Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (9): 47-58.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0695
Previous Articles Next Articles
RUAN Zi-han1,2(), HUANG An-xiong1,2, WANG Xiu-juan1,2, HUANG Ling-li1,2, HAO Hai-hong1,2,3,4()
Received:
2022-06-06
Online:
2022-09-26
Published:
2022-10-11
Contact:
HAO Hai-hong
E-mail:ruanzh1998@163.com;haohaihong@mail.hzau.edu.cn
RUAN Zi-han, HUANG An-xiong, WANG Xiu-juan, HUANG Ling-li, HAO Hai-hong. Overview of CLSI,EUCAST,and Susceptibility Breakpoints in China[J]. Biotechnology Bulletin, 2022, 38(9): 47-58.
委员会 Committee | 职责 Responsibility | 主要文件 Main documents |
---|---|---|
抗菌药物敏感性试验(AST)小组委员会Antimicrobial Susceptibility Testing(AST)Subcommittee | 为实验室提供信息,使其为临床医生选择适当的抗菌治疗提供建议Provide the laboratory with information to advise the clinician on the choice of appropriate antimicrobial therapy | M100、M23、M11、M07、M02 |
抗真菌药物敏感性试验委员会Antifungal Susceptibility Testing Subcommittee | 制定标准和指南,促进准确的抗真菌药物敏感性试验和适当的报告Develop standards and guidelines to facilitate accurate antifungal susceptibility testing and appropriate reporting | M54、M59、M60、M61 |
兽用抗菌药物敏感性试验(VAST)委员会Veterinary Antimicrobial Susceptibility Testing(VAST) | VAST小组委员会合作制定标准和指南,确保准确的抗菌药物敏感性试验和适当的报告The VAST subcommittee collaborated to develop standards and guidelines to ensure accurate antimicrobial susceptibility testing and appropriate reporting | VET01、VET01S、VET03 |
Table 1 CLSI main committee information
委员会 Committee | 职责 Responsibility | 主要文件 Main documents |
---|---|---|
抗菌药物敏感性试验(AST)小组委员会Antimicrobial Susceptibility Testing(AST)Subcommittee | 为实验室提供信息,使其为临床医生选择适当的抗菌治疗提供建议Provide the laboratory with information to advise the clinician on the choice of appropriate antimicrobial therapy | M100、M23、M11、M07、M02 |
抗真菌药物敏感性试验委员会Antifungal Susceptibility Testing Subcommittee | 制定标准和指南,促进准确的抗真菌药物敏感性试验和适当的报告Develop standards and guidelines to facilitate accurate antifungal susceptibility testing and appropriate reporting | M54、M59、M60、M61 |
兽用抗菌药物敏感性试验(VAST)委员会Veterinary Antimicrobial Susceptibility Testing(VAST) | VAST小组委员会合作制定标准和指南,确保准确的抗菌药物敏感性试验和适当的报告The VAST subcommittee collaborated to develop standards and guidelines to ensure accurate antimicrobial susceptibility testing and appropriate reporting | VET01、VET01S、VET03 |
抗菌药物类别 Class of antibiotics | 抗菌药物 Antibiotic |
---|---|
氨基糖苷类Aminoglycosides | 卡那霉素,阿米卡星,链霉素Kanamycin,Amikacin,Streptomycin |
大环内酯类Macrolides | 红霉素Erythromycin |
叶酸途径抑制剂Folic acid pathway inhibitor | 磺胺类药物、甲氧苄氨Sulfonamides,Trimethoprim |
糖肽类Glycopeptides | 万古霉素、替考拉宁Vancomycin,Teicoplanin |
其他Others | 氟苯尼考,呋喃妥因、黏菌素、夫西地酸、利福平、甲硝唑Flufenicol,Nitrofurantoin,Colistin,Fusidic Acid,Rifampicin,Metronidazole |
Table 2 Antibiotics while no animal-specific breakpoints have been established
抗菌药物类别 Class of antibiotics | 抗菌药物 Antibiotic |
---|---|
氨基糖苷类Aminoglycosides | 卡那霉素,阿米卡星,链霉素Kanamycin,Amikacin,Streptomycin |
大环内酯类Macrolides | 红霉素Erythromycin |
叶酸途径抑制剂Folic acid pathway inhibitor | 磺胺类药物、甲氧苄氨Sulfonamides,Trimethoprim |
糖肽类Glycopeptides | 万古霉素、替考拉宁Vancomycin,Teicoplanin |
其他Others | 氟苯尼考,呋喃妥因、黏菌素、夫西地酸、利福平、甲硝唑Flufenicol,Nitrofurantoin,Colistin,Fusidic Acid,Rifampicin,Metronidazole |
微生物Microorganism | 抗菌药物Antibacterial agent | MIC折点 MIC breakpoints/(μg·mL-1) | 抑菌圈直径折点Zone diameter breakpoints /mm | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CLSI | EUCAST | CLSI | EUCAST | ||||||||
S≤ | I | R≥ | S≤ | R> | S≥ | I | R≤ | S≥ | R< | ||
肠杆菌Enterobacterium | 哌拉西林Iperacillin | 16 | 32-64 | 128 | 8 | 8 | 17 | 14-16 | 16 | 20 | 20 |
强力霉素Oxycycline | 4 | 8 | 16 | - | - | 14 | 11-13 | 10 | - | - | |
左氧氟沙星Levofloxacin | 0.12 | 0.25-1 | 2 | 0.5 | 1 | - | - | - | 23 | 19 | |
葡萄球菌 Staphylococcus spp. | 氧氟沙星Ofloxacin | 1a | 2a | 4a | 0.001b/0.001c | 1 b/1 c | 21a | 16-20a | 21a | 50 b/50 c | 21 b/24 c |
左氧氟沙星Levofloxacin | 1a | 2a | 4a | 0.001 b/0.001c | 1 b/1 c | 19a | 16-18a | 15a | 50 b/50 c | 22 b/24 c | |
肺炎链球菌 Streptococcus neumoniae | 左氧氟沙星Levofloxacin | 2 | 4 | 8 | 0.001 | 2 | 17 | 14-16 | 13 | 50 | 16 |
万古霉素Ancomycin | 1 | - | - | 2 | 2 | 17 | - | - | 16 | 16 | |
厌氧菌 Anaerobic bacteria | 美罗培南Eropenem | 4d | 8 d | 16 d | 1 e | 1 e | NF | NF | NF | 28 e | 28 e |
克林霉Clindamycin | 2 d | 4 d | 8 d | 4 e | 4 e | NF | NF | NF | 10 e | 10 e |
Table 3 Comparison of partial breakpoints established by CLSI and EUCAST
微生物Microorganism | 抗菌药物Antibacterial agent | MIC折点 MIC breakpoints/(μg·mL-1) | 抑菌圈直径折点Zone diameter breakpoints /mm | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CLSI | EUCAST | CLSI | EUCAST | ||||||||
S≤ | I | R≥ | S≤ | R> | S≥ | I | R≤ | S≥ | R< | ||
肠杆菌Enterobacterium | 哌拉西林Iperacillin | 16 | 32-64 | 128 | 8 | 8 | 17 | 14-16 | 16 | 20 | 20 |
强力霉素Oxycycline | 4 | 8 | 16 | - | - | 14 | 11-13 | 10 | - | - | |
左氧氟沙星Levofloxacin | 0.12 | 0.25-1 | 2 | 0.5 | 1 | - | - | - | 23 | 19 | |
葡萄球菌 Staphylococcus spp. | 氧氟沙星Ofloxacin | 1a | 2a | 4a | 0.001b/0.001c | 1 b/1 c | 21a | 16-20a | 21a | 50 b/50 c | 21 b/24 c |
左氧氟沙星Levofloxacin | 1a | 2a | 4a | 0.001 b/0.001c | 1 b/1 c | 19a | 16-18a | 15a | 50 b/50 c | 22 b/24 c | |
肺炎链球菌 Streptococcus neumoniae | 左氧氟沙星Levofloxacin | 2 | 4 | 8 | 0.001 | 2 | 17 | 14-16 | 13 | 50 | 16 |
万古霉素Ancomycin | 1 | - | - | 2 | 2 | 17 | - | - | 16 | 16 | |
厌氧菌 Anaerobic bacteria | 美罗培南Eropenem | 4d | 8 d | 16 d | 1 e | 1 e | NF | NF | NF | 28 e | 28 e |
克林霉Clindamycin | 2 d | 4 d | 8 d | 4 e | 4 e | NF | NF | NF | 10 e | 10 e |
Item | CLSI | EUCAST |
---|---|---|
药敏方法-使用的主要培养基Susceptibility methods - major media used | 需氧和兼性厌氧菌:肉汤稀释法、微量肉汤稀释法、纸片扩散法-Mueller-Hinton琼脂和肉汤Aerobic and compatible anaerobes:broth dilution,broth microdilution,and disk diffusion - Mueller-Hinton agar and broth 厌氧菌:琼脂稀释法、微量肉汤稀释法-含添加剂的布氏琼脂、肉汤Anaerobic bacteria:agar dilution,broth microdilution - Brucella agar with additives,and broth | 琼脂稀释法、肉汤稀释法、微量肉汤稀释法、纸片扩散法- Mueller-Hinton琼脂或肉汤Agar dilution,broth dilution,microdilution,disk diffusion - Mueller-Hinton agar or broth |
建立折点所需的参数Parameters required to establish breakpoints | MIC分布,PK/PD,临床和细菌学结果的相关性MIC distribution,PK/PD,correlation of clinical and bacteriological findings | 体外药物特点、PK/PD,临床和细菌学结果的相关性Correlation of in vitro drug characteristics,PK/PD,clinical and bacteriological findings |
接种物Inoculum | 接种物标准:0.5 麦氏标准Inoculum standard:0.5 McFarland standard 接种物制备:肉汤培养法或菌悬液制备法Inoculum preparation:broth culture method or bacterial suspension preparation method | 接种物标准:5×105 CFU/mL inoculum standard:5×105 CFU/mL 接种物制备:菌悬液制备法Inoculum preparation:bacterial suspension preparation |
质控菌株Quality control strains | 美国微生物保藏所收藏的ATCC菌株ATCC strains in American type culture collection | ATCC,来自其他国家保藏中心的菌株ATCC,strains from other national collections |
孵育时间Incubation time | 一般为16-20 h,特殊细菌除外Typically 16-20 h,except for special bacteria | 一般为18-20 h,空肠弯曲菌除外Typically 18-20 h,except for C. jejuni |
Table 4 Comparison of susceptibility test methods for development of susceptibility breakpoints by CLSI and EUCAST
Item | CLSI | EUCAST |
---|---|---|
药敏方法-使用的主要培养基Susceptibility methods - major media used | 需氧和兼性厌氧菌:肉汤稀释法、微量肉汤稀释法、纸片扩散法-Mueller-Hinton琼脂和肉汤Aerobic and compatible anaerobes:broth dilution,broth microdilution,and disk diffusion - Mueller-Hinton agar and broth 厌氧菌:琼脂稀释法、微量肉汤稀释法-含添加剂的布氏琼脂、肉汤Anaerobic bacteria:agar dilution,broth microdilution - Brucella agar with additives,and broth | 琼脂稀释法、肉汤稀释法、微量肉汤稀释法、纸片扩散法- Mueller-Hinton琼脂或肉汤Agar dilution,broth dilution,microdilution,disk diffusion - Mueller-Hinton agar or broth |
建立折点所需的参数Parameters required to establish breakpoints | MIC分布,PK/PD,临床和细菌学结果的相关性MIC distribution,PK/PD,correlation of clinical and bacteriological findings | 体外药物特点、PK/PD,临床和细菌学结果的相关性Correlation of in vitro drug characteristics,PK/PD,clinical and bacteriological findings |
接种物Inoculum | 接种物标准:0.5 麦氏标准Inoculum standard:0.5 McFarland standard 接种物制备:肉汤培养法或菌悬液制备法Inoculum preparation:broth culture method or bacterial suspension preparation method | 接种物标准:5×105 CFU/mL inoculum standard:5×105 CFU/mL 接种物制备:菌悬液制备法Inoculum preparation:bacterial suspension preparation |
质控菌株Quality control strains | 美国微生物保藏所收藏的ATCC菌株ATCC strains in American type culture collection | ATCC,来自其他国家保藏中心的菌株ATCC,strains from other national collections |
孵育时间Incubation time | 一般为16-20 h,特殊细菌除外Typically 16-20 h,except for special bacteria | 一般为18-20 h,空肠弯曲菌除外Typically 18-20 h,except for C. jejuni |
病原菌Pathogenic bacteria | 兽用抗菌药物 Veterinary antimicrobial agents | 折点研究进展Progress in Breakpoint Research | 参考文献References | |||
---|---|---|---|---|---|---|
野生型临界值COWT Wild-type cut-off COWT/(μg·mL-1) | 药效学临界值COPD Pharmacodynamic cut-off/(μg·mL-1) | 临床型临界值COCL clinical cut-off COCL/(μg·mL-1) | 最终确定的折点Finalized breakpoints/(μg·mL-1) | |||
大肠杆菌(鸡)Escherichia coli(avian) | COL | 8 | - | - | - | [ |
APR | 16 | - | - | - | [ | |
DAN | 4 | 0.54 | 4 | 4 | [ | |
0.125 | - | - | - | [ | ||
FFC | 16 | - | - | - | [ | |
大肠杆菌(猪)Escherichia coli(swine) | APR | 32 | - | - | - | [ |
COL | 16 | - | - | - | [ | |
DAN | 8 | 0.03 | - | 8 | [ | |
MEQ | 32 | - | - | - | [ | |
FFC | 16 | - | - | - | [ | |
副猪嗜血杆菌Haemophilus parasuis | AMK | 64 | - | - | - | [ |
APR | 32 | - | - | - | [ | |
GEN | 16 | - | - | - | [ | |
KAN | 32 | - | - | - | [ | |
STR | 64 | - | - | - | [ | |
MIR | 32 | - | - | - | [ | |
DAN | 16 | 0.7 | 0.5 | 16 | [ | |
0.0625 | - | - | - | [ | ||
16 | 0.5 | 0.25 | 16 | [ | ||
PFX | 8 | - | - | - | [ | |
NAL | 4 | - | - | - | [ | |
LOM | 4 | - | - | - | [ | |
LVX | 0.25 | - | - | - | [ | |
CIP | 0.25 | - | - | - | [ | |
MAR | 0.0625 | - | - | - | [ | |
- | 0.5 | - | - | [ | ||
ENR | 0.03125 | - | - | - | [ | |
TYL | 64 | - | - | - | [ | |
TIL | 16 | 1 | - | 16 | [ | |
CTX | 4 | 0.125 | 0.25-4 | 4 | [ | |
0.125 | - | - | - | [ | ||
FEP | 0.5 | - | - | - | [ | |
CEF | - | 0.06 | - | - | [ | |
0.03125 | - | - | - | [ | ||
EFT | 0.5 | - | - | - | [ | |
CEC | 16 | - | - | - | [ | |
CEL | 32 | - | - | - | [ | |
AML | 1 | - | - | - | [ | |
AMP | 1 | - | - | - | [ | |
PEN | 2 | - | - | - | [ | |
OXA | 8 | - | - | - | [ | |
AMC | 0.25 | - | - | - | [ | |
IMP | 0.25 | - | - | - | [ | |
MEM | 0.0625 | - | - | - | [ | |
产气荚膜梭菌(猪)Clostridium Perfringens(swine) | AVI | 0.25 | 8 | 0.125 | 0.25 | [ |
APR | 1024 | - | - | - | [ | |
TIA | 0.5 | - | - | - | [ | |
产气荚膜梭菌(兔)Clostridium Perfringens(lepus) | VAL | 0.5 | 0.25 | - | - | [ |
多杀性巴氏杆菌(猪)Pasteurella Multocida(swine) | TIP | 4 | 0.25 | - | 4 | [ |
TID | 4 | 0.25 | - | 4 | [ | |
沙门菌(猪)Salmonella(swine) | ENR | 2 | 1 | - | 1 | [ |
Table 5 Progress in standard for susceptibility breakpoints of animal-borne pathogens in China
病原菌Pathogenic bacteria | 兽用抗菌药物 Veterinary antimicrobial agents | 折点研究进展Progress in Breakpoint Research | 参考文献References | |||
---|---|---|---|---|---|---|
野生型临界值COWT Wild-type cut-off COWT/(μg·mL-1) | 药效学临界值COPD Pharmacodynamic cut-off/(μg·mL-1) | 临床型临界值COCL clinical cut-off COCL/(μg·mL-1) | 最终确定的折点Finalized breakpoints/(μg·mL-1) | |||
大肠杆菌(鸡)Escherichia coli(avian) | COL | 8 | - | - | - | [ |
APR | 16 | - | - | - | [ | |
DAN | 4 | 0.54 | 4 | 4 | [ | |
0.125 | - | - | - | [ | ||
FFC | 16 | - | - | - | [ | |
大肠杆菌(猪)Escherichia coli(swine) | APR | 32 | - | - | - | [ |
COL | 16 | - | - | - | [ | |
DAN | 8 | 0.03 | - | 8 | [ | |
MEQ | 32 | - | - | - | [ | |
FFC | 16 | - | - | - | [ | |
副猪嗜血杆菌Haemophilus parasuis | AMK | 64 | - | - | - | [ |
APR | 32 | - | - | - | [ | |
GEN | 16 | - | - | - | [ | |
KAN | 32 | - | - | - | [ | |
STR | 64 | - | - | - | [ | |
MIR | 32 | - | - | - | [ | |
DAN | 16 | 0.7 | 0.5 | 16 | [ | |
0.0625 | - | - | - | [ | ||
16 | 0.5 | 0.25 | 16 | [ | ||
PFX | 8 | - | - | - | [ | |
NAL | 4 | - | - | - | [ | |
LOM | 4 | - | - | - | [ | |
LVX | 0.25 | - | - | - | [ | |
CIP | 0.25 | - | - | - | [ | |
MAR | 0.0625 | - | - | - | [ | |
- | 0.5 | - | - | [ | ||
ENR | 0.03125 | - | - | - | [ | |
TYL | 64 | - | - | - | [ | |
TIL | 16 | 1 | - | 16 | [ | |
CTX | 4 | 0.125 | 0.25-4 | 4 | [ | |
0.125 | - | - | - | [ | ||
FEP | 0.5 | - | - | - | [ | |
CEF | - | 0.06 | - | - | [ | |
0.03125 | - | - | - | [ | ||
EFT | 0.5 | - | - | - | [ | |
CEC | 16 | - | - | - | [ | |
CEL | 32 | - | - | - | [ | |
AML | 1 | - | - | - | [ | |
AMP | 1 | - | - | - | [ | |
PEN | 2 | - | - | - | [ | |
OXA | 8 | - | - | - | [ | |
AMC | 0.25 | - | - | - | [ | |
IMP | 0.25 | - | - | - | [ | |
MEM | 0.0625 | - | - | - | [ | |
产气荚膜梭菌(猪)Clostridium Perfringens(swine) | AVI | 0.25 | 8 | 0.125 | 0.25 | [ |
APR | 1024 | - | - | - | [ | |
TIA | 0.5 | - | - | - | [ | |
产气荚膜梭菌(兔)Clostridium Perfringens(lepus) | VAL | 0.5 | 0.25 | - | - | [ |
多杀性巴氏杆菌(猪)Pasteurella Multocida(swine) | TIP | 4 | 0.25 | - | 4 | [ |
TID | 4 | 0.25 | - | 4 | [ | |
沙门菌(猪)Salmonella(swine) | ENR | 2 | 1 | - | 1 | [ |
[1] | Deckert A, Gow S, Rosengren L, et al. Canadian integrated program for antimicrobial resistance surveillance(CIPARS)farm program:results from finisher pig surveillance[J]. Zoonoses Public Heal, 2010, 57:71-84. |
[2] |
Mouton JW. Breakpoints:current practice and future perspectives[J]. Int J Antimicrob Agents, 2002, 19(4):323-331.
doi: 10.1016/S0924-8579(02)00028-6 URL |
[3] | Koeth LM, Leclercq R, Olsson-Liljequist B. Comparison of daptomycin MIC results by DIN, NCCLS, SFM, and SRGA methods for 297 Gram-positive organisms[J]. Int J Antimicrob Agents, 2004, 23(1):17-24. |
[4] | 马苏, 张晶, 杜昕波. 日本兽用抗菌药耐药性监控系统及风险管理[J]. 中国兽药杂志, 2015, 49(05):58-61. |
Ma S, Zhang J, Du XB. The Japanese Veterinary Antimicrobial Resistance Montitoring System and risk management[J]. Chin J Vet Drug, 2015, 49(05):58-61. | |
[5] | EUCAST. Breakpoint tables for interpretation of MICs and zone diameters. Version 12. 0. [S]. The European Committee on Antimicrobial Susceptibility Testing. 2022 |
[6] |
孙康泰, 张建民, 蒋大伟, 等. 我国动物源细菌耐药性的研究进展及防控策略[J]. 中国农业科技导报, 2020, 22(5):1-5.
doi: 10.13304/j.nykjdb.2020.0044 |
Sun KT, Zhang JM, Jiang DW, et al. Progress and countermeasures of antimicrobial resistance of animal origin bacterial pathogens in China[J]. J Agric Sci Technol, 2020, 22(5):1-5. | |
[7] | Gautier-Bouchardon AV. Antimicrobial resistance in Mycoplasma spp[J]. Microbiol Spectr, 2018, 6(4). |
[8] | ChiCAST. 华人抗菌药物敏感性试验委员会[EB]. 2022. http:www.chicast.org. |
ChiCAST. Chinese Committee on Antimicrobial Susceptibility Testing[EB]. 2022, http:www.chicast.org. | |
[9] |
Turnidge J, Paterson DL. Setting and revising antibacterial susceptibility breakpoints[J]. Clin Microbiol Rev, 2007, 20(3):391-408.
pmid: 17630331 |
[10] |
Stass H, Dalhoff A. The integrated use of pharmacokinetic and pharmacodynamic models for the definition of breakpoints[J]. Infection, 2005, 33(Suppl 2):29-35.
doi: 10.1007/s15010-005-8205-z URL |
[11] |
Bywater R, Silley P, Simjee S. Antimicrobial breakpoints-definitions and conflicting requirements[J]. Vet Microbiol, 2006, 118(1-2):158-159.
pmid: 17049760 |
[12] |
Kahlmeter G, Brown DFJ, Goldstein FW, et al. European harmonization of MIC breakpoints for antimicrobial susceptibility testing of bacteria[J]. J Antimicrob Chemother, 2003, 52(2):145-148.
doi: 10.1093/jac/dkg312 URL |
[13] | 杨启文, 朱任媛, 王辉. 药敏试验折点的设定及对临床的指导意义[J]. 内科急危重症杂志, 2010, 16(4):181-183. |
Yang QW, Zhu RY, Wang H. The setting of sensitivity test breakpoint and its clinical guiding significance[J]. J Intern Intensive Med, 2010, 16(4):181-183. | |
[14] |
Giske CG, Turnidge J, Cantón R, et al. Update from the European committee on antimicrobial susceptibility testing(EUCAST)[J]. J Clin Microbiol, 2022, 60(3):e0027621.
doi: 10.1128/jcm.00276-21 URL |
[15] | Wayne PA. Performance standards for antimicrobial susceptibility testing, 32th ed[S]. Clinical and Laboratory Standards Institute, 2022. |
[16] | Wayne PA. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. 5th ed. CLSI supplement VET01S[S]. Clinical and Laboratory Standards Institute, 2020. |
[17] | Wayne PA. Methods for antimicrobial broth dilution and disk susceptibility testing of bacteria isolated from aquatic animals. 2nd ed. CLSI guideline VET03[S]. Clinical and Laboratory Standards Institute, 2020. |
[18] | Wayne PA. Development of in vitro susceptibility testing criteria and quality control parameters for veterinary antimicrobial agents;Approved guideline-third edition. CLSI document VET02-A3[S]. Clinical and Laboratory Standards Institute, 2008. |
[19] | 陈超群, 陈佳莉, 周萱仪, 等. β-内酰胺类药物对副猪嗜血杆菌流行病学临界值的建立及耐药性的测定[J]. 畜牧兽医学报, 2021, 52(11):3234-3245. |
Chen CQ, Chen JL, Zhou XY, et al. Establishment of epidemiological cut-off values and determination of drug resistance of Hae-mophilus parasuis with β-lactam drugs[J]. Acta Vet Zootechnica Sin, 2021, 52(11):3234-3245. | |
[20] | EUCAST. Setting breakpoints for new antimicrobial agents, EUCAST SOP 1. 4[S]. European Committee on Antimicrobial Susceptibility Testing, 2021. |
[21] | Wayne PA. Development of in vitro susceptibility testing criteria and quality control parameters. 5th ed. CLSI guideline M23[S]. Clinical and Laboratory Standards Institute, 2018. |
[22] | 马苏. 我国动物源细菌耐药性监测的现状及趋势[D]. 北京: 中国农业大学, 2015. |
Ma S. The current situation and recent trend of the surveillance system of bacterial atimicrobial resistance in animal origin in China[D]. Beijing: China Agricultural University, 2015. | |
[23] | 袁宗辉, 张苗苗, 戴梦红, 等. 兽药耐药性情况分析及防控建议[J]. 中国兽药杂志, 2012, 46(S1):7-11. |
Yuan ZH, Zhang MM, Dai MH, et al. Analysis of veterinary drug resistance and recommendations for prevention and control[J]. Chin J Vet Drug, 2012, 46(S1):7-11. | |
[24] | 张纯萍, 宋立, 吴辰斌, 等. 我国动物源细菌耐药性监测系统简介[J]. 中国动物检疫, 2017, 34(3):34-38. |
Zhang CP, Song L, Wu CB, et al. Drug resistance surveillance network for zoonotic bacteria in China[J]. China Animal Heal Insp, 2017, 34(3):34-38. | |
[25] | 郭凯旋, 王湘如, 赵月, 等. 我国动物源细菌耐药性监测及预警的研究进展[J]. 中国兽药杂志, 2021, 55(4):79-85. |
Guo KX, Wang XR, Zhao Y, et al. Progress in the research of drug resistance monitoring and early warning system of animal-derived bacteria in China[J]. Chin J Vet Drug, 2021, 55(4):79-85. | |
[26] | 宋立, 范学政, 张纯萍, 等. 我国动物源细菌耐药性数据库的建立与应用[J]. 中国兽药杂志, 2015, 49(8):64-69. |
Song L, Fan XZ, Zhang CP, et al. Development and application of national antimicrobial resistance database of bacterium from animal origin[J]. Chin J Vet Drug, 2015, 49(8):64-69. | |
[27] | 房诗薇, 黄玲利, 谢书宇, 等. 兽用抗菌药耐药判定标准的研究进展[J]. 中国抗生素杂志, 2019, 44(6):667-673. |
Fang SW, Huang LL, Xie SY, et al. Study progress on breakpoints of veterinary antibiotics[J]. Chin J Antibiot, 2019, 44(6):667-673. | |
[28] | 田二杰. 鸡源大肠杆菌对达氟沙星和安普霉素的耐药判定标准研究[D]. 哈尔滨: 东北农业大学, 2019. |
Tian EJ. Establishment of susceptibility breakpoints for danofloxacin and apramycin against Escherichia coli in chickens[D]. Harbin: Northeast Agricultural University, 2019. | |
[29] | 傅嘉莉. 三种动物专用药物在鸡呼吸道源大肠杆菌的流行病学折点的建立[D]. 广州: 华南农业大学, 2018. |
Fu JL. Establishment of epidemiological cut-off values for three animal specific drugs against Escherichia coli from chicken's respiratory tract[D]. Guangzhou: South China Agricultural University, 2018. | |
[30] | 李佳瑞. 安普霉素对猪源大肠杆菌野生型折点及其耐药机制研究[D]. 哈尔滨: 东北农业大学, 2019. |
Li JR. Wild-type cutoff and resistance mechanism of apramycin against swine-derived Escherichia coli[D]. Harbin: Northeast Agricultural University, 2019. | |
[31] |
Zhang RL, Kang YR, Zhang RJ, et al. Occurrence, source, and the fate of antibiotics in mariculture ponds near the Maowei Sea, South China:storm caused the increase of antibiotics usage[J]. Sci Total Environ, 2021, 752:141882.
doi: 10.1016/j.scitotenv.2020.141882 URL |
[32] |
Liu X, Steele JC, Meng XZ. Usage, residue, and human health risk of antibiotics in Chinese aquaculture:a review[J]. Environ Pollut, 2017, 223:161-169.
doi: 10.1016/j.envpol.2017.01.003 URL |
[33] | 陈佳莉, 陈超群, 吴雪, 等. 副猪嗜血杆菌对喹诺酮类药物流行病学临界值的建立[J]. 中国畜牧兽医, 2021, 48(11):4292-4301. |
Chen JL, Chen CQ, Wu X, et al. Establishment of the epidemiological cut-off values of Haemophilus parasuis for quinolones[J]. China Animal Husb & Vet Med, 2021, 48(11):4292-4301. | |
[34] | 米坤, 孙达, 郝海红, 等. 副猪嗜血杆菌对头孢喹肟耐药判定标准的建立[C]. 中国畜牧兽医学会兽医药理毒理学分会第十五次学术讨论会论文集, 2019. |
Mi K, Sun D, Hao HH, et al. Establishment of the standard for the determination of resistance of Haemophilus parasuis to cefquinoxime[C]. Proceedings of the 15th Symposium of the Veterinary Pharmacology and Toxicology Branch of the Chinese Society of Animal Husbandry and Veterinary Medicine, 2019. | |
[35] | 陶梦婷. 沃尼妙林对A型产气荚膜梭菌的半体内药动/药效学研究及敏感性折点测定[D]. 广州: 华南农业大学, 2018. |
Tao MT. Pharmacokinetic/pharmacodynamic relationship and susceptibility breakpoint of valnemulin against Clostridium perfringens in rabbits[D]. Guangzhou: South China Agricultural University, 2018. | |
[36] |
Lei ZX, Liu QY, Qi Y, et al. Optimal regimens and cutoff evaluation of tildipirosin against Pasteurella multocida[J]. Front Pharmacol, 2018, 9:765.
doi: 10.3389/fphar.2018.00765 URL |
[37] | 胡婉君. 黏菌素对鸡源大肠杆菌的野生型折点建立及耐药性的研究[D]. 哈尔滨: 东北农业大学, 2019. |
Hu WJ. Epidemiological cut-off value and resistant characteristics of colistin against Escherichia coli from chickens[D]. Harbin: Northeast Agricultural University, 2019. | |
[38] | 程平. 黏菌素对猪源大肠杆菌野生型折点与体外药效学研究[D]. 哈尔滨: 东北农业大学, 2018. |
Cheng P. Study on the COWT and in vitro pharmacodynamics for colistin against swine-derived Escherichia coli[D]. Harbin: Northeast Agricultural University, 2018. | |
[39] |
Yang Y, Zhang Y, Li J, et al. Susceptibility breakpoint for danofloxacin against swine Escherichia coli[J]. BMC Vet Res, 2019, 15(1):51.
doi: 10.1186/s12917-019-1783-2 URL |
[40] | 何涛. 动物源大肠杆菌对乙酰甲喹和氟苯尼考的敏感性折点及分子耐药机制研究[D]. 北京: 中国农业大学, 2015. |
He T. Study on the susceptible breakpoint and molecular resistance mechanism for mequindox and florfenicol against animal-derived E. coli[D]. Beijing: China Agricultural University, 2015. | |
[41] |
周萱仪, 陆友龙, 陈超群, 等. 氨基糖苷类药物对副猪嗜血杆菌的流行折点[J]. 中国抗生素杂志, 2022. DOI: 10.13461/j.cnki.cja.007257.
doi: 10.13461/j.cnki.cja.007257 |
Zhou XY, Lu YL, Chen CQ, et al. Establishment on aminoglycoside epidemiological cut-off values of Haemophilus parasuis[J]. Chinese Journal of Antibiotics, 2022. DOI: 10.13461/j.cnki.cja.007257.
doi: 10.13461/j.cnki.cja.007257 |
|
[42] | 黄啸, 徐紫慧, 黄玲利, 等. 副猪嗜血杆菌对达氟沙星的耐药判定标准研究[C]. 兰州: 中国畜牧兽医学会兽医药理毒理学分会第十五次学术讨论会, 2019. |
Huang X, Xu ZH, Huang LL, et al. Study on determination criteria of drug resistance of Haemophilus parasuis to dafloxacin[C]. Lanzhou:Proceedings of the 15th Symposium of the Veterinary Pharmacology and Toxicology Branch of the Chinese Society of Animal Husbandry and Veterinary Medicine, 2019. | |
[43] | 徐紫慧. 副猪嗜血杆菌对达氟沙星和泰乐菌素的耐药判定标准研究[D]. 武汉: 华中农业大学, 2018. |
Xu ZH. Establishment of susceptibility breakpoints for danofloxacin and tylosin against Haemophilus parasuis in swine[D]. Wuhan: Huazhong Agricultural University, 2018. | |
[44] |
Xiao X, Sun J, Chen Y, et al. In vitro dynamic pharmacokinetic/pharmacodynamic(PK/PD)modeling and PK/PD cutoff of cefquinome against Haemophilus parasuis[J]. BMC Vet Res, 2015, 11:33.
doi: 10.1186/s12917-015-0343-7 pmid: 25889187 |
[45] |
Zhang P, Hao HH, Li J, et al. The epidemiologic and pharmacodynamic cutoff values of tilmicosin against Haemophilus parasuis[J]. Front Microbiol, 2016, 7:385.
doi: 10.3389/fmicb.2016.00385 pmid: 27047487 |
[46] | 罗讯. 猪产气荚膜梭菌对阿维拉霉素和安普霉素的耐药判定标准研究[D]. 武汉: 华中农业大学, 2018. |
Luo X. Establishment of susceptibility breakpoints standards for avilamycin and apramycin against Clostridium perfringens[D]. Wuhan: Huazhong Agricultural University, 2018. | |
[47] | 冯航. 泰妙菌素对动物源产气荚膜梭菌体外药效学及野生型折点的研究[D]. 杨凌: 西北农林科技大学, 2021. |
Feng H. Study on the wild type cutoff and in vitro pharmacodynamics for tiamulin against animal-derived Clostridium perfrin-gens[D]. Yangling: Northwest A & F University, 2021. | |
[48] | 雷志鑫. 副猪嗜血杆菌对泰地罗新的耐药判定标准和耐药机制研究[D]. 武汉: 华中农业大学, 2018. |
Lei ZX. Resistant breakpoint and mechanism study for Haemophilus parasuis against tildipirosin[D]. Wuhan: Huazhong Agricultural University, 2018. | |
[49] | 潘华芳. 猪沙门菌对恩诺沙星耐药判定标准研究[D]. 武汉: 华中农业大学, 2012. |
Pan HF. Development of enrofloxacin susceptibility breakpoint for Salmonella in pigs[D]. Wuhan: Huazhong Agricultural University, 2012. | |
[50] | Antimicrobial resistance:global report on surveillance[M]. 16rd ed Geneva: World Health Organization, 2014. |
[51] |
Aidara-Kane A, Angulo FJ, Conly JM, et al. World Health Organization(WHO)guidelines on use of medically important antimicrobials in food-producing animals[J]. Antimicrob Resist Infect Control, 2018, 7:7.
doi: 10.1186/s13756-017-0294-9 URL |
[52] |
McEwen SA, Collignon PJ. Antimicrobial resistance:a one health perspective[J]. Microbiol Spectr, 2018, 6(2). doi: 10.1128/microbiolspec.ARBA-0009-2017.
doi: 10.1128/microbiolspec.ARBA-0009-2017 |
[1] | YANG Zhi-xiao, HOU Qian, LIU Guo-quan, LU Zhi-gang, CAO Yi, GOU Jian-yu, WANG Yi, LIN Ying-chao. Responses of Rubisco and Rubisco Activase in Different Resistant Tobacco Strains to Brown Spot Stress [J]. Biotechnology Bulletin, 2023, 39(9): 202-212. |
[2] | FU Yu, JIA Rui-rui, HE He, WANG Liang-gui, YANG Xiu-lian. Growth Differences Among Grafted Seedlings with Two Rootstocks of Catalpa bungei and Comparative Analysis of Transcriptome [J]. Biotechnology Bulletin, 2023, 39(8): 251-261. |
[3] | ZHANG Lu-yang, HAN Wen-long, XU Xiao-wen, YAO Jian, LI Fang-fang, TIAN Xiao-yuan, ZHANG Zhi-qiang. Identification and Expression Analysis of the Tobacco TCP Gene Family [J]. Biotechnology Bulletin, 2023, 39(6): 248-258. |
[4] | HAN Zhan-hong, ZONG Yuan-yuan, ZHANG Xue-mei, WANG Bin, PRUSKY Dov, BI Yang. Bioinformatics,Subcellular Localization and Expression Analysis of erg4 in Penicillium expansum [J]. Biotechnology Bulletin, 2021, 37(12): 60-70. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||