y, et al. Effects of artificial aging and low-temperature stress on the vigor of upland cotton seed and relevant evaluation[J]. Xinjiang Agric Sci, 2021, 58(6): 998-1005.
doi: 10.6048/j.issn.1001-4330.2021.06.003 |
|
[29] |
赵凯, 李珊珊, 马倩, 等. 花生种子自然老化对品质及发芽的影响[J]. 核农学报, 2021, 35(2): 490-497.
doi: 10.11869/j.issn.100-8551.2021.02.0490 |
Zhao K, Li SS, Ma Q, et al. Effects of natural aging on quality and germination characteristics of peanut[J]. J Nucl Agric Sci, 2021, 35(2): 490-497.
doi: 10.11869/j.issn.100-8551.2021.02.0490 |
|
[30] | 孙群, 王建华, 孙宝启. 种子活力的生理和遗传机理研究进展[J]. 中国农业科学, 2007, 40(1): 48-53. |
Sun Q, Wang JH, Sun BQ. Advances on seed vigor physiological and genetic mechanisms[J]. Sci Agric Sin, 2007, 40(1): 48-53. | |
[31] |
Jin J, Long WX, Wang LT, et al. QTL mapping of seed vigor of backcross inbred lines derived from Oryza longistaminata under artificial aging[J]. Front Plant Sci, 2018, 9:1909.
doi: 10.3389/fpls.2018.01909 URL |
[32] |
Yuan ZY, Fan K, Xia LF, et al. Genetic dissection of seed storability and validation of candidate gene associated with antioxidant capability in rice(Oryza sativa L.)[J]. Int J Mol Sci, 2019, 20(18): 4442.
doi: 10.3390/ijms20184442 URL |
[33] |
Han ZP, Ku LX, Zhang ZZ, et al. QTLs for seed vigor-related traits identified in maize seeds germinated under artificial aging conditions[J]. PLoS One, 2014, 9(3): e92535.
doi: 10.1371/journal.pone.0092535 URL |
[34] |
Renard J, Niñoles R, Martínez-Almonacid I, et al. Identification of novel seed longevity genes related to oxidative stress and seed coat by genome-wide association studies and reverse genetics[J]. Plant Cell Environ, 2020, 43(10): 2523-2539.
doi: 10.1111/pce.13822 URL |
[35] | Li L, Wang F, Li XH, et al. Comparative analysis of the accelerated aged seed transcriptome profiles of two maize chromosome segment substitution lines[J]. PLoS One, 2019, 14(11): e0216977. |
[36] |
Gong SM, Ding YF, Huang SX, et al. Identification of miRNAs and their target genes associated with sweet corn seed vigor by combined small RNA and degradome sequencing[J]. J Agric Food Chem, 2015, 63(22): 5485-5491.
doi: 10.1021/acs.jafc.5b00522 URL |
[37] | 徐妍, 李政达, 张婧文, 等. 赤霉素对植物生长的调控效应[J]. 农业开发与装备, 2022(4): 125-126. |
Xu Y, Li ZD, Zhang JW, et al. Regulation effect of gibberellin on plant growth[J]. Agric Dev Equip, 2022(4): 125-126. | |
[38] | 邢瑞霞, 朱金洁, 祁显涛, 等. 玉米开花期调控机制研究进展[J]. 安徽农业科学, 2022, 50(9): 23-26, 29. |
Xing RX, Zhu JJ, Qi XT, et al. Research progress on the regulation mechanism of maize flowering period[J]. J Anhui Agric Sci, 2022, 50(9): 23-26, 29. | |
[39] | 黎家, 李传友. 新中国成立70年来植物激素研究进展[J]. 中国科学:生命科学, 2019, 49(10): 1227-1281. |
Li J, Li CY. Seventy-year major research progress in plant hormones by Chinese scholars[J]. Sci Sin Vitae, 2019, 49(10): 1227-1281. | |
[40] | 王改净, 陈亚龙, 赵明君, 等. GA3浸种对玉米种子发芽及生理性状的影响[J]. 种子, 2020, 39(6): 37-42. |
Wang GJ, Chen YL, Zhao MJ, et al. Effects of GA3 soaking on germinationand physiological charateristics of maize(Zea mays L.)seeds[J]. Seed, 2020, 39(6): 37-42. | |
[41] | 刘海艳. 玉米种子活力与赤霉素和脱落酸的关系研究[D]. 郑州: 河南农业大学, 2010. |
Liu HY. Studies on the relationship of gibberellins, abscisic acid and seed vigor in maize[D]. Zhengzhou: Henan Agricultural University, 2010. | |
[42] | 王科翰. 不同浓度赤霉素包衣对甜玉米种子萌发的影响[J]. 农村百事通, 2021(24): 22-23. |
Wang Kh. Effects of different concentrations of gibberellin coating on seed germination of sweet maize[J]. Nongcun Baishitong, 2021(24): 22-23. | |
[43] | 魏晓梅, 吴丽芳, 张龄丹, 等. 植物生长调节剂对玉米及水稻种子活力的影响[J]. 作物研究, 2017, 31(6): 653-658. |
Wei XM, Wu LF, Zhang LD, et al. Effects of plant growth regulator to seed vigor of maize and rice[J]. Crop Res, 2017, 31(6): 653-658. | |
[44] | 左月桃, 王子沐, 焦健, 等. GA3浸种对低温下玉米种胚抗氧化酶及内源激素的影响[J]. 生态学杂志, 2021, 40(5): 1340-1346. |
Zuo YT, Wang ZM, Jiao J, et al. Effects of GA3 seed soaking on antioxidant enzymes and endogenous hormones of maize embryo under low temperature[J]. Chin J Ecol, 2021, 40(5): 1340-1346. | |
[45] | 陈士林, 赵新亮, 卫秀英, 等. 钙和赤霉素对玉米种子活力的影响[J]. 中国农学通报, 2003, 19(4): 64-67. |
Chen SL, Zhao XL, Wei XY, et al. Eeffects of calcium and gibberellin on vigor of seeds of maize[J]. Chin Agric Sci Bull, 2003, 19(4): 64-67. | |
[46] | 孙刚, 曹敏建, 张弘, 等. 赤霉素、PEG对玉米种子活力的影响[J]. 玉米科学, 2013, 21(6): 73-75. |
Sun G, Cao MJ, Zhang H, et al. Effect of gibberellin, PEG on seed vigor of corn[J]. J Maize Sci, 2013, 21(6): 73-75. | |
[47] | 廖尔华, 李红, 孔凡磊, 等. 赤霉素和硝酸镧浸种对杂交玉米种子发芽的影响[J]. 种子, 2015, 34(2): 66-68, 73. |
Liao EH, Li H, Kong FL, et al. Effect of presoaking with gibberellin and lanthanum nitrate on seed germination of hybrid maize seeds[J]. Seed, 2015, 34(2): 66-68, 73. | |
[48] |
White CN, Proebsting WM, Hedden P, et al. Gibberellins and seed development in maize. I. Evidence that gibberellin/abscisic acid balance governs germination versus maturation pathways[J]. Plant Physiol, 2000, 122(4): 1081-1088.
doi: 10.1104/pp.122.4.1081 pmid: 10759503 |
[49] |
Song J, Guo BJ, Song FW, et al. Genome-wide identification of gibberellins metabolic enzyme genes and expression profiling analysis during seed germination in maize[J]. Gene, 2011, 482(1/2): 34-42.
doi: 10.1016/j.gene.2011.05.008 URL |
[50] |
Zheng XK, Hou HL, Zhang H, et al. Histone acetylation is involved in GA-mediated 45S rDNA decondensation in maize aleurone layers[J]. Plant Cell Rep, 2018, 37(1): 115-123.
doi: 10.1007/s00299-017-2207-z pmid: 28939922 |
[51] | Lv HY, Li X, Li H, et al. Gibberellin induced transcription factor bZIP53 regulates CesA1 expression in maize kernels[J]. PLoS One, 2021, 16(3): e0244591. |
[52] |
常博文, 钟鹏, 等. 低温胁迫和赤霉素对花生种子萌发和幼苗生理响应的影响[J]. 作物学报, 2019, 45(1): 118-130.
doi: 10.3724/SP.J.1006.2019.84043 |
Chang BW, Zhong P, et al. Effect of low-temperature stress and gibberellin on seed germination and seedling physiological responses in peanut[J]. Acta Agron Sin, 2019, 45(1): 118-130.
doi: 10.3724/SP.J.1006.2019.84043 URL |
|
[53] | 屈旭, 焦禹顺, 王仁汉, 等. 赤霉素和复硝酚钠对辣椒种子萌发及幼苗活力的影响[J]. 中国瓜菜, 2019, 32(11): 59-63. |
Qu X, Jiao YS, Wang RH, et al. Effects of gibberellin and sodium nitrophenolate on seed germination and seedling vigor of pepper[J]. China Cucurbits Veg, 2019, 32(11): 59-63. | |
[54] | 朱丽伟. 杂交水稻种子成熟过程活力、生理生化和耐藏力的变化及脱水剂应用效果的研究[D]. 杭州: 浙江大学, 2015. |
Zhu LW. Changes of vigor, physiology, biochemistry and storability during hybrid rice seed maturity and the effect of dehydrating agent application[D]. Hangzhou: Zhejiang University, 2015. | |
[55] | 余晓丛, 李莹莹, 等. 一种利用赤霉素浸种提高草坪草萌发对盐胁迫抗性的方法:CN112567925A[P]. 2021-03-30. |
Yu XC, Li YY, et al. Method for improving salt stress resistance of turfgrass germination by soaking seeds with gibberellin:CN112567925A[P]. 2021-03-30. | |
[56] |
Fan S, Zhang D, Zhang LZ, et al. Comprehensive analysis of GASA family members in the Malus domestica genome:identification, characterization, and their expressions in response to apple flower induction[J]. BMC Genomics, 2017, 18(1): 827.
doi: 10.1186/s12864-017-4213-5 URL |
[57] | 毛家旺, 杨艳华, 陈克平, 等. 植物激素与microRNA调控种子大小和发育的分子机制研究进展[J]. 植物生理学报, 2021, 57(2): 274-292. |
Mao JW, Yang YH, Chen KP, et al. Research progress in molecular mechanisms of plant hormone and microRNA regulating seed size and development[J]. Plant Physiol J, 2021, 57(2): 274-292.
doi: 10.1104/pp.57.2.274 URL |
|
[58] | 石鹏, 王永, 张大鹏. 赤霉素调控林木生长发育的研究进展[J]. 江西农业学报, 2021, 33(2): 33-41. |
Shi P, Wang Y, Zhang DP. Advances in gibberellins regulating growth and development of tree[J]. Acta Agric Jiangxi, 2021, 33(2): 33-41. | |
[59] | 张运城. 针叶树赤霉素受体GID1的克隆与功能分析[D]. 北京: 北京林业大学, 2015. |
Zhang YC. The cloning and functional analysis of GA receptor GID1 in conifers[D]. Beijing: Beijing Forestry University, 2015. | |
[60] |
Li B, Zhang P, Wang FD, et al. Integrated analysis of the transcriptome and metabolome revealed candidate genes involved in GA 3-induced dormancy release in Leymus chinensis seeds[J]. Int J Mol Sci, 2021, 22(8): 4161.
doi: 10.3390/ijms22084161 URL |
[61] |
Pearce S, Saville R, Vaughan SP, et al. Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat[J]. Plant Physiol, 2011, 157(4): 1820-1831.
doi: 10.1104/pp.111.183657 pmid: 22013218 |
[62] | 李毅丹, 单晓辉. 赤霉素代谢调控与绿色革命[J]. 生物技术通报, 2022, 38(2): 195-204. |
Li YD, Shan XH. Gibberellin metabolism regulation and green revolution[J]. Biotechnol Bull, 2022, 38(2): 195-204. | |
[63] |
Sarnowska EA, Rolicka AT, Bucior E, et al. DELLA-interacting SWI3C core subunit of switch/sucrose nonfermenting chromatin remodeling complex modulates gibberellin responses and hormonal cross talk in Arabidopsis[J]. Plant Physiol, 2013, 163(1): 305-317.
doi: 10.1104/pp.113.223933 pmid: 23893173 |
[64] |
杨立文, 刘双荣, 林荣呈. 光信号与激素调控种子休眠和萌发研究进展[J]. 植物学报, 2019, 54(5): 569-581.
doi: 10.11983/CBB19038 |
Yang LW, Liu SR, Lin RC. Advances in light and hormones in regulating seed dormancy and germination[J]. Chin Bull Bot, 2019, 54(5): 569-581. | |
[65] |
Spielmeyer W, Ellis MH, Chandler PM. Semidwarf(sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene[J]. PNAS, 2002, 99(13): 9043-9048.
doi: 10.1073/pnas.132266399 pmid: 12077303 |
[66] | Wang YJ, Deng DX, Ding HD, et al. Gibberellin biosynthetic deficiency is responsible for maize dominant Dwarf11(D11)mutant phenotype:physiological and transcriptomic evidence[J]. PLoS One, 2013, 8(6): e66466. |
[67] |
Chen ZQ, Liu Y, Yin YJ, et al. Development of dwarfish and yield-effective GM maize through passivation of bioactive gibberellin[J]. Transgenic Res, 2019, 28(5/6): 589-599.
doi: 10.1007/s11248-019-00172-z URL |
[1] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[2] | WANG Bao-bao, WANG Hai-yang. Molecular Design of Ideal Plant Architecture for High-density Tolerance of Maize Plant [J]. Biotechnology Bulletin, 2023, 39(8): 11-30. |
[3] | LI Bo, LIU He-xia, CHEN Yu-ling, ZHOU Xing-wen, ZHU Yu-lin. Cloning, Subcellular Localization and Expression Analysis of CnbHLH79 Transcription Factor from Camellia nitidissima [J]. Biotechnology Bulletin, 2023, 39(8): 241-250. |
[4] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
[5] | LENG Yan, MA Xiao-wei, CHEN Guang, REN He, LI Xiang. High-yield Contests in Maize Facilitate the Vitalization of China’s Seed Industry [J]. Biotechnology Bulletin, 2023, 39(8): 4-10. |
[6] | WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding [J]. Biotechnology Bulletin, 2023, 39(8): 43-51. |
[7] | LIU Yue-e, XU Tian-jun, CAI Wan-tao, LYU Tian-fang, ZHANG Yong, XUE Hong-he, WANG Rong-huan, ZHAO Jiu-ran. Current Status and Prospects of Maize Super High Yield Research in China [J]. Biotechnology Bulletin, 2023, 39(8): 52-61. |
[8] | YE Yun-fang, TIAN Qing-yin, SHI Ting-ting, WANG Liang, YUE Yuan-zheng, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Biosynthesis and Regulation of β-ionone in Plants [J]. Biotechnology Bulletin, 2023, 39(8): 91-105. |
[9] | WEI Xi-ya, QIN Zhong-wei, LIANG La-mei, LIN Xin-qi, LI Ying-zhi. Mechanism of Melatonin Seed Priming in Improving Salt Tolerance of Capsicum annuum [J]. Biotechnology Bulletin, 2023, 39(7): 160-172. |
[10] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[11] | LI Ying, YUE Xiang-hua. Application of DNA Methylation in Interpreting Natural Variation in Moso Bamboo [J]. Biotechnology Bulletin, 2023, 39(7): 48-55. |
[12] | CHENG Ting, YUAN Shuai, ZHANG Xiao-yuan, LIN Liang-cai, LI Xin, ZHANG Cui-ying. Research Progress in the Regulation of Isobutanol Synthesis Pathway in Saccharomyces cerevisiae [J]. Biotechnology Bulletin, 2023, 39(7): 80-90. |
[13] | ZHU Shao-xi, JIN Zhao-yang, GE Jian-rong, WANG Rui, WANG Feng-ge, LU Yun-cai. High-throughput Specific Detection Methods for Transgenic Maize Based on the KASP Platform [J]. Biotechnology Bulletin, 2023, 39(6): 133-140. |
[14] | ZHANG He-chen, YUAN Xin, GAO Jie, WANG Xiao-chen, WANG Hui-juan, LI Yan-min, WANG Li-min, FU Zhen-zhu, LI Bao-yin. Mechanism of Flower Petal Coloration and Molecular Breeding [J]. Biotechnology Bulletin, 2023, 39(5): 23-31. |
[15] | SHI Jian-lei, ZAI Wen-shan, SU Shi-wen, FU Cun-nian, XIONG Zi-li. Identification and Expression Analysis of miRNA Related to Bacterial Wilt Resistance in Tomato [J]. Biotechnology Bulletin, 2023, 39(5): 233-242. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||